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Abstract – Magnetic field-based positioning (MFP) is expected as a method that can establish accurate indoor 

positioning systems. With MFP, the position of a target device is predicted based on signals received by multiple 

sensors located at different points around the target area. A key point for accurate positioning is gathering the 

multiple sensor signals without degrading their quality. One of simple methods to gather the multiple sensor signals 

is to use a relay circuit. Since a dynamic range of the sensor signals becomes very large in MFP systems, the 

isolation performance of the relay circuit greatly influences prediction accuracy of the systems. We fabricated a 

high-isolation relay circuit and investigated the influences of the isolation performance of the circuit upon 

prediction accuracy of MFP systems. 
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1. Introduction

The demand for indoor positioning

technologies has been increasing with the 

popularization of mobile devices. Currently, 

methods using radio waves are being actively 

researched for predicting the position of the 

devices in indoor environments [1, 2]. How-

ever, due to the inherent nature of radio 

waves, it is difficult to avoid the influences 

of obstacles such as reflections and 

attenuation, and the positioning accuracy is 

degraded by these influences.  

On the other hand, if the target area is 

limited to a short distance on the order of 

several meters, the approach using magnetic 

fields, which are less susceptible to obstacles, 

is considered to be promising in terms of 

prediction accuracy. Because of this 

advantage, magnetic field-based positioning 

(MFP) has also been actively studied [3, 4].  

In MFP, magnetic field signals emitted by 

a mobile device (TX) are received by 

multiple sensors (RX), and the information 

of the sensor signals is used to predict the Tx 

position. We previously demonstrated the 

effectiveness of machine learning for MFP in 

terms of both prediction accuracy and 

computational speed [5, 6]. The advantage of 

applying machine learning to MFP is that the 

training data, which are the sensor signals, 

can be easily obtained by calculation. To take 

this advantage, good agreement between the 

calculated and real signals is required. In 

practice, however, it is difficult to realize 

complete agreement between them.  

In real MFP systems, it is necessary to 

gather the signals received by multiple 

sensors. One of simple methods to gather the 

multiple sensor signals is to use relay circuits. 

It was revealed by our previous research that 

the main factor of the disagreement is poor 

isolation nature of the relay circuits [7].  

In this study, we investigated the 

influence of isolation characteristics of the 

relay circuits upon prediction accuracy of 

MFP. Furthermore, we fabricated a circuit 

with physical contact relays (PCRs) and 

achieved the isolation ratio of 76 dB. The 

average prediction error obtained with our 

MFP system was successfully reduced from 

24.6 cm to 5.7 cm by introducing the PCR 

circuit.  

2. MFP System with Machine Learning

Figure 1 shows the configuration of an

MFP system used in this study. A transmitter 

(TX) which generates magnetic fields 

through a uniaxial coil imitates a target 

mobile device. The position of the TX is 

predicted based on the magnetic field signals 

received by multiple sensors (RX1–4). In our 

system, four RXs are installed, but not 

limited to four. 
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Figure 1. MFP system used in this study.  

An AC voltage is applied to the TX from 

a function generator (FG) to generate 

magnetic field signals. The signals are 

received by sensors (RX1–4) placed at four 

corners of the target area. The four sensor 

signals are input to a relay circuit, and one of 

the signals is selected and delivered to a 

spectrum analyzer (SA). The data signals 

analyzed by SA  are transferred to a PC. It 

becomes possible to acquire the four sensor 

signals by switching the relay circuit. The 

switching operation of the relay circuit is 

controlled by DC voltage signals generated 

by function generators (FG1 and FG2). The 

PC is used for calculating the position of the 

TX based on the four sensor signals.  

Next, we explain the machine-learning 

approach to MFP systems. As shown in 

Figure 2, the essence of this approach is 

generating a predictor function 𝐏  that can 

output the predicted TX position 𝐫(p)  in 

response to sensor signal information. The 

superscript (p) means that 𝐫(p) is a predicted 

position. Obtaining P requires a large amount 

of training data for machine learning. 

Generally speaking, it is cumbersome and 

time-consuming to prepare a sufficient 

number of training data. Fortunately for MFP 

systems, training data can be computational-

ly obtained, making it easy to prepare a large 

number of training data.   

The training data can be written as  

(𝐵calc
(1)

 , 𝐵calc
(2)

 , 𝐵calc
(3)

 , 𝐵calc
(4)

 ;  𝐫(t)), (1) 

where 𝐵calc
(𝑘)

 and 𝐫(t) are the calculated values 

of the received signal of k-th RX and the true 

position of the TX, respectively.  

 
Figure 2. Calculation of TX position by using a 

predictor function obtained with machine learning.  

 
Figure 3. Conceptual diagram of unwanted signal 

contamination within a relay circuit.  

A large number of training data can be 

prepared easily by calculating 𝐵calc
(𝑘)

 for 

various 𝐫(t). After machine learning with the 

training data, we can obtain P having the 

following property.  

𝐫(p) = 𝐏(𝐵(1) , 𝐵(2) , 𝐵(3) , 𝐵(4)) (2) 

Here 𝐵(𝑘) is the received signal of k-th RX. 

Since 𝐫(p) is the predicted position of TX, it 

can be regarded as an approximation of the 

true position 𝐫(t) . For evaluating the 

performance of P, we define the prediction 

error  by  

𝑑 ≜ ‖𝐫(t) − 𝐫(p)‖
2

. (3) 

In this study, we used “Wolfram 

Mathematica 12.0” for machine learning and 

adopted “Neural Network” as the learning 

method.  

 

3. Prediction Accuracy and Isolation 

Characteristics of Relay Circuits 

Figure 3 shows a conceptual diagram of 

unwanted signal contamination that degrades 

the isolation ratio of relay circuits. In MFP 

systems, the received signal of each RX is 

delivered to SA via the relay circuit that 

switches the route (Port 1–4). Figure 3 shows 

the situation where the path is connected to 

Port 1. It is considered that the signal 

received by RX1 is delivered to SA in this 

situation. However, in practice, signals 

received by other sensors are slightly 

transmitted to SA because of incomplete 

isolation nature of relay circuits.  
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Figure 4. Setup to measure 𝑆21.  

 
Figure 5. Situation where unwanted signals make the 

greatest impact on 𝐵(4) which is the signal received by 

RX4. 

To quantitatively express the isolation 

performance of the relay circuit, we define S-

parameters as  

𝑆𝑖𝑗 [dB] = 𝑃out
(𝑖)

 [dBm] − 𝑃in
(𝑗)

 [dBm], (4) 

where 𝑃in
(𝑗)

 is the power input to Port j, and 

𝑃out
(𝑖)

 is the power delivered to SA when it is 

connected to Port i. The 𝑆𝑖𝑗 (𝑖 ≠ 𝑗)  

represents the degree of the unwanted signal 

contamination. As an example, the setup to 

measure 𝑆21  is depicted in Figure 4. By 

measuring 𝑆𝑖𝑗  for all 𝑖 and 𝑗 , the isolation 

performance of the relay circuit can be 

determined.  

In MFP systems, the negative impact 

brought about by the unwanted signals 

becomes maximum when TX is existing in 

the vicinity of one of RXs. Figure 5 shows 

the situation where unwanted signals have 

the greatest impact on the received signal 

𝐵(4), which is the signal received by RX4. 

Since 𝐵(2)  and 𝐵(4)  respectively become 

maximum and minimum in this situation, the 

negative impact of the unwanted signals on 

𝐵(4) becomes maximum.  

To quantitatively investigate the influence 

of the unwanted signals on prediction 

accuracy, we define the prediction error 𝐷 by  

𝐷(δ𝐵) = ‖𝐏(𝐵(1), 𝐵(2), 𝐵(3), 𝐵(4) + δ𝐵)

−𝐏(𝐵(1), 𝐵(2), 𝐵(3), 𝐵(4))‖
2

, (5)
 

where δ𝐵 is the received-signal error caused 

by the unwanted signal contamination. 

 
Figure 6. Relationship between the unwanted signal 

contamination and prediction error.  

 

Figure 7. High-isolation relay circuit.  

Figure 6 shows 𝐷(δ𝐵) calculated for the 

situation shown in Figure 5. By considering 

practical applications, it is desired that the 

prediction error falls within 5%, which 

corresponds to 𝐷 ≤ 5 cm  for our system 

because the dimension of the target area is 1 

m. It is seen from Figure 6 that the received-

signals error must satisfy  

|δ𝐵| ≲ 5 [dB]. (6) 

By applying (6) to the situation shown in 

Figure 5, we obtained the following require-

ment for a relay circuit.  

𝑆𝑖𝑗 ≲ −60 [dB]   (for 𝑖 ≠ 𝑗 ) (7) 

 

4. High-Isolation Relay Circuit 

We fabricated a relay circuit that meets 

the requirement given in (7). A photograph 

of the relay circuit is shown in Figure 7. A 

remarkable feature of the newly developed 

relay circuit is that it is equipped with PCRs. 

Owing to the PCRs, it becomes possible to 

greatly improve isolation ratio in com-

parison with circuits equipped with 

semiconductor relays (SCRs) in which quite 

large leakage currents exit.  

Figure 8 shows measured S-parameters of 

both the PCR and SCR circuits. The per-

formances of the PCR and SCR circuits are  

FG

SA

Port 1

Port 2

Port 3

Port 4

50 [Ω]

RX1RX2

RX3 RX4

TX

B [dB]

D
[c

m
]

Port 1 Port 2 Port 3

Port 4

SA FG1 FG2

PCR

53



Figure 8. S-parameters measured for the PCR and 

SCR circuits. 

 
Figure 9. Locations used for training (circle) and 

validation (cross).  

expressed by dots and crosses, respectively. 

It can be confirmed that the fabricated PCR 

circuit sufficiently meets the requirement 

because 𝑆𝑖𝑗 ≪ −60 dB for 𝑖 ≠ 𝑗. 

 

5. Evaluation of Prediction Accuracy of 

MFP System 

We experimentally evaluated the 

performance of our MFP system with the 

PCR and SCR circuits. Figure 9 shows TX 

locations used for training (black dots) and 

validation (red crosses).  

Figures 10(a) and (b) represent prediction 

errors d within x-y plane (𝑧 = 3 cm) obtained 

with our MFP system equipped with the PCR 

and SCR circuits, respectively. It is 

confirmed that the prediction accuracy is 

greatly improved by using the high-isolation 

relay circuit. Figure 11 shows a histogram of 

the prediction error d obtained with our MFP 

system equipped with the PCR and SCR 

circuits. It is seen that the probability of the 

prediction error d being within 5cm, which is 

the target value of this study, increased from 

6.1% to 44.9%. Additionally, the average of 

d was successfully decreased from 24.6 cm 

to 5.7 cm.   

 

 

 

 

 

 

 

 

 

(a)                                     (b) 

Figure 10. Prediction errors (z = 3 cm) obtained with 

the MFP system equipped with the (a) PCR and (b) 

SCR circuits. 

 
 Figure 11. Histogram of prediction errors. 

6. Conclusion 

We developed a high-isolation relay 

circuit by using PCRs instead of SCRs. The 

isolation ratio of the PCR circuit reached 76 

dB, which is 42 dB higher than that of the 

standard SCR circuit. Owing to the high-

isolation nature of the PCR circuit, the 

average prediction error obtained with our 

MFP system was successfully reduced from 

24.6 cm to 5.7 cm.  
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