論文

査読有り
2010年9月

Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum

NEURAL DEVELOPMENT
  • Takaki Miyata
  • ,
  • Yuichi Ono
  • ,
  • Mayumi Okamoto
  • ,
  • Makoto Masaoka
  • ,
  • Akira Sakakibara
  • ,
  • Ayano Kawaguchi
  • ,
  • Mitsuhiro Hashimoto
  • ,
  • Masaharu Ogawa

5
開始ページ
23
終了ページ
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1186/1749-8104-5-23
出版者・発行元
BIOMED CENTRAL LTD

Background: Cerebellar corticogenesis begins with the assembly of Purkinje cells into the Purkinje plate (PP) by embryonic day 14.5 (E14.5) in mice. Although the dependence of PP formation on the secreted protein Reelin is well known and a prevailing model suggests that Purkinje cells migrate along the 'radial glial' fibers connecting the ventricular and pial surfaces, it is not clear how Purkinje cells behave in response to Reelin to initiate the PP. Furthermore, it is not known what nascent Purkinje cells look like in vivo. When and how Purkinje cells start axonogenesis must also be elucidated.
Results: We show that Purkinje cells generated on E10.5 in the posterior periventricular region of the lateral cerebellum migrate tangentially, after only transiently migrating radially, towards the anterior, exhibiting an elongated morphology consistent with axonogenesis at E12.5. After their somata reach the outer/dorsal region by E13.5, they change 'posture' by E14.5 through remodeling of non-axon (dendrite-like) processes and a switchback-like mode of somal movement towards a superficial Reelin-rich zone, while their axon-like fibers remain relatively deep, which demarcates the somata-packed portion as a plate. In reeler cerebella, the early born posterior lateral Purkinje cells are initially normal during migration with anteriorly extended axon-like fibers until E13.5, but then fail to form the PP due to lack of the posture-change step.
Conclusions: Previously unknown behaviors are revealed for a subset of Purkinje cells born early in the posteior lateral cerebellum: tangential migration; early axonogenesis; and Reelin-dependent reorientation initiating PP formation. This study provides a solid basis for further elucidation of Reelin's function and the mechanisms underlying the cerebellar corticogenesis, and will contribute to the understanding of how polarization of individual cells drives overall brain morphogenesis.

リンク情報
DOI
https://doi.org/10.1186/1749-8104-5-23
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/20809939
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000282489600002&DestApp=WOS_CPL
ID情報
  • DOI : 10.1186/1749-8104-5-23
  • ISSN : 1749-8104
  • PubMed ID : 20809939
  • Web of Science ID : WOS:000282489600002

エクスポート
BibTeX RIS