論文

査読有り
2019年8月27日

Elucidation of a Heterogeneous Layered Structure in the Thickness Direction of Poly(vinyl alcohol) Films with Solvent Vapor-Induced Swelling

Langmuir
  • Tsukasa Miyazaki
  • ,
  • Noboru Miyata
  • ,
  • Mitsunori Asada
  • ,
  • Yoshihiro Tsumura
  • ,
  • Naoya Torikai
  • ,
  • Hiroyuki Aoki
  • ,
  • Katsuhiro Yamamoto
  • ,
  • Toshiji Kanaya
  • ,
  • Daisuke Kawaguchi
  • ,
  • Keiji Tanaka

35
34
開始ページ
11099
終了ページ
11107
記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.1021/acs.langmuir.9b01665
出版者・発行元
American Chemical Society (ACS)

© 2019 American Chemical Society. We investigated the swelling behaviors of poly(vinyl alcohol) (PVA) films deposited on Si wafers with water vapor, which is a good solvent for PVA for elucidating structural and dynamical heterogeneities in the film thickness direction. Using deuterated water vapor, structural and dynamical differences in the thickness direction can be detected easily as different degrees of swelling in the thickness direction by neutron reflectivity. Consequently, the PVA film with a degree of saponification exceeding 98 mol % exhibits a three-layered structure in the thickness direction. It is considered that an adsorption layer consisting of molecular chains that are strongly adsorbed onto the solid substrate is formed at the interface with the substrate, which is not swollen with water vapor compared with the bulk-like layer above it. The adsorption layer is considered to exhibit significantly slower dynamics than the bulk. Furthermore, a surface layer that swells excessively compared with the underneath bulk-like layer is found. This excess swelling of the surface layer may be related to a higher mobility of the molecular chains or lower crystallinity at the surface region compared to the underneath bulk-like layer. Meanwhile, for the PVA film with a much lower degree of saponification, a thin layer with a slightly lower degree of swelling than the bulk-like layer above it can be detected at the interface between the film and substrate only under a high humidity condition. This layer is considered to be the adsorption layer composed of molecular chains loosely adsorbed onto the Si substrate.

リンク情報
DOI
https://doi.org/10.1021/acs.langmuir.9b01665
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/31365260
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85071678050&origin=inward
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85071678050&origin=inward
URL
https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.9b01665
ID情報
  • DOI : 10.1021/acs.langmuir.9b01665
  • ISSN : 0743-7463
  • eISSN : 1520-5827
  • PubMed ID : 31365260
  • SCOPUS ID : 85071678050

エクスポート
BibTeX RIS