論文

査読有り 最終著者 本文へのリンクあり
2015年

Evaluating Machine Translation Systems with Second Language Proficiency Tests.

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (ACL2015)
ダウンロード
回数 : 276
  • Takuya Matsuzaki
  • ,
  • Akira Fujita
  • ,
  • Naoya Todo
  • ,
  • Noriko H. Arai

2
開始ページ
145
終了ページ
149
記述言語
英語
掲載種別
研究論文(国際会議プロシーディングス)
DOI
10.3115/v1/p15-2024
出版者・発行元
The Association for Computer Linguistics

A lightweight, human-in-the-loop evaluation scheme for machine translation (MT) systems is proposed. It extrinsically evaluates MT systems using human subjects' scores on second language ability test problems that are machine-translated to the subjects' native language. A large-scale experiment involving 320 subjects revealed that the context-unawareness of the current MT systems severely damages human performance when solving the test problems, while one of the evaluated MT systems performed as good as a human translation produced in a context-unaware condition. An analysis of the experimental results showed that the extrinsic evaluation captured a different dimension of translation quality than that captured by manual and automatic intrinsic evaluation.

Web of Science ® 被引用回数 : 1

リンク情報
DOI
https://doi.org/10.3115/v1/p15-2024
DBLP
https://dblp.uni-trier.de/rec/conf/acl/MatsuzakiFTA15
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000493810000024&DestApp=WOS_CPL
URL
https://www.aclweb.org/anthology/P15-2024/
Dblp Cross Ref
https://dblp.uni-trier.de/conf/acl/2015-2
Dblp Url
https://dblp.uni-trier.de/db/conf/acl/acl2015-2.html#MatsuzakiFTA15
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84944070897&origin=inward 本文へのリンクあり
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84944070897&origin=inward
ID情報
  • DOI : 10.3115/v1/p15-2024
  • ISBN : 9781941643730
  • DBLP ID : conf/acl/MatsuzakiFTA15
  • SCOPUS ID : 84944070897
  • Web of Science ID : WOS:000493810000024

エクスポート
BibTeX RIS