2015年
Evaluating Machine Translation Systems with Second Language Proficiency Tests.
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (ACL2015)
ダウンロード
回数 : 276
- ,
- ,
- ,
- 巻
- 2
- 号
- 開始ページ
- 145
- 終了ページ
- 149
- 記述言語
- 英語
- 掲載種別
- 研究論文(国際会議プロシーディングス)
- DOI
- 10.3115/v1/p15-2024
- 出版者・発行元
- The Association for Computer Linguistics
A lightweight, human-in-the-loop evaluation scheme for machine translation (MT) systems is proposed. It extrinsically evaluates MT systems using human subjects' scores on second language ability test problems that are machine-translated to the subjects' native language. A large-scale experiment involving 320 subjects revealed that the context-unawareness of the current MT systems severely damages human performance when solving the test problems, while one of the evaluated MT systems performed as good as a human translation produced in a context-unaware condition. An analysis of the experimental results showed that the extrinsic evaluation captured a different dimension of translation quality than that captured by manual and automatic intrinsic evaluation.
Web of Science ® 被引用回数 : 1
Web of Science ® の 関連論文(Related Records®)ビュー
- リンク情報
-
- DOI
- https://doi.org/10.3115/v1/p15-2024
- DBLP
- https://dblp.uni-trier.de/rec/conf/acl/MatsuzakiFTA15
- Web of Science
- https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000493810000024&DestApp=WOS_CPL
- URL
- https://www.aclweb.org/anthology/P15-2024/
- Dblp Cross Ref
- https://dblp.uni-trier.de/conf/acl/2015-2
- Dblp Url
- https://dblp.uni-trier.de/db/conf/acl/acl2015-2.html#MatsuzakiFTA15
- Scopus
- https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84944070897&origin=inward 本文へのリンクあり
- Scopus Citedby
- https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84944070897&origin=inward
- ID情報
-
- DOI : 10.3115/v1/p15-2024
- ISBN : 9781941643730
- DBLP ID : conf/acl/MatsuzakiFTA15
- SCOPUS ID : 84944070897
- Web of Science ID : WOS:000493810000024