
Race against the Teens – Benchmarking
Mechanized Math on Pre-university Problems

Takuya Matsuzaki1,2, Hidenao Iwane3,2, Munehiro Kobayashi4, Yiyang Zhan5,
Ryoya Fukasaku6, Jumma Kudo6, Hirokazu Anai3,7, and Noriko H. Arai2

1 Nagoya University, Japan
2 National Institute of Informatics, Japan

3 Fujitsu Laboratories, Ltd., Japan
4 University of Tsukuba, Japan

5 Université Paris Diderot
6 Tokyo University of Science, Japan

7 Kyushu University, Japan

Abstract. This paper introduces a benchmark problem library for mech-
anized math technologies including computer algebra and automated the-
orem proving. The library consists of pre-university math problems taken
from exercise problem books, university entrance exams, and the Inter-
national Mathematical Olympiads. It thus includes problems in various
areas of pre-university math and with a variety of difficulty. Unlike other
existing benchmark libraries, this one contains problems that are formal-
ized so that they are obtainable as the result of mechanical translation
of the original problems expressed in natural language. In other words,
the library is designed to support the integration of the technologies of
mechanized math and natural language processing towards the goal of
end-to-end automatic math problem solving. The paper also presents
preliminary experimental results of our prototype reasoning component
of an end-to-end system on the library. The library is publicly available
through the Internet.

1 Introduction

One of the ultimate goals of automated theorem proving is to produce computer
programs that allow a machine to conduct mathematical reasoning like human
beings. It seems that a tacit understanding exists on how we should interpret this
goal. First, the input of the programs is assumed to be expressed in some formal
language, but not in a natural language. Second, the term “human beings” is
used to mean gifted mathematicians rather than ordinary people. In this paper,
we propose a different interpretation of the goal by providing a new problem
library for benchmarking automated math reasoners, and showing experimental
results on the problem set.

Though traditionally ignored in the framework of automated theorem proving
and computer algebra, interpreting given problems is as important as solving
them in mathematical reasoning; it took almost a century to determine the

(Find (x)
(exists (A B C D E)

(& (exists (F)
(& (exists (U T S R Q P)

(& (= (polygon (list-of A B C D E F))
(polygon (list-of P Q R S T U)))

(is-regular-polygon (polygon (list-of P Q R S T U)))))
(is-diagonal-of (seg A C) (polygon (list-of A B C D E F)))
(exists (U T S R Q P)

(& (= (polygon (list-of A B C D E F))
(polygon (list-of P Q R S T U)))

(is-regular-polygon (polygon (list-of P Q R S T U)))))
(is-diagonal-of (seg C E) (polygon (list-of A B C D E F)))))

(exists (M N)
(& (exists (r)

(& (= (/ (length-of (seg A M)) (length-of (seg A C)))
(/ (length-of (seg C N)) (length-of (seg C E))))

(= (/ (length-of (seg C N)) (length-of (seg C E))) r)
(on M (seg A C))
(= (/ (length-of (seg A M)) (length-of (seg A C)))

(/ (length-of (seg C N)) (length-of (seg C E))))
(= (/ (length-of (seg C N)) (length-of (seg C E))) r)
(on N (seg C E))
(= x r)))

(~ (= M A)) (~ (= M C))
(~ (= N C)) (~ (= N E))
(points-colinear (list-of B M N)))))))

Fig. 1. Mechanical Translation Result of IMO 1982, Problem 5

>

>�

Appos

�������	ℎ�	��
�

正６角形
��,2�.�����

>�

ABCDEF
���,��,2�.�����

��/(��\���,��,2�.�����)

�0�/(�0�\����,�,2�.�����)

�

の
��\����/(��\����)

��/(��\����,�,2�.�����)

����
���

対角線
��,2�.�����\����,�,2�.�����

��,2�.�����

Fig. 2. Syntactic/Semantic Analysis of Problem (CCG Derivation Tree)

language and axioms required to express the Jordan curve theorem, and this is
exactly how long it took to solve the problem. This is also the case in curriculum
math. Hence, it is fair to assume the problems are expressed in a natural language
but not in a formal language if we want to seriously argue about whether or not
a machine is as intelligent as high school graduates in math problem solving.

Given this situation, we developed a new problem library of real pre-university
math problems. It is designed to cover various sub-areas of curriculum math and
a diverse range of difficulty. The initial release of the data set includes more than
700 problems taken from three sources: popular high school math exercise book
series, entrance examinations of seven top universities in Japan, and the past
problems from International Mathematical Olympiads (IMO). Our choice of the
three problem sources is motivated by the desire to measure the performance
of mechanized math systems with high school students of different skill and
intellectual levels as reference points.

Table 1. Number of Problems and Directives

Chart Univ IMO total
#Problems 288 245 212 745

#Directives
Find 473 438 110 1021
Draw 28 16 0 44
Show 78 73 134 285

Table 2. Subject Areas (IMO)

Algebra 57
Number Theory 38
Analysis 1
Geometry 105
Combinatorics 11

Although problems in the library are formalized in a formal language so that
the automatic reasoning (AR) and computer algebra system (CAS) communities
will find it appealing to challenge the problems, the formalization is designed so
that the problems can be obtained as the result of mechanical translation of
their originals. This might have sounded unrealistic in the previous century but
is now within the range of contemporary research, thanks to the recent progress
that has been made in deep linguistic processing (e.g., [3, 2, 9]). Fig. 1 presents
an output from the translation module under development and Fig. 2 depicts a
part of the process that derives the logical translation of a Japanese phrase “正
6角形/regular-hexagon ABCDEF の/of 対角線/diagonal”, that corresponds to
“diagonal(s) of the regular hexagon ABCDEF .” Problems in the library were
formalized manually according to the design of the aforementioned translation
module. That is, they were translated manually into the formal language by
word-by-word and sentence-by-sentence basis without any inference and para-
phrasing.

The formalized problem set and the accompanying axioms are publicly avail-
able at http://github.com/torobomath/benchmark. The problems and the ax-
ioms are formulated in a higher-order language that is mostly compatible with
the TPTP’s typed higher-order format (THF) [13]. The data and the axioms
are distributed both in the TPTP’s THF syntax and an S-expression format.
For readability, we use the S-expression format for presenting the data. Several
basic elements such as logical connectives and quantifiers are renamed following
the TPTP’s convention.

The rest of the paper is structured as follows. We first describe how we col-
lected and formalized curriculum math problems in Section 2. Several problems
are shown in Section 3 to exemplify what aspects of mechanized math are nec-
essary. Besides proof problems, the benchmark includes many “Find X”-type
problems. Technical issues in formalizing such problems are discussed in Sec-
tion 4. Section 5 provides an overview of a prototype solver system built on
an integration of a simple logical inference system with computer algebra sys-
tems. Experimental results on the initial release of the data by our solver system
are presented in Section 6. Finally, we conclude the paper and discuss future
directions in Section 7.

Table 3. Subject Areas (Chart & Univ)

Chart Univ
Algebra 51 10
Linear Algebra 28 62
Geometry 136 65
Pre-Calculus 15 74
Calculus 42 33
Combinatorics 16 1

Table 4. Distribution of Theory Labels

Chart Univ IMO
PA 84 0 42
RCF 174 245 115
ZF 30 0 55
RCF+PA 1 0 8
Transc 23 0 6
PA+Transc 5 0 1
Comb 0 0 10
other 1 0 30

Table 5. Statistics on the Syntactic Properties (min/avg/max/median)

Todai Robot Project Math Benchmark
TPTP-THF

Chart Univ IMO All
of formulae 1/ 2/ 7/ 2 1/ 2/ 8/ 2 1/ 1/ 5/ 1 1/ 2/ 8/ 1 1/103/ 5639/10
of atoms 14/80/485/65 14/125/652/95 11/85/2658/65 11/97/2658/72 1/819/64867/88
Avg atoms/formula 9/42/161/38 14/ 58/232/54 10/77/2658/56 9/57/2658/48 1/ 22/ 811/ 6
of symbols 3/16/ 31/16 6/ 19/ 34/19 4/19/1332/12 3/18/1332/15 1/ 45/ 1442/ 9
of variables 1/12/ 55/ 9 1/ 17/ 72/13 0/ 9/ 35/ 8 0/13/ 72/ 9 0/154/11290/19

λ 0/ 4/ 22/ 3 0/ 4/ 23/ 3 0/ 1/ 9/ 1 0/ 3/ 23/ 2 0/ 22/ 385/ 2
∀ 0/ 2/ 49/ 0 0/ 2/ 24/ 0 0/ 5/ 22/ 4 0/ 3/ 49/ 0 0/123/10753/ 9
∃ 0/ 5/ 38/ 4 0/ 9/ 50/ 6 0/ 2/ 20/ 1 0/ 6/ 50/ 4 0/ 8/ 496/ 2

of connectives 11/67/416/55 13/105/476/78 11/77/2655/58 11/82/2655/61 0/574/51044/52
Max formula depth 8/20/ 50/19 12/ 25/ 59/23 9/28/1327/20 8/24/1327/21 2/ 36/ 359/11
Avg formula depth 0/ 5/ 9/ 4 0/ 5/ 9/ 4 0/ 5/ 9/ 5 0/ 5/ 9/ 5 0/ 5/ 9/ 6

2 Pre-university Math Problems as a Benchmark for
Mechanized Math Systems

In this section, we first describe the sources and the types of the benchmark prob-
lems. We then explain how we encoded the problems other than proof problems.
Finally, the representation language is described.

2.1 The Problem Library

The initial release of the data set consists of 745 problem files containing 1,353
directives, and 1,897 axioms defining 1,040 symbols (functions, predicates, and
constants). The problems were taken from three sources: “Chart-shiki” (Chart),
Japanese university entrance exams (Univ), and International Mathematical
Olympiads (IMO).

“Chart-shiki” is a popular problem book series containing more than ten
thousand problems in total. In the first release of the data set, the Chart di-
vision consists of arithmetic problems and various types of geometry problems
(including those involving calculus and linear algebra) (Table 3). Every problem
in “Chart-shiki” is marked with one to five stars by the editors of the book se-
ries according to its difficulty. We sampled the problems so that their levels of
difficulty would be uniformly distributed.

The Univ division of the data consists of the past entrance exams of seven
top Japanese national universities. Unlike in most countries, in Japan each na-

IMO 1982, Problem 5� �
The diagonals AC and CE of the regular hexagon ABCDEF are divided by the
inner points M and N , respectively, so that AM

AC
= CN

CE
= r. Determine r if B, M ,

and N are collinear.� �
;;--
(def-directive problem_IMO_1982_2

(Find (r)
(exists (A B C D E F M N)

(& (is-regular-polygon (polygon (list-of A B C D E F)))
(on M (seg A C))
(on N (seg C E))
(~ (= M A)) (~ (= M C))
(~ (= N C)) (~ (= N E))
(= (/ (length-of (seg A M)) (length-of (seg A C)))

(/ (length-of (seg C N)) (length-of (seg C E))))
(= (/ (length-of (seg A M)) (length-of (seg A C)))

r)
(colinear B M N)))))

(def-answer problem_IMO_1982_2
(lambda r (= r (/ 1 3))))

;;--

Fig. 3. Problem File Example (IMO 1982, Problem 5)

tional university prepares its entrance exam by itself. As a result, several hun-
dreds of brand-new problems are produced every year for the entrance exams.
In the first release, the Univ division includes the problems that were manually
classified as ‘most likely expressible’ in the first-order theory of real-closed fields
(RCF) (Table 3). Two hundred more Univ problems involving transcendental
functions and integers arithmetic (often as a mixture with reals) are currently
under preparation for the second release of the data set.

The IMO division consists of about 2/3 of the past IMO problems. The
initial release includes all of the geometry and real algebra problems, and some
of the problems in number theory, function equations, and combinatorics.

Each problem is labeled by its subject domain name such as geometry or
calculus (Table 2 and Table 3), and also by its formal theory name. The prob-
lems that are naturally expressible (by humans) in the theories of RCF or Peano
Arithmetic (PA) are labeled so, and the rest of the problems are tentatively la-
beled ZF, standing for Zermelo-Fraenkel Set Theory. We scrutinized the problems
labeled ZF and classified them into several groups such as ‘RCF+PA’ (mixture
of integer and real arithmetics) and ‘Transc’ (problems involving transcendental
functions that cannot be reformulated in RCF), though they are not formal the-
ories (Table 4). Table 5 lists statistics for the formalized problems. For reference,
it also lists those for the typed-higher order format (THF) problems in TPTP
version 6.1.0.

Table 6. Logical Translations in ZF Set Theory and Peano Arithmetic

a) There are infinitely many prime numbers greater than 4.

ZF: |{n ∈ N | prime(n) ∧ n > 4}| = ω
PA: ∀N∃n(n > N ∧ prime(n) ∧ n > 4)

b) There is an even number of prime numbers less than 4.

ZF: ∃k ∈ N(even(k) ∧ |{n | prime(n) ∧ n < 4}| = k)
PA: ∃k(even(k) ∧ num of(prime less than(4)) = k)

c) There are two prime numbers less than 4.

ZF: |{n ∈ N | prime(n) ∧ n < 4}| = 2

PA1: ∃n1∃n2

(
prime(n1) ∧ prime(n2) ∧ n1 < 4 ∧ n2 < 4 ∧ n1 ̸= n2

∧∀m((prime(m) ∧m < 4) → (m = n1 ∨m = n2))

)
PA2: num of(prime less than(4)) = 2

2.2 A Formalization of Curriculum Math Problems

We formalize a problem as a pair of a directive and its answer. By surveying the
problems, we identified three major types of directives:

– Show [ϕ] is a proof problem to prove ϕ.
– Find(v) [ϕ(v)] is a problem to find all values for v that satisfy condition ϕ(v).
– Draw(v) [ϕ(v)] requests a geometric object v defined by ϕ(v) be drawn.

Show directives must be familiar to the reader, though the set of problems
requiring proofs is a minority in curriculum math. Table 1 shows that students
are asked to find some values more frequently than to prove propositions. The
answer to a Find problem, Find(v)[ϕ(v)], is expected to be a characteristic func-
tion f(v) that returns true if v satisfies ϕ(v). The answer to a Draw problem
Draw(v)[ϕ(v)] should be the geometric object v expressed as a characteristic
function on R2. Fig. 3 is an example of a Find problem taken from IMO 1982.

To use a problem set in the above format as benchmark data, we need a rule
to judge whether a system’s output is acceptable or not. It is clear for the Show
directives: true or false. We regard a Draw directive as a variant of Find problems
for which the system is supposed to find a formula that defines the geometric
object. Then, what is “to solve a Find problem?” Roughly speaking, a solver
is supposed to give a correct solution in its simplest form. We will discuss the
properties an answer formula for a Find problem has to satisfy in Section 4.

2.3 Representation Language

We formalized all the problems in a single theory on the basis of ZF regardless
of their context. In formality, it is a typed lambda calculus with parametric
polymorphism. This is again due to the fully automatic, end-to-end task setting.
Table 6 demonstrates why a higher-order language is appropriate as the target
language. Mechanical translation assumes a systematic correspondence between
the syntactic structures of the input and output languages; the results of the

;; tangent(S1, S2, P) <-> geometric objects
;; S1 and S2 are tangent at point P
(def-pred

tangent :: Shape -> Shape -> Point => Bool)

(axiom
def_tangent_line_and_circle
(p q c r P)
(<-> (tangent (line p q) (circle c r) P)

(& (on P (line p q))
(perpendicular (line c P) (line p q))
(= (distance^2 P c) (^ r 2)))))

;; maximum(S, m) <->
;; m is the maximum element of set S
(def-pred

maximum :: (SetOf R) -> R => Bool)

(axiom
def_maximum
(set max)
(<-> (maximum set max)

(& (elem max set)
(forall (v)

(-> (elem v set)
(<= v max))))))

Fig. 4. Type Definitions and Axioms

mechanical translations of a), b), and c) into ZF in Table 6 are expected to have
the same or at least a similar structure thanks to the set builder notation such as
{n ∈ N | prime(n)∧n > 4}, which is expressed using λ-abstraction in the dataset.
However, the expressions of the three sentences in PA must be different since
the concept of finiteness cannot be expressed in first-order logic. Meanwhile, the
expressibility of ZF allows almost word-by-word translations for all sentences.
Parametric polymorphism is utilized to have polymorphic lists and sets in the
language and define various operations on them while keeping the axioms and
the lexicon (i.e., the mapping table from words to their semantic representations)
concise.

We believe the vast majority of our benchmark problems can be eventually
expressed in first-order logic. To mechanically fill the gap between the heavy-
duty language and the relatively simple content is however a mandatory step
to connect natural language processing and automated reasoning together for
end-to-end automatic problem solving.

Since our mechanical translator is still under development, the problems were
formalized manually at the current stage. Operators, all majored in computer
science and/or mathematics, were trained to translate the problems as faith-
fully as possible to the original natural language statements following the NLP
design. The sets of new symbols and their defining axioms were introduced in
parallel with the problem formalization, to match the problem formula as close
as possible to the problem text.

In the language, we currently have 31 types including Bool(ean), Z (inte-
gers), Q (rational numbers), R(eals), C(omplex numbers), ListOf(α) (polymor-
phic lists), SetOf(α) (polymorphic sets), Point (in 2D and 3D spaces), Shape
(sets of Points), Equation (in real domain), and so on. The types are somewhat
redundant in that we can represent, e.g., Equation simply by a function of type
R → R by regarding f : R → R as representing f(x) = 0. The abundance of types,
however, helped a lot in organizing the axioms and debugging the formalized
problems. Fig. 4 presents an excerpt from an axiom file that includes two type
definitions (two def-preds) and two axioms.

All in all, the language shall be understood as a conservative extension of ZF
set theory. It thus has some overlap with previous efforts toward formalizing a

large part math, such as Mizar’s math library [5]. However, some essential parts
of the system (e.g., the definition of the real numbers and arithmetic) are left
undefined although nothing prevents the users of the problem library from doing
so. Instead of writing all the inference rules explicitly, we delegated computer
algebra systems to take care of it. Although it is not within our current research
focus, full formalization of the system (maybe by embedding it into an existing
formalized math library) is an interesting future direction.

2.4 Related Work

Development of a well-designed benchmark is doubtlessly a crucial part of AR.
The most notable example is the “Thousands of Problems for Theorem Provers”
(TPTP, [12]), which covers various domains and several problem formats in-
cluding CNF, first-order formula with quantifiers, and typed higher-order logic.
Previous efforts have also accumulated benchmarks for various branches of AR,
such as SAT [6], satisfiability modulo theory [1], inductive theorem proving [4],
and geometry problems [11]. However, the current study is the first attempt to
offer a large collection of curriculum math problems including not only proof
problems but also Find and Draw problems with a wide range of difficulties as a
benchmark for AR technologies.

3 Problem Samplers

We provide several sample problems taken from the first release of the library.

Hokkaido University, 2011, Science Course, Problem 3 (2)� �
Let ℓ be the trajectory of (t+2, t+2, t) for t ranging over the real numbers.
O(0, 0, 0), A(2, 1, 0), and B(1, 2, 0) are on a sphere S, centered at C(a, b, c).
Determine the condition on a, b, c for which S intersects with ℓ.� �
In the data set, the above problem is formalized as shown in Fig. 5.
It is not difficult to obtain an equivalent formula in the language of first-order

RCF by rewriting the predicates and functions using their defining axioms. How-
ever, it results in a formula including 22 variables and 22 atoms, that is way above
the ability of existing RCF-QE solvers to deal with. It is not very surprising see-
ing that the time complexity of RCF-QE, a key step in the solution process, is
doubly exponential in the number of variables in a given formula. We enhanced
existing RCF-QE algorithms to overcome the difficulty. Fortunately, our proto-
type system successfully solved this problem. We will explain the enhancement
in detail in Section 5.

Chart-shiki, Math 3+C, Problem 09CBCE011� �
Consider 0 < |ax−y|√

1+a2
< 2

√
2

x+y for x > 0 and y > 0. Prove that there are

only finitely many pairs of positive integers (x, y) that satisfy the above
inequalities when a is a rational number.� �

� �
;; FILE: Univ-Hokkaido-2011-Ri-3.lsp
(def-directive

hokudai_2011_Ri_3_2
(Find (abc)

(exists (a b c O A B C l S)
(& (= abc (list-of a b c))

(line-type l)
(= l (shape-of-cpfun (lambda p (exists (t) (= p (point (+ t 2) (+ t 2) t))))))
(sphere-type S)
(= O (point 0 0 0)) (= A (point 2 1 0)) (= B (point 1 2 0))
(on O S) (on A S) (on B S)
(= C (point a b c))
(= C (center-of S))
(intersect l S)))))))� �

Fig. 5. Hokkaido University, 2011, Science Course, Problem 3 (2)

In the data set, the above problem is formalized as follows:

∀a ∈ Q∃n ∈ Z(n > 0 ∧ n = |{(x, y) ∈ Z2 | P (int2real(x), int2real(y))}|)

where P = λ(x, y) ∈ R2(x > 0∧y > 0∧0 < |ax−y|√
1+a2

< 2
√
2

x+y). Several ∈’s preceding
to domain names in the formula signify their types. Despite the seeming mixture
of reals, integers, and rational numbers, we can easily find an equivalent formula
in the language of PA. The mechanization of processes such as this is one of our
ongoing research topics.

IMO 2012, Problem 2� �
Let n ≥ 3 be an integer, and let a2, a3, . . . , an be positive real numbers such
that a2a3 · · · an = 1. Prove that (1 + a2)

2(1 + a3)
3 . . . (1 + an)

n > nn.� �
In the data set, this problem is formalized using a higher-order function

prod from to :: (Z → R) → Z → Z → R, which corresponds to Πto
from in

the common notation. This problem apparently requires some kind of inductive
reasoning but the domain includes both real numbers and integers. Problems of
this type are abundant in curriculum math. We believe they will prove to be
new and interesting and challenging problems for automated inductive reason-
ing, both theoretically (e.g., formalizing them in a suitable local theory other
than ZF) and practically.

IMO 2003, Problem 1� �
S is the set {1, 2, 3, . . . , 1000000}. Show that for any subset A of S with
101 elements we can find 100 distinct elements xi of S, such that the sets
{a+ xi | a ∈ A} are all pairwise disjoint.� �
It is straightforward to translate the above-mentioned problem in ZF:

∀A
(

A ⊂ S ∧ |A| = 101

→ ∃X (X ⊂ S ∧ |X| = 100 ∧ pairwise disjoint({{a + x | a ∈ A} | x ∈ X}))

)

Table 7. Preference Hierarchy on Answer Form

Directive type Syntactic condition on the answer formula

Find(v : R)[ϕ(v,p)]

1.
∨

i

(∧
j (v ρij αij) ∧ ψi(p)

)
2.

∨
i

(∧
j fij(v) ρij 0 ∧ ψi(p)

)
3.

∨
i

(
∃(n : Z).

(∧
j (v ρij αij(n)) ∧ (n ρi γi)

)
∧ ψi(p)

)
4.

∨
i

(
∃(r : R).

(∧
j (v ρij αij(r)) ∧ (r ρi γi)

)
∧ ψi(p)

)
Find(v : Z)[ϕ(v,p)]

1.
∨

i

(∧
j (v ρij αij) ∧ ψi(p)

)
2.

∨
i (∃(n : Z). (v = αi(n) ∧ (n ρi γi)) ∧ ψi(p))

Find(v : SetOf(Point))[ϕ(v,p)]
∨

i (v = {(x, y) | ξi(x, y)} ∧ ψi(p))
(ρ∗ ∈ {=, <,≤,≥, >}; α∗, α∗(·), γ∗, ξ∗(·, ·): first-order terms not including v, x, y;
fij(v): first-order term; ψi(p): quantifier-free first-order formula)

where S = {n ∈ N | 1 ≤ n ≤ 1000000}. Moreover, it can be expressed in PA,
too. However, the effort to reformulate it in PA does little help in solving it.

4 What Constitutes an Answer to a Find Problem?

In Subsection 2.2, the properties an answer formula for a Find problem has
to satisfy for it to be regarded as acceptable (correctness and simplicity) were
briefly discussed. Now we will discuss these in detail. In [14], Sutcliffe et al.
proposed the conditions which answers of answer-extraction problems have to
satisfy. Our definition of ‘answer’ encompasses theirs in spirit and covers more
complicated cases beyond the extraction of a finite number of answers.

The definition of the correctness of an answer is straightforward. Given a
problem Find(x)[ψ(x,p)], where p stands for zero or more free parameters, an
answer formula ϕ(x,p) must satisfy:

∀x∀p(ψ(x,p) ↔ ϕ(x,p)). (1)

An example of a correct answer formula ϕ′(x,p) is provided for each Find prob-
lem in the library. If ϕ′(x,p) is used instead of ψ(x,p), the proof task for (1)
should generally be easy.

The simplicity of an answer is harder to define. Suppose that you are given a
problem, Find(v : R)[v2 = a], in a math test. Then, λv.(v2 = a) is of course not
an acceptable answer. However, test-takers are expected to answer, for example,

λv.
(
(a ≥ 0 ∧ v = a1/2) ∨ (a ≥ 0 ∧ v = −a1/2)

)
.

An answer to a problem asking to find all real numbers v satisfying a formula
ϕ(v) in the first-order language of RCF is called simple when it is in the form
λv.ψ(v) satisfying the following conditions.

– ψ(v) is a quantifier-free formula in disjunctive normal form, and
– each dual clause in ψ(v) consists of atoms of the form of v ρ α or β ρ 0,

where ρ ∈ {=, <,>,≤,≥}, and α and β are first-order terms not includ-
ing v and comprises numbers, variables (i.e., parameters) and functions in
{+, −, ·, /, ^(power)}.

The aforementioned syntactic conditions for a problem classified in RCF
should be acceptable because RCF allows quantifier elimination [15]. Further-
more, the statistics tell us that almost all pre-university math problems have
explicit solutions (i.e., in the form of x = α, β > x > γ, etc.)

For problems other than those expressible in RCF, we tried our best to
capture a loose, common understanding in the form of acceptable answers by
examining the model answers (for humans) to the benchmark problems. Our
tentative definition of ‘simple answers’ is as follows:

– Simplicity of the sub-language: an answer formula should be in a language
consisting of Boolean connectives, equality and inequalities, numbers, vari-
ables, and the four arithmetic operations and power calculations, sin, cos, tan,
exp, log, ‘type coercion functions’ such as int to real, and a minimal use
of lambda abstractions and quantifications.

– Explicitness: whenever possible within the above restriction imposed on the
language, the answer to a problem of the form Find(x)[ϕ(x)] should be given
using atoms such as x = α and x > α, where α does not include x.

Note that we need quantification in general unless the problem is expressible
in a theory that allows quantifier elimination. For instance, in the sub-language
defined above, there is no way to express the answer to “Determine all positive
numbers v that are divisible by three and also by two,” other than, e.g., ∃k(v =
6k ∧ k > 0). As for “minimal use of λ, ∀, ∃”, we define the preference of answer
form tentatively (Table 7). The answer-check routine compares a solver’s answer
and the model answer in the data set, and checks whether the solver’s answer
ranks equal (or higher) in the hierarchy.

5 Prototype Solver

While developing the benchmark data set, we also developed a prototype math
problem solver system (overviewed in Fig. 6). Given a formalized problem, the
system first rewrites it iteratively using the axioms and several equivalence-
preserving transformation rules such as beta-reduction, extensional equality be-
tween functions (λx.M = λx.N ⇔ ∀x(M = N)), variable elimination by sub-
stitution (∀x(x = f → ϕ(x)) ⇔ ϕ(f), and (∃x(x = f ∧ ϕ(x)) ⇔ ϕ(f) where x
does not occur free in f). In the course of the rewriting process, several types
of terms, such as multiplication and division of polynomials and integration, are
evaluated (simplified) by CASs such as Mathematica 9.0 and Maple 18. Once the
input is rewritten to a formula in the language of RCF, quantifier-elimination
(QE) algorithms are invoked; we utilized the RCF-QE algorithm implemented
in SyNRAC [8]. When QE is proceeded successfully, the remaining tasks, solving
equations and inequalities in many cases, will be taken care by the CASs. When
the input is rewritten in the language of PA, we apply the Reduce command of
Mathematica.

As mentioned in Section 3, the first-order formulas generated by mechanical
translation are much larger than expected [7, 10]. We enhanced the RCF-QE

Axioms

Formula
Rewriting

Formalized
Problem

SyNRAC
RCF-QE Solver

Simplification,
equation solving,
integration, etc.

Todai Robot
Math

Benchmark

RCF+
Formula

Under development

Problem
Text

Language
Processing

PA
Formula

Mathematica
PA-QE Solver

CASs:
SyNRAC
Maple
Mathematica

Fig. 6. System Overview

Table 8. Overall Results

Succeeded Failed

Success %
Time (sec)

Timeout Wrong Other
Min/Med/Avg/Max

Chart

RCF 63.8% (111/174) 13/18.0/ 37.4/ 343 10.9% 1.7% 23.6%
PA 57.1% (48/ 84) 12/17.0/ 20.3/ 172 0.0% 0.0% 42.9%

Other 10.0% (3/ 30) 13/14.0/ 17.7/ 26 0.0% 0.0% 90.0%
All 56.3% (162/288) 12/17.0/ 32.0/ 343 6.6% 1.0% 36.1%

Univ All (RCF only) 58.0% (142/245) 12/26.5/ 85.5/1417 15.5% 2.9% 23.7%

IMO

RCF 16.5% (19/115) 14/25.0/ 51.8/ 197 29.6% 0.9% 53.0%
PA 4.8% (2/ 42) 25/29.5/ 29.5/ 34 16.7% 0.0% 78.6%

Other 3.6% (2/ 55) 17/24.5/ 24.5/ 32 12.7% 0.0% 83.6%
All 10.8% (23/212) 14/25.0/ 47.5/ 197 22.6% 0.5% 66.0%

algorithms by numerous techniques to handle them: choice of the computation
order of sub-formulas, specialized QE algorithms for restricted input formulas,
simplification of the intermediate formulas by utilizing the interim results, and
so on. Additionally, we developed an algorithm for computing the area enclosed
by a set of curves and an extended RCF-QE command to reduce some of the
problems involving trigonometric functions to RCF-QE problems.

6 Experiments

The prototype system was run on the benchmark problems with a time limit
of 3600s per problem (including the time spent on checking the correctness of
the answers). Table 8 shows the number of successfully solved problems, mini-
mum, median, average, and maximum (wallclock) time spent on solved problems,
number of failures due to timeout, wrong answers (disproofs for Show or wrong
answers for Find or Draw directives), and those not solved due to various reasons
(the column headed ‘Other’). Approximately one-third of the ‘Other’ cases were

Table 9. Breakdown of Results on Chart RCF Problem by Number of Stars

Succeeded Failed
of

Success %
Time (sec)

Timeout Wrong Other
Stars Min/Med/Avg/Max

1 82.4% (28/34) 13/17.0/20.4/ 65 2.9% 0.0% 14.7%
2 79.4% (27/34) 16/18.0/28.1/230 2.9% 2.9% 14.7%
3 57.6% (19/33) 15/17.0/36.1/341 6.1% 0.0% 36.4%
4 47.4% (18/38) 15/19.0/62.1/343 23.7% 2.6% 26.3%
5 54.3% (19/35) 16/28.0/53.6/279 17.1% 2.9% 25.7%

Table 10. Breakdown of Results on Univ RCF Problems by University

University
of All RCF Overall Success % on
Problems Problems % Success % RCF Problems

Hokkaido 72 44.4% (32/ 72) 25.0% (18/ 72) 56.3% (18/32)
Tohoku 80 52.5% (42/ 80) 30.0% (24/ 80) 57.1% (24/42)
Tokyo 160 38.8% (62/160) 18.8% (30/160) 48.4% (30/62)

Nagoya 72 41.7% (30/ 72) 20.8% (15/ 72) 50.0% (15/30)
Osaka 64 37.5% (24/ 64) 32.8% (21/ 64) 87.5% (21/24)
Kyoto 88 43.2% (38/ 88) 33.0% (29/ 88) 76.3% (29/38)

Kyushu 96 36.5% (35/ 96) 18.8% (18/ 96) 51.4% (18/35)

due to a failure in the problem reformulation phase; i.e., for those problems,
the system could not find an equivalent formula expressible in either RCF or
PA. Explicitly wrong answers were due to bugs in our formula rewriting system
module and/or malfunctions of Maple’s equation/inequality solving command.

Overall, the performances for the Chart, Univ, and IMO divisions seem to
well reflect the inherent differences in their difficulty levels. Table 9, Table 10,
and Table 11 show further analysis of the results obtained for the three divisions.
Table 9 lists the performance figures for the RCF problem subsets in the Chart
division that are rated level 1 to 5 in the exercise books. We see a clear difference
between those rated level 1 or 2, and 4 or 5, especially in the percentages of the
problems that had a timeout. Table 10 lists the performance figures for each
university from which the exam problems were taken. Although average scores
etc. of the entrance exams are not published, a statistical analysis undertaken
by major prep schools tells us that the average score of successful applicants to
the top universities is around 30-60% depending on schools and departments.
Hence, it is very plausible that a machine will come to have the ability to pass
the entrance math exams of top universities if it is able to cover areas other than
RCF.

Finally, Table 11 lists the results on IMO problems taken from different time
periods. Human and Machine Efficiency in the table shows the ratio between the
attained points (by all contestants in a year and by our system, respectively)

Table 11. Results for IMO Problems by Decade

Years
Human Machine

Succeeded
Failed

Efficency Efficiency Timeout Wrong Other

1959-69 58.23% 21.11% 26.3% (15/57) 22.8% 1.8% 49.1%
1970-79 46.57% 7.00% 13.3% (4/30) 26.7% 0.0% 60.0%
1980-89 44.35% 1.85% 3.1% (1/32) 31.2% 0.0% 65.6%
1990-99 38.27% 3.33% 5.7% (2/35) 11.4% 0.0% 82.9%
2000-13 34.31% 1.19% 1.9% (1/54) 22.2% 0.0% 75.9%

and all possible points8. It seems that the IMO problems are getting harder year
by year not only for human participants but more so for our system.

We believe that these experimental results support our decision on the library
organization, and encourage us to further proceed toward the goal of end-to-end
math problem solving with the monolithic logical language based on ZF.

7 Conclusion and Prospects

In this paper, we introduced a benchmark problem library for mechanized math
technologies. The library consists of curriculum math problems taken from exer-
cise problem books, university entrance exams, and International Mathematical
Olympiads. Unlike other existing benchmark libraries, this one contains prob-
lems that are formalized so that they are obtainable as the result of mechanical
translation of the original problems expressed in natural language. Preliminary
experimental results we obtained for our prototype system on the benchmark
show that its performance is comparable to that of candidates for admission to
top universities, at least for problems in real-closed fields.

Our future plan includes the expansion of the library with more problems
on integer arithmetic, transcendental functions, combinatorics, and a mixture
of real and integer arithmetics as well as development of the natural language
processing module for an end-to-end system.

References

1. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2010)

2. Bos, J.: Wide-coverage semantic analysis with boxer. In: Bos, J., Delmonte, R.
(eds.) Semantics in Text Processing. STEP 2008 Conference Proceedings. pp. 277–
286. Research in Computational Semantics, College Publications (2008)

3. Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics 33 (2007)

8 The statistics were taken from the official IMO website: https://www.

imo-official.org/results_year.aspx

4. Dennis, L.A., Gow, J., Schürmann, C.: Challenge problems for inductive theorem
provers v1.0. Tech. Rep. ULCS-07-004, University of Liverpool, Department of
Computer Science (2007)

5. Grabowski, A., Korni lowicz, A., , Naumowicz, A.: Mizar in a nutshell. Journal of
Formalized Reasoning 3(2), 153245 (2010)

6. Hoos, H.H., Stützle, T.: SATLIB: An online resource for research on SAT. pp.
283–292. IOS Press (2000)

7. Iwane, H., Matsuzaki, T., Arai, N., Anai, H.: Automated natural language geome-
try math problem solving by real quantier elimination. In: Proceedings of the 10th
International Workshop on Automated Deduction (ADG2014). pp. 75–84 (2014)

8. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of
symbolic-numeric cylindrical algebraic decomposition for quantifier elimination.
Theor. Comput. Sci. 479, 43–69 (2013)

9. Kwiatkowksi, T., Zettlemoyer, L., Goldwater, S., Steedman, M.: Inducing proba-
bilistic CCG grammars from logical form with higher-order unification. In: Pro-
ceedings of the 2010 Conference on Empirical Methods in Natural Language Pro-
cessing. pp. 1223–1233. Association for Computational Linguistics (2010)

10. Matsuzaki, T., Iwane, H., Anai, H., Arai, N.H.: The most uncreative examinee:
A first step toward wide coverage natural language math problem solving. In:
Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. pp.
1098–1104 (2014)

11. Quaresma, P.: Thousands of geometric problems for geometric theorem provers
(TGTP). In: Schreck, P., Narboux, J., Richter-Gebert, J. (eds.) Automated De-
duction in Geometry, Lecture Notes in Computer Science, vol. 6877, pp. 169–181.
Springer Berlin Heidelberg (2011)

12. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

13. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the
TPTP THF infrastructure. Journal of Formalized Reasoning 3(1), 1–27 (2010)

14. Sutcliffe, G., Stickel, M., Schulz, S., Urban, J.: Answer extraction for TPTP http:

//www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html

15. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley (1951)

