論文

査読有り
2000年7月

Tractability of Cut-free Gentzen-type propositional calculus with permutation inference II

THEORETICAL COMPUTER SCIENCE
  • Noriko H. Arai

243
1-2
開始ページ
185
終了ページ
197
記述言語
英語
掲載種別
研究論文(学術雑誌)
出版者・発行元
ELSEVIER SCIENCE BV

In Arai (1996), we introduced a new inference rule called permutation to propositional calculus and showed that cut-free Gentzen system LK (GCNF) with permutation (1) satisfies the feasible subformula property, and (2) proves pigeonhole principle and Ic-equipartition polynomially. In this paper, we survey more properties of our system. First, we prove that cut-free LK+permutation has polynomial size proofs for nonunique endnode principle, Bendy's theorem. Second, we remark the fact that permutation inference has an advantage over renaming inference in automated theorem proving, since GCNF+renaming does not always satisfy the feasible subformula property. Finally, we discuss on the relative efficiency of our system vs. Frege systems and show that Frege polynomially simulates GCNF+renaming if and only if Frege polynomially simulates extended Frege. (C) 2000 Elsevier Science B.V. All rights reserved.


リンク情報
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000088692900005&DestApp=WOS_CPL
共同研究・競争的資金等の研究課題
命題論理の証明の長さに関する研究
URL
http://www.sciencedirect.com/science/article/pii/S0304397598001868
ID情報
  • ISSN : 0304-3975
  • Web of Science ID : WOS:000088692900005

エクスポート
BibTeX RIS