2000年7月
Tractability of Cut-free Gentzen-type propositional calculus with permutation inference II
THEORETICAL COMPUTER SCIENCE
- 巻
- 243
- 号
- 1-2
- 開始ページ
- 185
- 終了ページ
- 197
- 記述言語
- 英語
- 掲載種別
- 研究論文(学術雑誌)
- 出版者・発行元
- ELSEVIER SCIENCE BV
In Arai (1996), we introduced a new inference rule called permutation to propositional calculus and showed that cut-free Gentzen system LK (GCNF) with permutation (1) satisfies the feasible subformula property, and (2) proves pigeonhole principle and Ic-equipartition polynomially. In this paper, we survey more properties of our system. First, we prove that cut-free LK+permutation has polynomial size proofs for nonunique endnode principle, Bendy's theorem. Second, we remark the fact that permutation inference has an advantage over renaming inference in automated theorem proving, since GCNF+renaming does not always satisfy the feasible subformula property. Finally, we discuss on the relative efficiency of our system vs. Frege systems and show that Frege polynomially simulates GCNF+renaming if and only if Frege polynomially simulates extended Frege. (C) 2000 Elsevier Science B.V. All rights reserved.
- リンク情報
- ID情報
-
- ISSN : 0304-3975
- Web of Science ID : WOS:000088692900005