論文

査読有り 国際誌
2023年12月15日

Long-term Consequences on Soil Fungal Community Structure: Monoculture Planting and Natural Regeneration.

Environmental management
  • Minagi Naka
  • Shota Masumoto
  • Keita Nishizawa
  • Shunsuke Matsuoka
  • Shinichi Tatsumi
  • Yuta Kobayashi
  • Kureha F Suzuki
  • Xinyu Xu
  • Tomoya Kawakami
  • Noboru Katayama
  • Kobayashi Makoto
  • Kei-Ichi Okada
  • Masaki Uchida
  • Kentaro Takagi
  • Akira S Mori
  • 全て表示

記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1007/s00267-023-01917-7

Understanding the regeneration and succession of belowground communities, particularly in forests, is vital for maintaining ecosystem health. Despite its importance, there is limited knowledge regarding how fungal communities change over time during ecosystem development, especially under different forest restoration strategies. In this study, we focused on two restoration methods used in northern Japan: monoculture planting and natural regeneration. We examined the responses of the fungal community to monoculture plantations (active tree planting) and naturally regenerated (passive regeneration) forests over a 50-year chronosequence, using natural forests as a reference. Based on DNA metabarcoding, we assessed the richness of fungal Operational Taxonomic Units (OTUs) and their dissimilarity. Our findings revealed that soil fungal richness remained stable after natural regeneration but declined in monoculture plantations, from 354 to 247 OTUs. While the compositional dissimilarity of fungal assemblages between monoculture plantations and natural forests remained consistent regardless of the time since tree planting, it significantly decreased after natural regeneration, suggesting recovery to a state close to the reference level. Notably, the composition of key functional fungal groups-saprotrophic and ectomycorrhizal- has increasingly mirrored that of natural forests over time following passive natural regeneration. In summary, our study suggests that monoculture plantations may not be effective for long-term ecosystem function and service recovery because of their limited support for soil fungal diversity. These results underscore the importance of natural regeneration in forest restoration and management strategies.

リンク情報
DOI
https://doi.org/10.1007/s00267-023-01917-7
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/38097676
ID情報
  • DOI : 10.1007/s00267-023-01917-7
  • PubMed ID : 38097676

エクスポート
BibTeX RIS