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Abstract

We review the topological classification of free-fermionic Hamiltonians with a spectral
gap via real and complex K-theory as popularised by Kitaev. After reviewing complex
symmetry classes and the general form of symmetries in quantum mechanics via projective
unitary/anti-unitary (PUA) representations, we study the physical symmetry classes of free
fermions as specified by Altland and Zirnbauer. In particular, we work in the setting of
Nambu space and Bogoliubov–de Gennes (BdG) Hamiltonians as a model for free-fermionic
systems. We finally define K-theoretic indices for pairs of BdG Hamiltonians via Clifford
module indices or van Daele K-theory. The range of our index depends both on the sym-
metry class and the allowed deformations of the Hamiltonians under consideration.

Keywords: free-fermions, K-theory, operator algebras, topological insulators and super-
conductors, topological phases of matter

Key points/objectives:
Our central aims for this note are to:

• Demonstrate that K-theory for operator algebras is both a natural and convenient frame-
work to study topological properties of Hamiltonians on Hibert spaces.

• Explain the mathematical framework to study symmetric (gapped) ground states of free-
fermions using Nambu space and Bogoliubov–de Gennes (BdG) Hamiltonians.

• Provide caution to the reader that any ‘K-theoretic classification’ is always with reference
to certain choices related to the setting under consideration.

1 Introduction

The integer quantum Hall effect opened new connections between condensed matter physics and
topology, where the quantised and stable Hall conductance can be described using character-
istic classes of vector bundles or, more generally, methods from noncommutative geometry [4].
Several years later within the physics literature, ideas from topology were also found to be
useful in describing the quantum spin Hall effect [17] and Majorana fermions in p-wave su-
perconductors [20]. Where these systems differ from the integer quantum Hall effect is that
extra assumptions or symmetries are imposed on the system such as time-reversal symmetry.
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Schnyder et al. [25] built on these examples and assigned a Z or Z2-phase label to Hamiltonians
describing free-fermionic systems in dimension ≤ 3 that fall into a symmetry class previously
outlined by Zirnbauer et al. [2, 16]. These phase labels are ‘topological’ in the sense that a
change in this label via a symmetric path of Hamiltonians implies a certain discontinuity such
as a closing of a spectral gap.

The work of Schnyder et al. was then systematised by Kitaev [21], who noted that the
phase labels given to free-fermionic Hamiltonians describe the 8 real and 2 complex K-theory
groups of a point. Kitaev then outlined that real and complex K-theory can be used to give a
more general classification of free-fermionic systems in any dimension. Kitaev’s result created
a flurry of work within both the physics and mathematics literature. Indeed, Kitaev’s paper
provides an outline but precise mathematical details are omitted. Unfortunately this can lead
to imprecision or ambiguities when applying or adapting the method. Still, a general picture
of a ‘10-fold way’ and ‘K-theoretic classification’ of free-fermions is accepted within the physics
literature.

A mathematically precise K-theoretic classification of free-fermionic Hamiltonians can be
presented. But as we will emphasise in this note, it is with reference to certain choices:

• ‘Homotopy in what?’ If we are considering paths of symmetric Hamiltonians, what types
of deformations are allowed and what is considered continuous? If, for example, the
Hamiltonians are bounded, then the bounded operators B(H) with norm-topology is too
large as any two (gapped) Hamiltonians can be connected.

• If our Hamiltonians have additional symmetries, what is the precise action of these sym-
metries on the Hilbert space under consideration?

We will show that once we have set these precise conditions, a topological phase label for
free-fermionic Hamiltonians with a spectral gap can be defined using real and complex K-theory
for operator algebras. The aim of this work is not to provide an introduction to K-theory of
operator algebras, but instead show how the theory can be used to define such a free-fermionic
topological phase label. However, we warn that this phase label is either given with reference to
a pre-determined ‘trivial’ system or it is a relative phase between a pair of symmetric gapped
Hamiltonians.

We start with the relatively simple case of complex symmetry classes in Section 2. Section 3
then gives a framework to understand more general (possibly anti-linear) symmetries in quan-
tum mechanics. We then restrict our setting in Section 4 to free-fermionic systems using the
Hartree–Fock–Bogoliubov mean field approximation via dynamics on Nambu space. The free-
fermionic symmetry classes as outlined in [2, 16] are then briefly reviewed. Then, under differing
assumptions, we define K-theoretic indices for such free-fermionic and symmetric Hamiltonians
in Sections 5 and 6. Our exposition closely follows the perspective of Alldridge et al. [1], though
the techniques are related to the work of Kellendonk [18]. We conclude with some extensions
and limitations of our method.

2 Warm up: complex classes of topological insulators

Before we consider the general classification, let us look at the case of a quantum mechanical
system without additional symmetries or with a Z2-graded structure and odd Hamiltonian
(chiral symmetry). In either setting, we can assign a topological index to the system using
topological (complex) K-theory for spaces or C∗-algebras.

2



2.1 Insulators without symmetries (type A)

Assuming the temperature is sufficiently low and many-body interactions negligible, we can
mathematically model an insulator via a complex Hilbert space H and a self-adjoint operator,
the Hamiltonian H, whose spectrum can be split into at least 2 disjoint regions. Our aim is
to model fermionic systems at low temperature, so the particle statistics are governed by the
Fermi-Dirac distribution fβ(H) = (1+eβ(H−µ))−1 with µ the chemical potential at absolute zero
(also called the Fermi energy) and β the inverse temperature. As β → ∞, fβ(H) → Pµ(H) =
χ(−∞,µ](H), the projection onto energies less that µ. Our central hypothesis is that µ lies in
a gap of the spectrum of H with spectrum above and below. Namely, we have an insulating
system.

In the zero temperature limit, the projection Pµ(H) determines the ground state and so
specifies the physics of the insulating system. Therefore, a classification of free-fermionic in-
sulators can be mathematically recast as a problem of classifying projections Pµ(H) for H
a Hamiltonian and µ /∈ σ(H) its Fermi energy. However, to obtain a physically meaningful
classification, information of the Hamiltonian and its properties should be reflected in how we
declare projections equivalent. Indeed, if we work on an infinite-dimensional Hilbert space, then
all projections are Murray–von Neumann equivalent and so all insulators would be considered
equivalent without additional information. The hypothesis we work under for this document is
that our Hamiltonians of interest are an element of or affiliated to a C∗-algebra of observables
A, which we think of as a strict (norm-closed) subalgebra of the B(H), the bounded operators
on H. For simplicity, we will assume that A is unital. The precise nature of A depends on the
setting under consideration, though in typical examples it will contain information about the
spatial dimension d and locality properties of H.

Let us briefly work in the setting of a tight-binding system and periodic Hamiltonian, where
H = `2(Zd,Cn) and the bounded Hamiltonian H is a self-adjoint matrix of finite polynomials
of the lattice shift operators {Sm}m∈Zd ,

(Smψ)(x) = ψ(x−m), x, m ∈ Zd, (Sm)∗ = S−m.

In particular H is periodic under such lattice shits. By the Fourier transform we can decompose
both our Hilbert space and Hamiltonian

H =

∫ ⊕
Td

Cn(k) dk, H =

∫ ⊕
Td

H(k) dk,

where we have identified the dual space FHF∗ ∼= L2(Td,Cn). The spectral projection Pµ(H)
also decomposes as a direct integral of the finite-dimensional projections Pµ(H(k)). Because
µ /∈ σ(H), the family k 7→ Pµ(H(k)) is analytic. By taking the family of vector spaces
{Ran(Pµ(H(k)))}k∈Td , we obtain a finite-rank complex vector bundle Pµ → Td. Returning
to our original goal of classifying insulating systems, in this periodic setting, we can recast this
question as a classification of finite-rank vector bundles over Td, e.g. up to unitary equivalence.
It is well known that this question can be answered by studying the Chern classes of complex
vector bundles.

A very similar approach can be done by considering the topological K-theory of Td, which
is the Grothendieck completion of the monoid of isomorphism classes of finite-rank complex
vector bundles over Td with addition via direct sum. The Grothendieck completion means that
we declare a pair of vector bundles (E+, E−) to be equivalent to (F+, F−) if there are finite-rank
vector bundles G and H such that(

E+ ⊕G,E− ⊕G
)
∼
(
F+ ⊕H,F− ⊕H

)
3



as pairs of vector bundles. Such an equivalence relation gives pairs of vector bundles an inverse,[
(E+, E−)

]−1
=
[
(E−, E+)

]
and one obtains an abelian group K(Td). The advantage of working

with K-theory as opposed to more standard cohomological methods is that it comes with a
variety of tools to help us compute the K-theory group of a given space.

Returning to our more generic picture of a self-adjoint Hamiltonian contained in or affiliated
to a C∗-algebra A with µ /∈ σ(H). Provided H is bounded from below, the Fermi projection
Pµ(H) is then an element of A. The K-theory group K0(A) is the Grothendieck completion the
semigroup of stable equivalence classes of projections in Mn(A), the n×n matrices with entries
in A. Therefore, in analogy to periodic setting, the group K0(A) can be used to distinguish
equivalence classes of free-fermionic insulators without symmetry with respect to the underlying
algebra A that is specifying the physical details of the system. Because any Hamiltonian acting
on H and contained in or affiliated to a C∗-algebra A with µ /∈ σ(H) defines an element
[Pµ(H)] ∈ K0(A), this K-theory class will give a topological classification of all insulating
Hamiltonians affiliated to our observable algebra A.

Returning to the periodic setting with d = 2 and H a matrix of polynomials of shift operators
acting on `2(Z2,Cn). We can take A = C∗(Z2), the group C∗-algebra, which is generated by
{Sm}m∈Z2 and K0(C∗(Z2)) ∼= K0(T2), the topological K-theory. In this case, an element
[Pµ(H)] ∈ K0(C∗(Z2)) is specified by 2 integers, the (virtual) rank of the bundle Pµ → T2 and
the integration of the first Chern class with respect to the orientation element (often called the
first Chern number). Thus, the K-theory class [Pµ(H)] ∈ K0(C∗(Z2)) can be considered as a
topological index of the insulator H on `2(Z2,Cn) with 0 /∈ σ(H).

We finish our discussion of quantum mechanical systems without symmetries with a few
warnings. Firstly, the case of Chern classes or K0(A) more generally is quite special as there is
a canonical ‘trivial’ system. Namely, bundles Pµ → Td that are equivalent to a trivial bundle
over Td or [Pµ(H)] = n[1A] ∈ K0(A). For the case of other symmetries (particularly real
symmetries), what is deemed a trivial system/base point needs to be more explicitly stated or
instead one considers a relative index from a pair of Hamiltonians.

2.2 Insulators with chiral/sublattice symmetry (type AIII)

We now consider the case of a complex Hilbert space H with a Z2-grading H ∼= H0 ⊕H1 such
that the Hamiltonian H = H∗ acts as an odd operator H · Hj ⊂ Hj+1, j ∈ Z2 = {0, 1} (for
simplicity, we will assume H is bounded). An equivalent way to describe this setting is that
there is a self-adjoint unitary γ = γ∗ = γ−1 on H, where H0 and H1 are the +1 and −1
eigenspaces of γ respectively. Then H is an odd operator if and only if γHγ = −H. Such a
relation is called a chiral or sublattice symmetry of the operator H. Because H anti-commutes
with γ, its spectrum must be symmetric about the point 0. Let us then assume that the Fermi
energy µ = 0 (taking a shift if necessary) and 0 /∈ σ(H). Therefore H is an invertible and odd
operator.

By the spectral decomposition of γ, the Hamiltonian can be decomposed

H = (1 + γ)H⊕ (1− γ)H, H =

(
0 1

2(1 + γ)H 1
2(1− γ)

1
2(1− γ)H 1

2(1 + γ) 0

)
.

We let Q = 1
2(1− γ)H 1

2(1 + γ), which is invertible and generally will not be self-adjoint. Let us
emphasise that Q depends on both the Hamiltonian H and the self-adjoint unitary γ. For a fixed
self-adjoint unitary γ, we can consider topological properties of chiral symmetric Hamiltonians
by considering stable homotopy classes of the invertible operator Q. If H and γ are elements of
a unital C∗-algebra A, then so is Q and we can consider the K-theory class [Q] ∈ K1(A), where
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K1(A) is built from stable equivalence classes of invertible operators in (matrices over) A.1

The element [Q] ∈ K1(A) represents a topological obstruction to the existence of a homotopy
in MN (A) that connects Q = 1

2(1− γ)H 1
2(1 + γ) to the multiplicative identity of A, 1A. In the

setting

H = `2(Z,C2n), γ =

(
1n 0
0 −1n

)
, H =

(
0 Q∗

Q 0

)
,

where H is translation invariant under discrete shifts in Z, we can consider the operator Q as
an invertible function Q : T → Mn(C). Assuming that T 3 k 7→ Q(k) ∈ Mn(C) is continuous
(which holds if H is a finite polynomial of discrete shifts), the topological obstruction to connect
Q to the identity is given by the degree (winding number) of the function Q : T→ GLn(C). The
Noether–Toeplitz Index Theorem then guarantees that a non-trivial winding number implies
a non-trivial Fredholm index of the restriction Q̂ of Q to a half-space system `2(N,C2n). The
Fredholm index of Q̂ can thought of as the number of oriented edge states/zero modes of the
Hamiltonian restricted to `2(N,C2n), where the orientation comes from the spectral decompo-
sition of γ.2

The winding number of Q : T → GLn(C) also gives the isomorphism K1(C∗(Z))
'−→ Z and

so Wind(Q) = Index(Q̂) gives a topological obstruction to connect different chiral symmetric
Hamiltonians (with respect to a fixed chiral symmetry γ). Because the group K1(A) is con-
structed from stable homotopy equivalences of invertible operators in A, the more general index
[Q] ∈ K1(A) plays an analogous role.

Another interpretation of the chiral/sublattice symmetry γHγ = −H is that γ encodes
the ambiguity of choosing a unit cell for H on `2(Z,C2n) with sublattice symmetry. Namely,
there are two choices H0 and H1 which correspond choosing a unit cell with pairing within the
cell or across different cells. Fixing a boundary `2(N,C2n) then forces one of these choices to
be topologically trivial and the other non-trivial via the Fredholm index of Q̂. The relative
obstruction between these two systems is encoded in the class [Q] ∈ K1(C∗(Z)) or K1(A) more
generally. See [26] for further details.

3 Symmetries in quantum mechanics

We have briefly explained in two simple cases how K-theoretic indices can be defined for Hamil-
tonians on a complex Hilbert space. We now want to consider the case of Hamiltonians with
a richer class of symmetries. Though to do this task, we must first analyse the nature of sym-
metries in quantum mechanics. In this section, we will review such a mathematical framework
as discussed in [13, 27] for example, but which has close connections to the classical theorem of
Wigner.

3.1 Group actions and Wigner’s Theorem

Following the basic principles of quantum mechanics, we consider a complex Hilbert space H,
whose elements may be regarded as the pure states of the system under consideration. We expect
any symmetry to be a map on Hilbert spaces that is norm-preserving and bijective. However,
from the perspective of quantum mechanics, expectations of states are the only physically
observable quantities. Therefore, given a pure state ψ ∈ H, the key condition we require for

1The more typical construction of K1(A) comes from stable homotopy equivalence classes of unitaries in A.
As unitaries elements are a retract of invertible elements, the two presentations are equivalent.

2Such a result is an example of the bulk-boundary correspondence, which is of fundamental importance to
topological insulators and superconductors.
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this state to be invariant under a symmetry transformation Θ : H → H is that∣∣〈Θψ,Θψ〉∣∣2 =
∣∣〈ψ,ψ〉∣∣2. (1)

As noted by Wigner [28], Equation (1) implies that Θ may act as a unitary or anti-unitary
operator.

We expect symmetries to emerge via a group representation G 3 g → θg. For simplicity, we
will restrict to the case where G is finite. The condition (1) means that there is an ambiguity
with respect to the choice of θg up to a U(1)-phase. That is, the representation of G is instead
a projective representation. Given a homomorphism G → {±1}, we can specify whether the
operator θg is unitary or anti-unitary if ϕ(g) = 1 or −1 respectively. We furthermore have a
map σ : G×G→ T such that θg1θg2 = σ(g1, g2)θg1g2 satisfying a 2-cocycle relation

σ(g1, g2)σ(g1g2, g3) = σ(g2, g3)g1σ(g1, g2g3), g1, g2, g3 ∈ G,

where for z ∈ T, zg = z if ϕ(g) = 1 and zg = z if ϕ(g) = −1. The tuple (G,ϕ, θ, σ) is called a
projective unitary/anti-unitary (PUA) representation of G.

We have yet to speak of dynamics in our quantum mechanical system. Of most interest to
us is the time evolution and its generator, the self-adjoint Hamiltonian H acting on H. One
typically expects symmetries to commute with this operator, though it will also be useful to
consider unitary/anti-unitary operators that anti-commute with H. One may consider these
possibilities as the symmetries and constraints of the Hamiltonian. An example of an anti-
commuting operator is the charge-conjugation/particle-hole involution on single-particle Hilbert
space. We say that H is compatible with G if there is a homomorphism c : G → {±1} such
that

θgH(θg)
∗ = c(g)H for all g ∈ G. (2)

We now restrict ourselves to the setting of insulators or gapped systems. Taking a constant
shift if necessary, we assume 0 /∈ σ(H) and so H is invertible. This allows us to consider
the spectrally flattened Hamiltonian sgn(H) = H|H|−1 = 2P(0,∞)(H) − 1 with P(0,∞)(H) the
projection onto all positive energies of H. The ±1 eigenspaces of sgn(H) give a Z2-splitting of
H = H+⊕H−. We see that Equation (2) implies that the homomorphism c : G→ {±1} is such
that the PUA representation (G,ϕ, θ, σ) is a Z2-graded representation under this splitting H+⊕
H−. To summarise our discussion, symmetries in single-particle Hilbert spaces that commute
or anti-commute with an invertible (gapped) Hamiltonian have a mathematical description as
a Z2-graded PUA representation of a symmetry group G.

3.2 The CT -symmetry group, Clifford algebras and the 10-fold way

Now that we have a general method to understand finite-group actions on complex Hilbert spaces
with respect to an invertible Hamiltonian, let us now restrict our attention to the symmetries
that are of particular interest for topological insulators and superconductors. The symmetries of
interest to us are time-reversal symmetry, charge-conjugation symmetry (also called particle-hole
symmetry) and chiral/sublattice symmetry (cf. Section 2.2). Each of these symmetries is given
by an involution and we use the notation, T ≡ time-reversal, C ≡ charge-conjugation and S ≡
sublattice. These are not independent but generate the CT -symmetry group {1, T, C,CT} ∼=
Z2 × Z2, where S = CT = TC.

We say that H acting on H respects these symmetries if there exists a unitary operator RS
and anti-unitary operators RT and RC on H such that

RTHR
∗
T = H, RCHR

∗
C = −H, RSHR

∗
S = −H (3)
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In the case of RT and RC , the Hamiltonian is said to have even (resp. odd) symmetry if R2
• = 1

(resp. R2
• = −1). Because RS is complex-unitary, the sign of its square is irrelevant (in the same

way that the complex Clifford algebra C`1 may have a generator that squares to +1 or −1).
We note that a Hamiltonian may only respect a single symmetry. However, if H is compatible
with two symmetries, then by the underlying group structure it is compatible with the third
symmetry.

There is no general form that the symmetry operators RT , RC and RS are forced to take
and are determined by the example under consideration. We note that the operators RT , RC
are defined with reference to a chosen complex conjugation/Real involution on H. Because we
have already outlined the case of ‘complex symmetries’ in Section 2, we will focus on the case
where RC or RT is present. Equation (3) tells us that a symmetric Hamiltonian with respect
to a subgroup G ⊂ {1, C, T, S = CT} gives a Z2-graded PUA representation of G with θg = Rg
and

(ϕ, c)(T ) = (−1, 1), (ϕ, c)(C) = (−1,−1), (ϕ, c)(S) = (1,−1).

We can ‘normalise’ this PUA representation so that RC and RT commute with RCRT = RCT .
The sign of R2

T and R2
C will then specify the 2-cocycle σ.

In the particular setting of a subgroup G ⊂ {1, C, T, S = CT}, the Z2-graded PUA represen-
tation ofG can be linked to a Clifford algebra. Here we are using the convention that the real clif-
ford algebra C`r,s is the algebraic span (over R) of the unitary elements {γ1, . . . , γr, ρ1, . . . , ρs},
where

γiγj + γjγi = 2δi,j , ρkρl + ρlρk = −2δk,l, γjρk = −ρkγj
for all i, j ∈ {1, . . . , r} and k, l ∈ {1, . . . , s}. Clifford algebras also come with a natural Z2-
grading, where each generating element is odd, though we will occasionally consider Clifford
algebras without a Z2-grading.

A key result shown in [13, Appendix B] and [27, Section 6] is that each PUA representation
of a subgroup G ⊂ {1, C, T, CT} graded by the gapped Hamiltonian H gives rise to a real
or complex Clifford algebra representation. Furthermore, all 10 Morita equivalence classes of
Clifford algebras are exhausted by the various symmetry types of H. The representations are
summarised in Table 1. This result is shown on a case-by-case basis, we highlight a few examples.

• For the full symmetry group G = {1, C, T, CT}, we consider the real algebra generated
by {RC , iRC , iRCRT }. One checks that these generators have odd grading under sgn(H),
mutually anti-commute and are self-adjoint (resp. skew-adoint) if they square to +1 (resp.
−1).

• For the subgroup {1, C}, we assign the real algebra generated by {RC , iRC} and graded
by sgn(H).

• The case of the subgroup {1, T} is a little different as RT commutes with sgn(H). For
the case that R2

T = 1, RT defines a Real structure on the Hilbert space and gives no
additional Clifford generators. If R2

T = −1, then RT defines a quaternionic structure on
H under the identification {i, j, k} ∼ {i, RT , iRT }. There is an equivalence between a
graded quaternionic vector space and a graded action of C`4,0 on H⊕H. Specifically, we

take H⊕H with grading

(
sgn(H) 0

0 −sgn(H)

)
and the real span of the Clifford generators{(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
0 −RT
RT 0

)
,

(
0 −iRT
iRT 0

)}
,

Therefore, the subgroup {1, T} gives rise to a graded representation of C`0,0 or C`4,0.
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Symmetry
generators

R2
C R2

T

Graded Clifford
representation (up to
Morita equivalence)

T +1 C`0,0
C, T +1 +1 C`1,0
C +1 C`2,0
C, T +1 −1 C`3,0
T −1 C`4,0
C, T −1 −1 C`5,0
C −1 C`6,0
C, T −1 +1 C`7,0

N/A C`0
S R2

S = 1 C`1

Table 1: Symmetry types and their corresponding graded Clifford representations [27, Table 1].

Because we are interested in the link between Clifford representations and K-theory, we
may choose representations up to Morita equivalence, where C`r,s ∼ C`r+1,s+1 or real Clifford
algebras and C`n ∼ C`n+2 for complex algebras.

The algebra generated by {RC , iRC , iRCT } give rise to four different Clifford algebras de-
termined by the sign of R2

C and R2
T . The graded PUA representations of {1, C} and {1, T} give

2 + 2 Clifford algebras determined by R2
C and R2

T . Graded representations of {1, S} correspond
to the Clifford algebra spanC{RS} ∼= C`1, which is the same whether R2

S = ±1 (again, these
representations come with the grading sgn(H)). In total, we have nine possible representations
of symmetry subgroups as distinct Clifford algebras and a lack of any symmetry gives us one
more possibility. This equivalence between Hamiltonians symmetric with respect to a subgroup
of {1, C, T, CT} and the 10 distinct Clifford algebras has been named the ‘10-fold way’.

4 Free-fermionic symmetries in Nambu space

In this section, we review the Hartree–Fock–Bogoliubov free-fermionic approximation of many-
body ground states using Nambu space, a theoretical framework that is particularly adept for
considering mathematical models of (topological) superconductors. Using this framework, we
then briefly introduce the fundamental symmetry classes of free-fermions as outlined in [2, 16].

4.1 Nambu space and ground states

We set V to be the complex Hilbert space of fermions and its dual V∗ to be the space of holes.
The sum H = V ⊕V∗ is a complex Hilbert space of the ‘doubled’ system. So as not to introduce
artificial degress of freedom into the system, the Nambu space V ⊕ V∗ comes with a Real

structure Γ =

(
0 R−1

R 0

)
, a self-adjoint anti-unitary with R : V '−→ V∗ the Riesz isomorphism.

For a quantity to be physically relevant, we require that it is well defined on the subspace
HR = {w ∈ H : Γw = w}, which is a real Hilbert space. We will call any bounded operator on
V ⊕ V∗ that commutes with Γ Real (with capitalised R).

Some care must be taken when applying our framework of single-particle quantum mechani-
cal symmetries in the Nambu space setting. Firstly, so as to not introduce fictitious symmetries,
we expect any group representation to commute with the Real structure Γ. While our analysis
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of symmetries as PUA representations in the previous section is well-suited to representations
on a Hilbert space of states, Nambu space is an artificially doubled space of particles and holes.
As such, symmetries in Nambu space are made with more direct reference to a given dynamics
and Hamiltonian, which then specifies a (many-body) state.

Dynamics and ground states are considered via a Hamiltonian H = H∗ acting on H =
V ⊕ V∗. However, we restrict to self-adjoint operators such that the time eitH is well-defined
on the real subspace HR. This amounts to the condition that ΓHΓ = −H, which we have
already seen as the particle-hole/charge-conjugation symmetry/constraint. We will call such
Hamiltonians Bogoliubov–de Gennes (BdG) Hamiltonians. The condition ΓHΓ = −H implies
that the spectrum of H is symmetric about the point 0. In particular, our spectral gap condition
is precisely that 0 /∈ σ(H). In such a case, the positive spectral projection P>0 = χ(0,∞)(H) will
define a vacuum (ground) state in the fermionic second quantization,

∧∗ P>0H. The ground
state specified by P>0 and its dynamics provides a reasonable approximation of low-energy
properties of superconductors, which are intrinsically many-body systems.

To summarise our construction, the BdG Hamiltonian ΓHΓ = −H on the Nambu space
H = V∗ ⊕ V∗ with 0 /∈ σ(H) defines a fermionic (gapped) ground state. Taking the spectral
flattening sgn(H), the particle-hole symmetry/constraint can be equivalently stated by requiring
J = i sgn(H) to commute with Γ. Namely, J is Real and so restricts to a skew-adjoint orthogonal
operator on the real subspace HR.

4.2 Free-fermionic symmetries

Returning to symmetries of our system. We expect any unitary/anti-unitary operator R on
H = V ⊕ V∗ that is compatible with the Hamiltonian H to be such that it extends to a
unitary/anti-unitary on the fermionic second quantization,

∧∗ P>0H that leaves the vacuum
invariant. A sufficient condition for this to occur is that R commutes with H and Γ. This is in
contrast to the case of commuting and anti-commuting operators in the single particle Hilbert
space setting.

In the paper [2], Altland and Zirbauer showed that fundamental (physical) symmetries of the
Nambu space can be classified into 10 distinct symmetry classes, which can be distinguished
by the Cartan label of certain symmetric spaces. See also [16]. Such symmetries include
time-reversal, charge, particle-hole and spin symmetries. Briefly, the time-reversal symmetry,
particle-hole and spin symmetries are first defined on space of particles V. These operators are
then extended to unitary or anti-unitary operators on the Nambu space V ⊕ V∗ that square
to ±1 and commute with both the BdG Hamiltonian and Γ. The Charge symmetry operator
assigns a charge of 1 (resp. −1) to particles (resp. holes). BdG Hamiltonians with charge
symmetry must act as a block matrix on V ⊕ V∗ and so the Hamiltonian can be determined
by its restriction to V, taking us back to the more standard picture of complex Hilbert spaces.
A basic summary is provided in Tables 2 and 3. While the picture of symmetries presented
on Nambu space is quite different to the CT -symmetries considered in Section 3.2, the two
presenations are compatible. See [1, 19] for more details.

The Hamiltonian and ground state can be equivalently characterised by the skew-adjoint
unitary J = i sgn(H) that commutes with the real structure Γ on V ⊕ V∗. A key result by
Kennedy and Zirnbauer [19] is the following: there is a one-to-one equivalence of physical
symmetry operators commuting with the BdG Hamiltonian with an ungraded representation of
the Clifford algebra C`0,n on V⊕V∗ whose generators {κj}nj=1 commute with the Real structure
Γ and anti-commute with the skew-adjoint unitary J . If the BdG Hamiltonian has complex
symmetry type, then the Clifford representation is C`n on V. The construction is similar to
the case of CT -symmetries in Section 3.2, where the generators of the Clifford algebras are
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n class symmetries comments

0 D none
1 DIII T time-reversal
2 AII T , Q charge
3 CII T , Q, C particle-hole
4 C S1, S2, S3 spin rotations
5 CI S1, S2, S3, T
6 AI S1, S2, S3, T , Q
7 BDI S1, S2, S3, T , Q, C

Table 2: Real symmetry classes

n class symmetries comments

0 A Q charge
1 AIII Q, C particle-hole

Table 3: Complex symmetry classes

constructed from the symmetry operators.

5 Rough classification: symmetric ground states and the Atiyah–
Bott–Shapiro construction

Working in Nambu space H = V ⊕ V∗ with Real structure Γ, we can describe free-fermionic
and symmetric ground states as a skew adjoint Real unitary J acting on H that anti-commutes
with the generators of an ungraded and Real representation of C`0,n or C`n, where n depends
on the symmetry. We can therefore compare different symmetric ground states with the aim
of finding a topological classification. As was emphasised in the introduction, our classification
will rely on various choices and different choices will lead to different topological invariants.
In this section, our aim is to give a rough (0-dimensional) classification by considering only
the symmetries of the fermionic ground states and without further information of the system.
Because of the richer structure that arises, we will focus on the case of real symmetries (cf.
Table 2). The complex case can be done via analogous arguments.

5.1 Classification principles

Given a fixed BdG Hamiltonian H that is invertible, the ground state that it determines in
the second quantisation will be pure. Because any two pure ground states are either unitarily
equivalent or disjoint, we may for example ask for a classifcation of BdG Hamiltonians where
H0 is deemed equivalent to H1 if the corresponding ground states are unitarily equivalent.
Certainly this will give a classification of free-fermionic ground states. However, if V ⊕ V∗ is
infinite-dimensional, then there are uncountably many inequivalent pure ground states and such
a classification is therefore of limited value. Similarly, any two Real skew-adjoint unitaries J0

and J1 on H are unitarily equivalent via a unitary that commutes with Γ.
Instead we will consider the following setting: (gapped) BdG Hamiltonians H0 and H1 of the

same free-fermionic symmetry type whose ground are equivalent, but where the ground states
might not be connected in a way that respects the free-fermionic symmetries. In the case of
symmetry class D, where H0 and H1 have no symmetries, we instead ask whether the ground

10



n symmetry class KOn+2(R)

0 D Z2

1 DIII 0
2 AII 2Z
3 CII 0
4 C 0
5 CI 0
6 AI Z
7 BDI Z2

Table 4: K-theory groups of the real C∗-algebra R.

states can be connected in a way that respects the fermionic parity (particle number modulo
2). We will clarify what we mean by ‘connected’ below.

5.2 Clifford modules and the Atiyah–Bott–Shapiro construction

We now suppose that H0 and H1 are gapped BdG Hamiltonians of the same symmetry type
and such that H0 and H1 give equivalent ground states in the second quantization. Because the
ground states are equivalent, by the Shale–Stinespring Theorem, the Real skew-adjoint unitaries
J0 = i sgn(H0) and J1 = i sgn(H1) are such that J0 − J1 is a Hilbert–Schmidt operator. Using
this fact, one can conclude that space Ker(J0 +J1) is finite-dimensional. Because J0 and J1 are
Real, the space Ker(J0 +J1) can be considered as a real vector subspace of HR, the elements in
H fixed by the Real structure Γ. Furthermore, because H0 and H1 are of the same symmetry
type, there are Clifford generators {κj}nj=1 such that J0κj = −κjJ0 and J1κj = −κjJ1 for all
j ∈ {1, . . . , n}. Therefore, the finite-dimensional space Ker(J0 + J1) will be invariant by the
action of these Clifford generators. Furthermore, noting the simple relation

J1(J1 + J0) = (J0 + J1)J0,

we see that J0 will also leave Ker(J0 +J1) invariant. Therefore the ungraded Clifford generators
{J0, κ1, . . . , κn} act on the finite-dimensional real vector space Ker(J0 + J1). Namely, Ker(J0 +
J1) is an ungraded C`0,n+1-module.

LettingMn denote the Grothendieck group of equivalence classes of ungraded C`0,n-modules,
Ker(J0+J1) determines an element inMn+1. We can ask if this C`0,n+1 Clifford module extends
to a C`0,n+2 Clifford module (e.g. via an action of J1). If such an extension does occur, then
Ker(J0 + J1) is more naturally considered as a C`0,n+2-module and we say that such Clifford
modules are trivial. Hence we obtain an equivalence class

[Ker(J0 + J1)] ∈Mn+1/Mn+2
∼= KOn+2(R),

where the isomorphismMn+1/Mn+2
∼= KOn+2(R) is due to Atiyah–Bott–Shapiro [3, Theorem

11.5]. Note that we are considering KO-theory of the real C∗-algebra R. One can identify
KOn+2(R) ∼= KO−n−2(pt) with the right-hand side topological K-theory of spaces. The groups
KOn+2(R) are given in Table 4.

Our interpretation of the index [Ker(J0 + J1)] ∈ KOn+2(R) is as a topological obstruction
to connect the symmetric gapped ground state that comes from H0 to the symmetric gapped
ground states that comes from H1. Namely, if there is a path of invertible BdG Hamiltonians
{Ht}t∈[0,1] that connects H0 and H1 and respects the symmetry class for all t ∈ [0, 1], then the
K-theoretic index [Ker(J0 + J1)] must be trivial in KOn+2(R). To state the contrapositive, a
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non-trivial index [Ker(J0 + J1)] ∈ KOn+2(R) implies that the two BdG Hamiltonians H0 and
H1 can not be connected by a symmetric and invertible path. Namely, there can not be a path
of symmetric free-fermionic ground states that joins the two systems.

We close this section by commenting on a few shortcomings of the index [Ker(J0 + J1)] ∼=
KOn+2(R). While the index can take non-trivial values depending on the symmetry, it is insen-
sitive to other important information such as the dimension of the system or ‘local’ properties
of the BdG Hamiltonian. Indeed, we have imposed no assumptions on the BdG Hamiltonians
apart from the existence of a spectral gap at 0. As such, the ‘rough index’ [Ker(J0 +J1)] can not
be used to extract information such as Chern classes as were considered in Section 2.1. To access
this more refined information, we must impose additional assumptions on the Hamiltonians and
change our notion of equivalence.

6 Refined classification: local Hamiltonians and van Daele K-
theory

6.1 Setting and assumptions

We have now seen how certain quantum mechanical symmetries are closely linked to Clifford al-
gebras and defined a K-theoretic obstruction between different gapped BdG Hamiltonians using
the Atiyah–Bott–Shapiro construction. We now return to a question posed in the introduction,
homotopy in what?

For this section, our operating hypothesis is that within the operators that act on the
Nambu space H = V ⊕ V∗, there is a unital C∗-algebra of observables Mult(A) ⊂ B(H) and
all BdG Hamiltonians of interest are affiliated to this C∗-algebra. The algebra Mult(A) is a
maximal unitisation of the C∗-algebra A (if A is unital, then Mult(A) = A). We furthermore
require compatibility of the Real structure Γ on H with the algebra A. Namely, Γ ∈ Mult(A),
which then implies that AdΓ(A) ⊂ A. A complex C∗-algebra A with a order-2 anti-linear ∗-
automorphism a 7→ ar is called a C∗,r-algebra or Real C∗-algebra (with capitalized R). In our
setting, we will take ar = AdΓ(a). The subalgebra Ar = {a ∈ A : ar = a} is a real C∗-algebra
(with lower case r), that is, a C∗-algebra over the field R.

• If our Nambu space H = `2(Zd,C2n) and Hamiltonians of interest are constructed as
matrices of finite polynomials of the discrete shift operators {Sm}m∈Zd , then a natural
choice of observable C∗-algebra A is C∗(Zd) (suppressing the matrix degrees of freedom).
We have already seen in Section 2.1 that we can detect more refined topological invariants
such as Chern classes by studying the K-theory of C∗(Zd).

• More generally, for a given dimension d, we take our C∗-algebra observables A to be a sep-
arable sub-algebra of the Roe C∗-algebra C∗Roe(Zd) ∼= C∗Roe(Rd), where we are considering
Zd and Rd as metric spaces (in particular, elements in this algebra need not be translation
invariant). The Roe algebra can be used to model a very large class of Hamiltonians
that are ‘local’ with respect to the underlying metric space. For more information on the
application of the Roe algebra in condensed matter physics, see [22, 11, 1] for example.

If a BdG Hamiltonian H is invertible and affiliated to Mult(A) is invertible, then J =
i sgn(H) ∈ Mult(A) and J r = J , so J is an element of the real sub-algebra Mult(A)r. If the
BdG Hamiltonian also has free-fermionic symmetries (time-reversal, charge, spin, . . . ), we also
assume that these symmetry operators are elements of Mult(A). This will then imply that the
ungraded Clifford generators {κj}nj=1 that anti-commute with J are also contained in Mult(A)r.
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6.2 van Daele K-theory and a local K-theoretic obstruction

Our aim is to construct a topological index for pairs of gapped BdG Hamiltonians H0, H1 ∈
Mult(A) of the same symmetry type. In Section 5 we worked under the assumption that the
Real skew-adjoint unitaries J0 and J1 were such that J0 − J1 is a Hilbert–Schmidt operator.
We now weaken this assumption to instead require that J0 − J1 ∈ A. Namely, the algebra A
provides the space of possible deformations that we can consider for a given BdG Hamiltonian.
The condition J0− J1 ∈ A does not necessarily imply that Ker(J0 + J1) is finite-dimensional as
in Section 5. Instead, we will define a topological index by looking at stable homotopy classes
of Real skew-adjoint unitaries J that anti-commute with {κj}nj=1. If we restrict our space of
possible stable homotopies to that of a fixed C∗-algebra A, then one may consider the operator
algebraic K-theory of A. A presentation of operator algebraic K-theory that is particularly
amenable for the setting under consideration is a due to van Daele [9, 10], who defines the
group DK(B) of a Z2-graded C∗-algebra B via stable homotopy classes of odd self-adjoint
unitaries. See also [24, 7].

We can easily build an odd self-adjoint unitary in Mult(A)⊗C`0,1 from a real skew-adjoint
unitary J ∈ Mult(A) by the map J 7→ J ⊗ ρ with ρ the odd generator of C`0,1. As such,
from a pair of skew-adjoint unitaries J0 and J1 that anti-commute with the ungraded Clifford
generators {κj}nj=1 and with the property J0 − J1 ∈ A, we can associate the odd self-adjoint
unitaries J0 ⊗ ρ and J1 ⊗ ρ that anti-commute with the generators {κj ⊗ ρ}nj=1 of a Z2-graded
representation of C`n,0. Such a setting precisely determines a class[

J0 ⊗ ρ
]
−
[
J1 ⊗ ρ

]
∈ DKn(Ar ⊗ C`0,1) ∼= KOn+2(Ar),

where the isomorphism DKn(Ar ⊗ C`0,1) ∼= KOn+2(Ar) is detailed in [24, 7, 6]. We can again
think of this K-theoretic index as a topological obstruction to connecting the two BdG Hamilto-
nians H0 and H1 via a symmetric path that is local with respect to the C∗-algebra A. Namely, if
there is a path of skew-adjoint unitaries {Jt}t∈[0,1] ⊂ Mult(A) from J0 to J1 that anti-commutes
with {κj}nj=1 and Jt− J0 ∈ A for all t ∈ [0, 1], then

[
J0⊗ ρ

]
−
[
J1⊗ ρ

]
is trivial in KOn+2(Ar).

Hence our index is a topological obstruction to the existence of a symmetric path of gapped
free-fermionic Hamiltonians that is ‘local’ with respect to the auxiliary algebra A.

7 Conclusion

In this short note, we have reviewed a framework to understand symmetries in quantum me-
chanical systems via Z2-graded projective unitary/anti-unitary (PUA) representations. In the
case of free-fermionic systems modeled via dynamics on Nambu space, we have defined various
topological indices that can be associated to symmetric and gapped BdG Hamiltonians. In ad-
dition to the symmetry type of system under consideration, the space of allowed perturbations
will change the possible range of these topological indices. By fixing a C∗-algebra of observables
A, which will then fix our notion of homotopy and equivalence, we can define indices that take
value in KOn+2(Ar) or Kn(A). The different symmetry types of BdG Hamiltonians exhaust all
8 real and 2 complex K-theory groups for A.

While this document is titled ‘The K-theoretic classification of topological insulators and
superconductors’, we have emphasised any general classification is both:

1. Relative, in the sense that our topological indices either encode a topological obstruction
between a pair of Hamiltonians or a fixed base point/trivial system.

2. Dependent on the space of Hamiltonians we consider and the allowed paths that one can
take to connect different Hamiltonians.
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Lastly, let us mention some important topics which we have not covered here.

• We have focused on the symmetries of free-fermions as specified by Altland and Zirnbauer.
Using the picture of Z2-graded PUA representations, a variety of other spatial or internal
symmetries may be considered. Of particular interest is the case of systems with trans-
lation symmetry coming from a (possibly non-symmorphic and magnetic) space group.
Such systems have been treated in detail in [13, 14] for example.

• Throughout our exposition, we have asked for a spectral gap of the Hamiltonian under
consideration. In order to model more realistic systems, it would be desirable to extend
such topological indices to Hamiltonians with dynamical localisation. That is, the spectral
gap is instead filled with almost-sure pure point spectrum. Indeed, disorder and local-
isation play a fundamental role to explain the plateaus of the Hall conductance in the
integer quantum Hall effect. Some progress has been made for understanding topological
invariants for strongly disordered systems, see [23, 8, 15, 5] for example, but the picture
is still far from complete.

• Another key assumption we have worked under is that the effect of electron-electron
interactions is negligible. Indeed, the topological indices defined for free-fermions may
break down under perturbations by higher-order interactions [12]. Understanding the
topological phases of many-body (gapped) ground states such as the fractional quantum
Hall effect moves us into the theme of symmetry protected topological (SPT) phases and
topological ordered ground states.
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