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Abstract

The article analyzes how controlling for differences in land types (defined by position on a low-scale toposequence) affects estimates of farm
technical efficiency for rice farms in eastern India. Contrasting previous research, we find that farms are considerably more technically efficient
when efficiency estimates are carried out at the plot level and control for plot characteristics rather than at the farm level without such controls.
Estimates show farms cultivating modern varieties are technically efficient and plots planted with traditional varieties on less productive lands
(upland and midupland) operate close to the production frontier. Significant technical inefficiency is found on more productive lands (medium
and lowland plots) planted with traditional rice varieties. The finding that these smallholder rain-fed rice farms are efficient cultivators on some
plots contrasts with previous findings of farm-level inefficiency (i.e., rejects overarching explanations linked to farm operator ignorance or lack of
motivation) and suggests more complex explanations are required to address the inefficiency that is present.
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1. Introduction

The diffusion and adoption of green revolution technologies
for rice and wheat has proceeded slowly in two extensive agri-
cultural regions in India: the dry semi-arid tropics and the east-
ern India’s rice-growing region (Walker and Ryan, 1990). This
article focuses on small-scale rice farmers in the Chhotanag-
pur Plateau in eastern India, an area characterized by its high
poverty incidence and large share of households with scheduled
tribe ethnic backgrounds, low productivity in largely rain-fed
agriculture, and an environmentally degraded landscape with
an undulating topography.

Among the crucial questions facing policy makers in eastern
India is: what should investment priorities be in efforts to im-
prove the agricultural productivity of small farms, and through
this, the living standards of impoverished households that derive
a significant share of their income from agriculture? We address
this question by estimating the degree of technical efficiency
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among a sample of farm-households in eastern India. For ex-
ample, better understanding of the local farming system of farm
efficiency in rice production—the main food staple and domi-
nant crop in the area—and of the farm characteristics associated
with greater or lesser technical efficiency can help in the for-
mulation of agricultural development policy for eastern India.
A finding that there is substantial technical inefficiency would
suggest directing public investments toward measures for im-
proving technical efficiency would be expected to yield high
short-term payoffs. Policy interventions such as farmer educa-
tion, agricultural extension, and land tenure reforms have been
suggested in the literature as policy mechanisms for improv-
ing farm efficiency1; however, how best to improve technical
efficiency in the study area remains an empirical issue to be
investigated and cannot be fully addressed by this study. On
the other hand, if these small farm households are found to
be “poor but (technically) efficient,” à la Schultz, 1964, then
public investments should be directed toward efforts in shift-
ing the farmers’ production possibility frontier. Such efforts

1 For example, Singh, et al. (2002, p. 25).

c© 2007 International Association of Agricultural Economists



336 N. Fuwa et al. / Agricultural Economics 36 (2007) 335–346

could include investments in research and development of new
technologies, but could also include measures for facilitating
adoption of new technologies and improving farmer technical
efficiency in utilizing new technologies because development
and introduction of new technology may not necessarily lead
to their adoption or swift learning in reaching the new frontier
achieved through the introduction of new technology.

There is a large literature estimating technical efficiency in
farm production in India and elsewhere, which has generally
found significant technical inefficiency among farmers (e.g.,
Kalirajan, 1981, 1982, also see Battese 1992, for a survey).2

However, relatively little attention has been paid to the possi-
bility that lack of proper control for subtle differences in en-
vironmental factors, including land characteristics, which have
the potential to alter findings regarding farm inefficiency—
and through this—policy conclusions regarding the appropriate
focus in rural development efforts in the area.3 Among such
potential environmental factors, we focus on the importance of
controlling for the effect of microtopography and associated
differences in land suitability for agriculture on farm technical
efficiency estimates. One of the main findings from our esti-
mates is that small-scale rice farmers in eastern India appear
to be considerably more technically efficient in rice production
than indicated by farm-level estimates that fail to control for
farm plot location on the microtopography.

The rest of the article is organized as follows. Section 2
discusses some of the major characteristics of the poor rice
farmers in the study area in eastern India. Section 3 outlines our
empirical strategy for testing the sensitivity of the analysis and
introduces our empirical model. Section 4 presents estimation
results. Section 5 considers policy implications of findings and
Section 6 offers some final observations.

2. Characteristics of the study area and data set4

Following the policy reforms of the early 1990s, the In-
dian economy has displayed renewed dynamism in terms of its
growth and achievements in poverty reduction. However, re-
cent research has shown that not all regions of the country have
benefited from this improved economic performance and that
large variation exists within India in terms of the rate of income
growth and extent of poverty reduction successes (e.g., Datt and
Ravallion, 2002). This follows an earlier post-independence his-
tory in the country in which green revolution technologies for
wheat and rice cultivation enabled marked increases in agricul-
tural productivity in many agricultural regions of the country in

2 Bagi (1982) and Battese and Coelli (1992), on the other hand, find relatively
high technical efficiency of smallholder farms in India.

3 A notable exception is a recent study by Sherlund, et al. (2002), which
shows that failure to control for the effect of differences in the environmental
characteristics of farm (e.g., climate, pests infestation) can lead to significant
overestimation of the degree of technical inefficiency based on analysis of farm
survey data from Cote d’Ivoire. Coelli et al. (1999) report similar findings in
their analysis of the international airline industry while applying a more general
approach.

4 This section draws heavily on Banik et al. (2004).

the 1970s and 1980s, but largely bypassed two of the country’s
extensive agricultural regions: the semi-arid tropics and eastern
India’s rainfed rice-growing region (Walker and Ryan, 1990).
Thanks to the intensive village-level studies and longitudinal
household surveys carried out by ICRISAT, our knowledge of
the former area is substantial. In contrast, the eastern rain-fed
rice region has been the subject of relatively little quantitative
analysis.

Our study area lies on the Chhotanagpur Plateau, which is
part of the so-called “tribal belt” in eastern India.5 The data
analyzed in this study were collected jointly by the International
Rice Research Institute (IRRI) and Indian Statistical Institute
(ISI) in the 1998–1999 crop season. The survey sample covered
two neighboring districts, Giridih and Purulia, in the states of
Jharkhand (a part of Bihar state prior to 2000) and West Bengal,
respectively. The incidence of poverty among rural households
in the area has been estimated to be among the highest in India.
Statewide headcount poverty ratios in Bihar and West Bengal
were the second and third highest in 1987–1988 and second and
fifth highest in 1999, respectively (Deaton, 2001). Based on the
Planning Commission’s official poverty line for 1999, 60% of
sampled households were poor according to income estimates
based on our survey data and the average years of schooling of
household heads was only 3.6 years.6

A total of 541 households were selected for the survey based
on a stratified random sample of households in eight villages in
each district. In each village, roughly 35 households were ran-
domly selected from Census lists across five landholding groups
including landless households. The survey questionnaire cap-
tured a host of economic and agricultural characteristics of the
households and their farms, but was particularly focused on
capturing information on agricultural production activities at
the plot level. Our empirical analysis utilizes rice production
data from 1,089 plot-level observations (operated by 470 farm
households) during the Kharif season (i.e., the monsoon sea-
son which generally runs from June to November/December).
Table 1 presents sample averages and variances for the key
variables used in our production estimates.

Agriculture in the area is largely oriented to rice cultivation
for subsistence.7 Our sample farms are predominantly small
farms, and large-scale commercial farms are absent from the
area. The maximum size of the farm operated by our sample
households was 15 acres (6.1 hectares) and the average farm size
was only 2.2 acres (0.9 hectares). This is the result of past land
reform efforts, which placed limits on the amount of land that
could be owned and the division of family landholdings through
inheritance across generations. Most sample farms relied on
traditional cultivation techniques in their rice production. The

5 The term “tribal belt” refers to a concentration of districts that run in a
band across central India that have high proportions of their populations from
Scheduled Tribe backgrounds

6 This poverty incidence was calculated based on estimates of gross household
income, and the figure would likely be much higher if precise estimates of net
household income were available.

7 Only 21% of the sample households reported selling rice during the survey
year.
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Table 1
Summary statistics for variables used in SFPF estimates

Sample/Sub-Sample (sample size) Sample Coefficient of Minimum Maximum
Variable mean variation value value

All Kharif season rice plots planted with modern varieties (N = 169)
Production (kg) 1,044.300 6.179 45.00 8,420.00
Land (acre) 0.892 0.005 00.05 12.16
Seed (kg) 42.500 0.251 02.00 550.00
Fertilizer (100 kg) 2.803 0.017 00.00 19.80
Labor (person-days) 65.780 0.389 06.00 368.00
Upland land-type plot (0/1) 0.036 – 00.00 1.00
Mid-upland plot (0/1) 0.284 – 00.00 1.00
Medium land plot (0/1) 0.254 – 00.00 1.00
Lowland plot (0/1) 0.426 – 00.00 1.00
Irrigation available (0/1) 0.090 – 00.00 1.00

All Kharif season rice plots planted with traditional varieties (N = 920∗)
Production (kg) 907.600 1.174 30.00 12,592.00
Land (acre) 0.940 1.055 0.03 10.47
Seed (kg) 48.619 1.131 1.00 525.00
Fertilizer (kg) 2.260 1.343 0.00 36.00
Labor (person-days) 74.484 0.986 3.00 823.00
Upland land-type plot (0/1) 0.114 – 0.00 1.00
Mid-upland plot (0/1) 0.485 – 0.00 1.00
Medium land plot (0/1) 0.140 – 0.00 1.00
Lowland plot (0/1) 0.260 – 0.00 1.00
Irrigation available (0/1) 0.090 – 0.00 1.00

Kharif season traditional variety rice plots on upland (N = 105)
Production (kg) 471.300 4.489 40.00 1,645.00
Land (acre) 0.726 0.007 0.03 4.00
Seed (kg) 36.340 0.346 2.00 140.00
Fertilizer (kg) 0.966 0.009 0.00 8.68
Labor (person-days) 47.380 0.451 3.00 267.00
Irrigation available (0/1) 0.048 – 0.00 1.00

Kharif season traditional variety rice plots on middle upland (N = 446)
Production (kg) 848.000 1.901 30.00 7,350.00
Land (acre) 0.972 0.002 0.03 9.00
Seed (kg) 50.128 0.112 1.00 420.00
Fertilizer (kg) 2.350 0.005 0.00 36.00
Labor (person-days) 77.910 0.175 03.50 823.00
Irrigation available (0/1) 0.100 – 00.00 1.00

Kharif season traditional variety rice plots on medium land (N = 129)
Production (kg) 1,019.500 7.903 90.00 7,140.00
Land (acre) 0.928 0.007 0.06 6.00
Seed (kg) 46.257 0.359 2.75 525.00
Fertilizer (kg) 2.473 0.019 0.00 27.00
Labor (person-days) 77.054 0.597 6.00 430.00
Irrigation available (0/1) 0.147 – 0.00 1.00

Kharif season traditional variety rice plots on lowland (N = 239)
Production (kg) 1,148.900 1.263 35.00 12,592.00
Land (acre) 0.977 1.162 0.03 10.47
Seed (kg) 52.335 1.138 2.00 490.00
Fertilizer (kg) 2.546 1.223 0.00 20.00
Labor (person-days) 78.192 0.961 3.50 498.00
Irrigation available (0/1) 0.059 – 0.00 1.00

∗While the total number of plot-level observations with TV cultivation is 920, information on land type is missing in one observation. Thus the total plot-level
observations with known land types are 919 (=105 + 446 + 129 + 239).

rate of adoption of modern rice varieties (MVs) was relatively
low (see below), and the use of agricultural machinery, such as
tractors and power tillers, was nearly nonexistent among sample
farms.

One significant feature of the agricultural production envi-
ronment in the study area is the area’s undulating topography
in a highly dissected landscape. This characteristic gives rise to
low-scale variations in terrain, soil, and water conditions which
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Table 2
Composition of nutrients across land types defined by position on the topose-
quence

Land type Number of Org. C Ave. P Ave. K Total
samples (%) (kg./ha) (kg./ha) N (%)

Upland 3 0.38 12 84 0.03
Mid-upland 6 0.53 18 82 0.05
Medium land 6 0.56 21 267 0.05
Lowland 21 0.77 24 185 0.07

Source: Soil chemical analysis conducted at Indian Statistical Institute,
Kolkata, India.
C, Carbon; P, potassium; K. phosphorous; and N, nitrogen.

influence the kinds of crops that can be grown, the time win-
dows for cropping, and feasible cropping systems across plots
lying at different levels of the toposequence. Local farmers
typically distinguish four different land types according to the
land’s position on the microtopography: upland, mid-upland,
medium land, and lowland. Going from the upland plots to the
lowland plots, soil analysis by ISI reveals a trend of increasing
soil fertility, consistent with farmers’ perceptions of the soil
quality along the toposequence. Table 2 summarizes the results
of soil analysis from one of the surveyed villages and shows the
pattern of increasing chemical nutrients across samples drawn
from lower levels of the terrace.8 Soil nutrient characteristics
highlight the importance of relatively small differences in el-
evation across adjacent plots in defining plot characteristics
(e.g., moisture and nutrient holding capacity, vulnerability to
erosion).

Farmers have adapted to the local topography by adjust-
ing cropping patterns (particularly rice varieties cultivated) and
crop management practices according to plot land type. Up-
land plots are typically planted with short duration (85–90
days), drought-tolerant TVs of rice or traditional minor mil-
lets that generally provide low yields. Mid-upland plots are
typically planted with medium-duration TVs, whereas medium
land plots—where soil moisture is available for a longer pe-
riod than on the higher terraces—long-duration TVs of rice are
most widely planted. At the bottom of toposequence—on low-
land plots—farms typically plant long-duration rice TVs with
low inputs of manure or MVs of rice. Planting of traditional
varieties predominated, but MV rice is also cultivated (i.e., the
share of land area planted with MVs was 21% on lowland and
24% on medium land)—mainly on medium land and lowland
plots where the ambient moisture on plots is higher so soils are
better suited to MVs which tend to be more sensitive to water
availability. Average paddy yields differed significantly across
land types, and yields generally increase as one moves down the
toposequence. Rice yields averaged 2.1 tons per hectare on up-
land plots compared to an average yield of 3.3 tons per hectare
on lowland plots, according to our survey. Considered together,
these characteristics suggest that disaggregating farm technical

8 At the same time, however, lowlands sometimes suffer from excessive water.

efficiency estimates across plots of the difference land types
and controlling for other low scale (i.e., plot level) differences
in environmental conditions can strongly influence estimates of
farm technical efficiency.

3. Methodology for testing sensitivity of technical
efficiency estimates

We examine the technical efficiency of our sample farmers
by estimating stochastic frontier production functions (SFPFs),
as pioneered by Aigner et al. (1977), and Meeusen and van den
Broeck (1977). In particular, the analysis seeks to evaluate how
including details about the microtopographic position affects
inferences that can be made regarding small farmer technical
efficiency. To do this, we estimate SFPFs at different levels
of land aggregation and include different control variables and
compare estimation results. SFPF estimation models take the
general form:

lnYi = f (Xi, Zi; β) + Vi − Ui, (1)

where f(·) defines the production frontier with i representing ith
observation (either plot-level or farm level, as detailed below).
Yi is the total amount (in kilograms) of paddy produced, Xi is a
vector of production inputs (land, seed, labor, and fertilizer), Zi

is a vector of additional environmental control variables (i.e.,
irrigation availability on each plot and village dummy variables
capturing institutional/environmental characteristics varying at
the village level), and β is the vector of unknown parameters
that characterize the production frontier. Vi represents random
error (e.g., measurement error) and is assumed to be normally
distributed with mean zero and variance σ 2

v . Ui (≥0) captures
the nonnegative component of the estimation residual and is
interpreted as representing technical inefficiency.

It is standard practice in SFPF estimation for the production
frontier f(·) to be parameterized as a Translog or Cobb–Douglas
functional form. We initially estimate equation (1) as a Translog
production frontier taking the form:

lnYi = β0 +
K∑

k=1
βk ln Xki+1/2

K∑

j=1

K∑

k=1
βjk ln Xji ln Xki

+
M∑

m=1
βmZmi + Vi − Ui,

(2)

with β jk = β kj (k, j = 0, 1, . . . , K). We test whether Cobb–
Douglas is an adequate specification by testing the joint signif-
icance of H0: β jk = 0 for all j, k = 1, . . ., K. When estimates
fail to reject the null hypothesis, we re-estimate the production
frontier using a Cobb–Douglas specification.9

9 The equation estimated in this case takes the form: lnYi = β 0 +
∑K

k=1 βk ln Xki + ∑M
m=1 βmZmi + Vi − Ui.
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A variety of distributions have been proposed to characterize
the technical inefficiency term Ui in the existing SFPF litera-
ture.10 Although distributions that involve two-parameters can
accommodate a wider range of possible distributional shapes,
using these types of distributions comes at the cost of making
parameter identification more difficult (see Ritter and Simar,
1997). Also, the existing literature has not clearly established
the empirical significance of using more elaborate specifica-
tions of Ui.11 We initially experimented with alternative dis-
tributional assumptions including the exponential, half-normal,
and truncated normal, and found that model identification was
indeed difficult when the truncated normal distribution was
used. The estimated mean of Ui—commonly referred to as pa-
rameter µ in the SFPF literature—had large standard errors and
was not significantly different from zero. The general pattern of
our results did not change across estimates that applied differ-
ent distributional assumptions for Ui. Consequently, we focus
discussion on the results based on the estimates that assumed
Ui is distributed as a half-normal distribution (a relatively sim-
ple and widely applied distribution) with variance σ 2

u, which
follows recommendations of Ritter and Simar (1997, p. 181),
and Kumbhakar and Lovell (2000, p. 90). Adopting one of the
more common specifications applied in SFPF estimates has the
additional advantage of making it easier to compare our results
to earlier studies that used this specification. This will make it
easier to assess whether the results of earlier studies estimating
production frontiers at the farm level could be biased by their
failure to control for plot-level heterogeneity.

We test for technical inefficiency among survey farmers by
examining the null hypothesis H0: σ 2

u = 0 against the alternative
hypothesis H1: σ 2

u > 0. Coelli (1995) shows a one-sided gener-
alized likelihood ratio test statistic is asymptotically distributed
as a mixture of χ2 distributions with one degree of freedom.
Following Jondrow et al. (1982) and Battese and Coelli (1988),
we then predict technical efficiency scores for individual plots
(TEi) as TEi = exp(−Ui), conditional on the observed compos-
ite error (Vi − Ui).

Starting with farm level and moving to plot-level estimates
while adding more variables to estimation models to control for
the effect of other environmental conditions, we examine how
the disaggregation and the addition of environmental variables
influence inferences about the extent of farm technical effi-
ciency. Specifically, we estimate production frontiers at three
levels of aggregation:

1. Farm level where the output and inputs are aggregated across
all plots operated by the household,

2. Plot-level analysis where plots of different land types are
not distinguished but pooled together, and

10 See Kumbhakar and Lovell (2000) for a comprehensive discussion of al-
ternative distributional assumptions found in the literature.

11 For example, earlier research has shown that while the quantitative mag-
nitudes of predicted firm-level technical efficiency are sensitive to such dis-
tributional assumptions, the ranking among observations based on estimated
technical efficiency is not (Kumbhakar and Lovell, 2000).

3. Individual plot-level analysis estimated separately for each
land type.

As discussed earlier, farmers typically plant distinct rice vari-
eties on different land types, so we estimate separate production
frontiers for each land type. In estimating at each level of the ag-
gregation, we use two model specifications. One specification
defines production to depend only upon the level of production
inputs (i.e., land area, labor, fertilizer, and seed), and the other
adds variables to capture the effect of irrigation availability (a
dummy variable taking the value one if the plot is irrigated)
and the village-level dummy variables. In addition, estimates at
the pooled-plot and the plot levels (i.e., for each land type) are
carried out separately for plots cultivated with MVs and TVs.

4. Estimation results

The estimated quadratic terms of the Translog production
functions are generally statistically significant, so the Translog
specification is used in all but one case.12 The quadratic terms
were not significantly different from zero in the estimate on
medium-land plots so a Cobb–Douglas form was used in this
instance.

4.1. Estimated production frontier parameters

Table 3 summarizes the means and standard deviations of the
estimated elasticities of output with respect to the inputs from
our production frontier estimates. Estimates show that these
elasticities vary significantly across different land types in their
pooled and individual plots level estimates, which suggests that
the estimated technology parameters that characterize produc-
tion frontiers are sensitive to the microtopographic position of
the farm plot.13 This is expected because farms plant different
rice varieties and apply different inputs on plots of different
land types, and is consistent with the general conclusions of
Sherlund et al. (2002). Elasticities also varied—although less
consistently—with the inclusion of additional control variables
(i.e., irrigation availability and village dummy variables).14

12 In addition, all the models were statistically significant (P-value = 0.00)
according to the Wald chi-square tests.

13 While the relatively small (and occasionally negative) elasticity of labor is
somewhat puzzling, it is consistent with previous findings from rice farmers in
Bangladesh (Sharif and Dar, 1996) and wheat farmers in Pakistan (Battese and
Broca, 1997). A plausible explanation for the negative coefficients estimated
for labor input in some of the specifications is that labor input is pre-determined
to a much lesser extent than other inputs (i.e., decisions regarding the size of
plot to cultivate and the amount of seed to apply must be made at the start of
the planting season) and increased application of labor is a common response
to crop management problems (e.g., drought or weed/insect infestations).

14 Coefficient estimates are not reported due to space constraints, but are
available from the corresponding author.
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Table 3
Input elasticities and standard deviations from SFPF estimates

Production input Alternative plot/land-type disaggregation levels
All plots pooled: Land-type specific estimates:

Modern varieties Traditional varieties Upland Mid-upland Medium land Lowland
Farm level (MV) only (TV) only (TV only) (TV only) (TV only) (TV only)

(A) Minimum production function model with production inputs only:
Land 0.7088 0.4728 0.5787 0.2195 0.5782 0.8690 0.6363

(0.134) (0.211) (0.183) (0.260) (0.170) (0.046) (0.156)
Fertilizer 0.0436 0.0646 0.0565 0.0749 0.0648 0.0069 0.0160

(0.025) (0.054) (0.032) (0.174) (0.046) (0.012) (0.034)
Labor −0.0521 0.0155 0.0702 0.1182 0.0379 −0.0092 0.0889

(0.042) (0.114) (0.100) (0.182) (0.075) (0.042) (0.094)
Seed 0.2646 0.3703 0.2580 0.4075 0.2726 0.0841 0.2320

(0.095) (0.065) (0.105) (0.228) (0.178) (0.035) (0.143)
(B) Full production function model with irrigation and village dummies:
Land 0.6170 0.4374 0.5219 0.3067 0.4758 0.8556 0.5785

(0.128) (0.238) (0.189) (0.256) (0.147) (0.041) (0.158)
Fertilizer 0.0354 0.0301 0.0511 0.0947 0.0630 0.0083 0.0040

(0.026) (0.036) (0.037) (0.117) (0.0447) (0.011) (0.032)
Labor −0.0358 −0.0524 0.0482 0.1287 0.0349 0.00259 0.0743

(0.042) (0.115) (0.088) (0.157) (0.0823) (0.043) (0.102)
Seed 0.3367 0.4771 0.3280 0.3594 0.3766 0.0631 0.3278

(0.113) (0.120) (0.127) (0.161) (0.170) (0.027) (0.112)

Table 4
Estimates of farm technical efficiency in rice cultivation.

Alternative plot/land-type disaggregation levels

All plots pooled Land-type specific estimates

Farm-wide Modern Traditional Upland Mid-upland Medium land Lowland
(household) varieties varieties (TV only) (TV only) (TV only) (TV only)
level (MV) only (TV) only

Sample size 470 169 920∗ 105 446 129 239
Functional form Translog Translog Translog Translog Translog Cobb-Douglas Translog
(A) Minimum production function model with production inputs only:
Test statistic 21.24 0.00 13.58 4.93 4.06 3.68 17.76
P-Value 0.000 1.000 0.000 0.013 0.022 0.027 0.000
Estimated λ = σ u/σ v λ = 1.900 λ = 0.016 λ = 1.402 λ = 2.833 λ = 1.149 λ = 1.373 λ = 2.360
Mean technical efficiency score (all farms) 0.749 (470)∗ 0.9955 (169)∗ 0.7531 (920)∗ 0.7015 (105)∗ 0.8010 (446)∗ 0.8255 (129)∗ 0.7196 (239)∗
(B) Full production function model with irrigation and village dummies:
Test statistic 9.03 0.00† 9.14 0.00 0.00 12.79 10.59
P-Value 0.001 1.000 0.001 1.000 1.000 0.000 0.001
estimated λ = σ u/σ v λ = 1.458 λ = 0.0238 λ = 1.2726 λ = 0.040 λ = 0.015 λ = 3.391 λ = 2.501
Mean technical efficiency score (all farms) 0.7980 (470)‡ 0.9940 (169)‡ 0.7877 (920)‡ 0.9898 (105)‡ 0.9965 (446)‡ 0.7860 (129)‡ 0.7240 (239)‡
MV adopters onlyc 0.8176 (128)‡ 0.9940‡ (169) 0.7920‡ (171) 0.9900 (20) 0.9960 (99)‡ 0.8130 (19)‡ 0.7050 (33)‡
Nonadopters onlyd 0.7909 (3420)‡ NA 0.7870‡ (749) 0.9900‡ (85) 0.9960 (347)‡ 0.7810 (110)‡ 0.7270 (206)‡

Mixture Wald χ2 test statistics (H0: σ u = 0) for the presence of technical inefficiency, P value, and estimated λ = σ u/σ v.
∗The model also includes dummy variables for each land type.
Number of observations in square bracket.
MV adopters are farmers with at least one plot planted with modern rice varieties (MVs).
Nonadopters are farmers who do not plant MVs on any plot.

4.2. Technical efficiency estimates

Table 4 summarizes the results of technical efficiency esti-
mates, reporting the statistical significance and predicted tech-
nical efficiency scores under the various model specifications.
Results generally show that technical efficiency estimates car-

ried out at the farm level differ significantly from estimates
made at more disaggregated levels (i.e., farm production across
land types and plots). Our estimates indicate that there is signif-
icant technical inefficiency among the rice farms at the house-
hold aggregate level—a result that is consistent with earlier
studies. As shown in the first column of Table 4, the null
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hypothesis that there is no technical inefficiency (i.e., σ u =
0) is strongly rejected (probability value of less than 0.01 in
farm-wide estimates). Average technical efficiency scores are
0.75 (for the specifications with production inputs only) and
0.8 (for specifications with additional irrigation and village het-
erogeneity controls). Estimated technical efficiency scores are
roughly comparable to those found in the earlier estimates base
on data from developing country settings (Battese, 1992).15

The analysis at the aggregate farm level suggests that irrigation
availability and variables capturing village-level heterogeneity
have relatively little effect on farm technical efficiency, a result
which sharply contrasts that of Sherlund et al. (2002).

Estimates of farm technical efficiency made at the more dis-
aggregated plot-level yields results that change the inferences
that can be drawn regarding farm technical efficiency, provid-
ing a more complex pattern of results. Plots planted with MVs
are shown to be efficient (i.e., estimates fail to reject the null
hypothesis of no technical inefficiency) and point estimates of
the ratio of standard deviations λ—σ u/σ v: an indicator of the
relative contributions of u and v to the composite error term—
are close to zero (see column two on Table 4), and the average
predicted value of technical efficiency is close to one. The find-
ing that rice cultivation using MVs among sampled farms in
eastern India is operating near the production frontier sharply
contrasts with results of earlier studies. Kalirajan (1982) and
Sharif and Dar (1996) found significant inefficiency among
rice farms planting MVs, however, these earlier studies relied
on data from subsistence oriented rice farms covering different
years and geographical areas than our study.16 Another possible
explanation for the different results is that farm technical ineffi-
ciency in the early stage of MV introduction has been overcome
as farmers have learned and adapted standard practices over the
years following MV introduction.

Although farms cultivating rice plots planted with MVs are
found to be technically efficient, the equivalent estimates show
plots planted with TVs display significant technical inefficiency.
The mean predicted technical efficiency scores range from 0.75
to 0.79, as shown in the third column of Table 4. However, when
estimates are carried out separately for plots of each land type,
estimates find statistically significant technical inefficiency es-
timates for medium land and lowland plots, but not for upland
or mid-upland plots. The model with controls for the avail-
ability of irrigation on the plot and village effects gives point
estimates of λ at 2.5 on lowland plots and 3.4 on medium land
plots, which suggests that the technical inefficiency term (Ui)
dominates the composite error term (Vi − Ui).

In the case of upland and mid-upland plots, the null hypothe-
sis of no technical efficiency is rejected in the basic model (i.e.,
without irrigation and village-level dummy variables). Once

15 Caution is warranted in interpreting these results, however, because com-
parisons of efficiency scores say nothing about relative efficiency across sam-
ples of farmers (Coelli et al. 1998, p. 247).

16 The data used in these studies came from Tamil Nadu State in the late
1970s and Bangladesh in the mid-1980s, respectively.

irrigation and village dummy variables are introduced, how-
ever, the null hypothesis is no longer rejected, and the point
estimates of λ become very small (less than 0.1). Accordingly,
adding indicators of irrigation and village level heterogeneity
thus significantly influences inferences regarding the technical
efficiency of rice cultivation on upland and mid-upland plots
planted with TVs.17 In contrast, adding environmental controls
does not significantly influence inferences regarding technical
efficiency on medium land and lowland TV plots.

To summarize, we find that technical inefficiency is prevalent
among the more fertile plots lying in the lower portions along
toposequence (i.e., medium-land and lowland plots), whereas
systematic technical inefficiency is not present on plots in less
favorable upper portions of the terrace toposequence (upland
and mid-upland plots). Our estimates for plots planted with
modern rice varieties (cultivated mainly on medium land and
lowland posts) also failed to find systematic technical ineffi-
ciency across surveyed smallholder farms.

A likely explanation for the more complex picture that
emerges from plot-level estimates—in which smallholder farms
display efficiency in cultivating TVs on middle and upper ter-
race plots but inefficiency on medium-land and lowland plots—
is that this results from the more heterogeneous and uncertain
agricultural conditions encountered on higher terraces. The wa-
ter holding capacity and soil nutrient composition of upland
and mid-upland plots appear to be relatively more heteroge-
neous than those of the lower terraces. In addition, the tendency
for nutrients to be carried off plots on higher portions of the
toposequence—particularly during heavy monsoon rains—and
to be transferred to lower terraces, a process that is beyond
farmers’ control, is likely to depend upon idiosyncratic charac-
teristics of the local topography, and increase the homogeneity
of medium land and lowland plots relative to upper terraces. As
a result, the amount of production farms can garner from rice
cultivated on upland and mid-upland plots tends to be more un-
certain and appears to depend to a greater extent on stochastic
environmental outcomes than is the case for output levels from
lower terrace plots. This is suggested by the relatively small
λ (i.e., the random error component dominating the compos-
ite error term) in our upland and mid-upland plot estimates.
In contrast, the relatively more homogeneous and more stable
water-holding capacity and nutrient characteristics of soils on
lower portions of the toposequence appear to enable farm cul-
tivation practices and management skills—rather than random
factors—to determine yields on lower terrace plots. The rela-
tively larger estimates of λ obtained on estimates for lowland
and middle land plots are consistent with such an explanation.
Because we are estimating separate production frontiers for
each land type, the levels of production frontiers are lower (i.e.,
yields are lower) for upper terraces than for lower terraces, but
the distance of individual farms from the frontier tends to be
dominated by stochastic soil conditions largely beyond farm-
ers’ control. As a result, rice plots on upper terraces appear

17 This finding is in line with that of Sherlund et al. (2002).
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to be operating more or less with the same level of technical
efficiency (i.e., absence of significant technical inefficiency).

A practical implication of these findings is that it will likely
be difficult to increase productivity on less favorable upper ter-
races without shifting the production frontier, whereas results
also suggest there is potential to improve the technical effi-
ciency of some farmers in rice cultivation on lower terrace
plots. Methodologically, these results indicate that aggrega-
tion of production inputs and outputs across individual plots to
farm-wide totals in SFPF estimates yields estimates that cause
farms to appear considerably less technically efficient than they
actually are once explicit account is taken of the production
effects of microtopography, irrigation availability, and village
level characteristics by including these variables in plot level
estimates.

4.3. Are MV-adopters systematically more efficient than
nonadopters?

Because one might expect farms that are technically pro-
ficient in MV cultivation on medium-land and lowland plots
(68% of the MV plots in our survey were on plots of these
two land types) to be efficient in the production of all rice
varieties on these plots, the finding that there is significant
technical inefficiency on lower-terrace plots planted with TVs
merits additional investigation. One potential explanation is that
more technically efficient farms adopted MVs while farms that
are less technically efficient were less likely to adopt MVs. In
other words, unobserved farmer characteristics correlated with
greater efficiency may also be correlated with MV adoption.
Alternatively, this could result if the same farmers found to be
technically efficient in MV cultivation on some lower terrace
plots are in fact less technically efficient in cultivating TVs on
other lower terrace plots. Farms typically cultivate rice on plots
of more than one land type, and a substantial number of plots
operated by “MV adopters” (defined here as those who culti-
vate MV on at least one plot) are planted with TVs. Only 9% of
the MV-adopters planted MVs on all of their farm’s plots (91%
cultivated MVs on some plots and TVs on others).

We explore whether MV adopters are technically more ef-
ficient than nonadopters in their cultivation of TVs on lower
terrace plots in two ways. First, we examine whether the pre-
dicted technical efficiency scores (TEi) for TV cultivation are
significantly different between the MV-adopter and nonadopter
groups according to our SFPF estimates (from the full model)
reported in Table 4. Second, we examine whether being an MV
adopter has a significantly negative association with technical
inefficiency scores by re-estimating the same SFPF for each
land type as reported in Table 4 except that we now specify the
variance of the technical efficiency term Ui to be a function of
an “MV adopter dummy” (a dummy variable taking value one
if the farm operator has at least one plot planted with MVs).

As reported in Table 4 (in the last two rows), the average
technical efficiency scores are similar across MV adopters and
nonadopters. Scores are slightly higher among MV-adopters on

medium land plots (and when plots of all land types are pooled),
but the pattern is reversed on lowland plots. Accordingly, our
estimates provide weak evidence of higher technical efficiency
among MV adopters on medium land plots, but estimates do
not display a consistent efficiency gap between the MV-adopters
and the nonadopters in TV cultivation.

Our second approach to examine whether there are system-
atic differences in technical efficiency between MV-adopters
and nonadopters is to introduce an MV-adopter dummy as a co-
variate in the determinants of technical inefficiency term (Ui);
we assume that σ 2

ui = exp(γ ′Zi), where the Zi vector consists of
an intercept and the MV adopter dummy. These estimates reveal
that the coefficient on the MV adopter dummy is not signifi-
cantly different from zero in any of the specifications, so provide
further evidence in support of the conjecture that MV-adopters
are not any more technically efficient than nonadopters in their
cultivation of TVs on lower terraces.18 Had MV-adopters been
found to be more technically proficient in TV cultivation on
medium-land and lowland plots, it would have supported the
hypothesis that unobserved farmer heterogeneity such as tech-
nical know-how and motivation explained the different levels
of technical efficiency on MV plots and the TV plots on lower
terraces. To summarize, our results suggest that surveyed farms
exhibit varying levels of technical proficiency across plots of
different land-types planted with TVs, and across plots of the
same land types (i.e., medium land and lowland) planted with
MVs and TVs and that this does not appear to be explained by
selection bias.

4.4. MV vs. TV cultivation on lower terraces

If selection bias cannot explain the somewhat paradoxical
finding that the same farms displayed different degrees of tech-
nical efficiency between lower terrace plots cultivated with MVs
and TVs, then what can explain this result? Although answer-
ing this question fully with cross-sectional data is difficult, we
can offer a few possible explanations.19 One possibility is that,
by the late 1990s, MV rice cultivation technology had become
well understood and homogeneously applied by adopting farms
while the TV farming technology remained more idiosyncratic
and continued to depend significantly on farm experience. As
we see below, we find evidence that accumulated farm expe-
rience (proxied by the age of the household head) positively
affects technical efficiency in TV cultivation, suggesting that
learning from experiences plays an important role in raising
farm efficiency in TV cultivation.

In addition, literature from agronomy (as well as technicali-
ties involved in SFPF estimation) offer additional explanations

18 These estimation results are not reported here in order to conserve space,
but are available from the authors upon request.

19 Construction of a panel dataset is currently underway, and with such data
we will be able to investigate both the farms’ decision to adopt MVs and their
technical efficiency at the plot level with statistical control of the effects of
unobserved plot-level heterogeneity.
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for the different levels of technical efficiency observed for cul-
tivation of MVs and TVs on lower terraces. As noted earlier,
water availability on lower terrace plots is generally more fa-
vorable than on upper terrace plots, but because of the paucity
of water management infrastructure in the study area it still
fluctuates with rainfall.20 The greater sensitivity of MV yields
to water availability means that yields from cultivation of TVs
on lower terrace plots are more certain than yields from MV
cultivation.21 Accordingly, the level of production from MVs
cultivated on medium and lowland plots likely depends more
on stochastic environmental outcomes (rather than farm effi-
ciency) than production outcomes from TV cultivation. Our
SFPF estimates showed estimated standard deviations of the
random error terms (i.e., σ v) for the plots planted with MVs
average roughly 0.3 compared with estimates in the range of 0.1
to 0.2 for medium-land and lowland plots cultivated with TVs.
The greater variance in yields for plots cultivated with MVs
makes the estimated λ small relative to λ estimated for plots
cultivated with TVs (see Table 4). This explanation somewhat
parallels that offered earlier in the article to explain the different
efficiency levels observed in TV cultivation on upper and lower
terrace plots.

4.5. Why are the MV adoption rates so low?

Although these offer possible explanations for the difference
in the estimated technical efficiency between lower terrace plots
cultivated with MVs and TVs, questions remain concerning: the
low rate of MV adoption, and the possible sources of the techni-
cal inefficiency found for lower terrace TV crops. Again, fully
addressing these questions would require richer data than is cur-
rently available. Nonetheless, we offer some preliminary con-
jectures loosely supported by evidence from the cross-sectional
data.

It is puzzling that the MV adoption rate remains low so many
years after MVs were first introduced. Difficulty with learning
proper techniques for cultivating MVs would not appear to of-
fer a viable explanation because farms that have adopted MV
appear to be operating near the production frontier. One possi-
ble explanation is that severe cash constraints among surveyed
farm households force credit rationing and greater reliance on
nonpurchased agricultural inputs. Modern inputs required for
MV cultivation (e.g., chemical fertilizer) are typically financed
with cash income from nonfarm sources since credit markets
appear to be extremely limited in the study area.22 Our sur-
vey data indicate, for example, that the average nonagricultural
income of households adopting MVs is twice that of nonadopt-
ing households (Rupees [Rs.] 3,800 compared with Rs. 1,800),

20 In the case of lowland, excess water, as well as the shortage of water, can
be a problem depending on the fluctuations in the water table level.

21 This characteristic of rice cultivation in the study area is detailed in Maiti
and Bagchi (1993)..

22 The lack of agricultural credit is found in the results of the survey carried
out for this study and has been documented in Ramachandran and Swaminathan
(2001).

which is consistent with MVs adoption being constrained by
the lack of opportunities to earn cash (and the poorly developed
market for agricultural credit) to finance the purchase of modern
inputs required for MV cultivation. In addition, given the high
level of poverty in the area, and the relatively high sensitivity of
yields to water availability, the low level of MV adoption and
cultivation of MVs on only a portion of farm land by adopters
can be understood as a risk mitigating strategy.

Another possibility is that the MVs currently available in the
study area are poorly suited to the environmental conditions
of the East Indian plateau, and only the most favorable lower
terrace plots—on which water management is possible—are
favorable to MV cultivation. Unfortunately, small variations in
land quality across lowland plots cannot be directly observed in
our dataset. However, if this were the case, then either techni-
cal innovation to develop (and introduce) new drought tolerant
MVs or investments in infrastructure to better manage water
on farm plots would be necessary to enable study area farms to
adopt high yielding rice varieties on a larger scale.

4.6. Potential sources of technical inefficiency in TV
cultivation

Returning to the second question of why is it that some farm-
ers are technically more efficient than others in TV cultivation
on lower terrace plots: We explore this question by re-estimating
stochastic frontiers with the added assumption that the variance
of the technical inefficiency term Ui is a function of a set of
potential determinants of inefficiency (i.e., σ 2

ui = exp(γ ′Zi)).
The list of potential determinants of technical inefficiency (Zi)
measured in our dataset is rather limited, however, largely con-
sisting of household-level—rather than plot-level—variables
(e.g., years of schooling of the household member with highest
educational attainment, age of the household head as a proxy
for farming experience, farm distance from local markets as
indicated by travel time to the nearest local market, total land
area operated by the household, and the share farm landholding
of each land type).

The results of this analysis are summarized in Table 5.23 We
find that greater distance from markets has a positive and sta-
tistically significant effect on technical inefficiency under all
estimation model specifications. If distance was negatively cor-
related with ease in acquiring information on new agricultural
techniques (for example, if greater distance was associated with
fewer visits from agricultural extension agents or commercial
traders who transmit information on new technologies), then
relatively remote farms would be expected to display lower
technical efficiency. Distance from markets also increases trans-
actions costs in purchasing agricultural inputs (such as fertil-
izer) and technically inefficient use of inputs could result from
the relative over-reliance on nonmarket inputs such as family
labor, farm manure, and seed stored from prior year’s harvest

23 Estimated production frontier parameters are not reported here in order to
conserve space, but are available from the corresponding author upon request.
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Table 5
Determinants of technical inefficiency+ [Ui ∼ N+(0, σ u); σ 2

ui = exp(Ziδ)]

Z variables: Medium land Lowland

(1) (2) (3) (4) (1) (2) (3) (4)

Highest educational
attainment in
household

−0.074 (1.72)∗ −0.068 (1.65)∗ −0.083 (2.12)∗∗ −0.336 (2.31)∗∗ −0.047 (1.74)∗ −0.430 (1.51) −0.057 (2.09)∗∗ 0.081 (0.86)

Distance to nearest
market

0.049 (3.25)∗∗ 0.046 (3.45)∗∗ 0.042 (3.42)∗∗ 0.007 (2.05)∗∗ 0.025 (2.06)∗∗ 0.026 (2.04)∗∗ 0.022 (1.97)∗∗ 0.010 (2.08)∗∗

Age: head of
household (HH)

−0.022 (1.96)∗∗ −0.020 (1.92)∗ −0.057 (2.52)∗∗ −0.009 (1.04) 0.013 (0.87)

Highest educat. 0.005 (1.98) −0.003 (1.53)
Age of HH∗
Size of land holding 0.855 0.359 (1.45)
% Land in

mid-uplands
−0.912 (1.59) −0.078 (0.48) −0.210 (0.70) 0.171 (1.11)

% Land in medium
lands

−1.147 (1.90)∗ −0.292 (1.44) −1.038 (2.01)∗∗ −0.830 (1.54)

% of in lowlands −0.799 (1.34) 0.080 (0.48) −0.618 (2.19)∗∗ −0.283 (1.71)∗

+Estimated production frontier parameters are not reported here in order to conserve space, but are available from the authors upon request.
∗∗Statistically significant at 5% level.
∗ Statistically significant at 10% level.

because of the higher transaction costs, and thus explains the
positive relationship between farm distance from markets and
technical inefficiency.

Farm household educational attainment has a significant pos-
itive association with technical efficiency.24 Greater school-
ing could potentially enhance farm technical efficiency either
through acquisition of knowledge relevant to agriculture (taught
directly at school or through outside sources such as read-
ing newspaper, which is made possible by literacy education)
or through enhancing household capacity to learn from farm-
ing experiences. Following Rosenzweig (1995), we can use a
target-input model to examine the empirical relationship be-
tween schooling and farm productivity (in particular, whether
schooling and experience are substitutes or compliments) by
including an interaction term between schooling and experi-
ence as a determinant of the technical inefficiency term. As
shown in Table 5 (column 4), the estimation coefficient on the
interaction term suggests that schooling and experiences are
substitutes rather than complements on medium-land (but not
lowland) plots. This can be interpreted to suggest that schooling
increases acquisition of new information but does not enhance
the efficiency of learning from experience, and that the returns
to schooling tend to decline as households accumulate experi-
ence.25

We also find that farms operating on lands with a higher pro-
portion of lower terrace plots are more technically efficient in

24 Initially we also have used the schooling of the household head instead
of the maximum schooling, but it was not significant. So it is the maximum
education rather than the head’s education that appears to matter.

25 See Rosenzweig (1995) for the logic behind this interpretation of the inter-
action term.

some estimates—although the level of statistical significance
is lower, and that farm size does not have a statistically signif-
icant effect on farm technical efficiency. Considered together,
this analysis provides some additional evidence that the distinct
characteristics of plots influence farming outcomes. However,
without stronger data (e.g., panel data or additional variables
measured at the plot rather than the household level), we are
unable to rule out the possibility that yet unobserved hetero-
geneity across plots of a given land type might be driving some
of our results.

5. Policy implications

A number of policy implications can be drawn from these
findings. One key finding concerns the importance of low scale
differences in topography in driving land use and production
outcomes in our study area. Efficiency estimates carried out
at the farm level suggest farms are technically inefficient, but
more disaggregated estimates reveal a more complex picture
of farm technical capacity—with farms displaying technical ef-
ficiency on plots of certain land types planted with TVs and
plots of other land types planted with MVs. The contrasting
results in technical efficiency estimates between the upper and
the lower terraces (as well as between the MV and TV-planted
plots) suggest that distinct policy interventions for increasing
productivity of different land types are likely to be called for.
For upland and mid-upland, there seems to be relatively little
room for improving technical efficiency under the current tech-
nology, and existing MVs are unlikely to be widely adopted
because of unfavorable soil moisture conditions on these lands.
Development and introduction of new technology—particularly
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new rice varieties with higher tolerance to water stress (instead
of improving technical efficiency based on the existing tech-
nology) is suggested for raising productivity in those land situ-
ations.

Our finding that MV adoption levels remain low in the survey
area despite the fact that MV adopters display technical pro-
ficiency in MV cultivation suggests addressing the constraints
that prevent many poor farm households from adopting MV
should be high on research and policy agendas in eastern India.
There are at least two possible explanations for the low rate of
adoption among surveyed farms: 1) that farms are cash (credit)
constrained; and 2) that land in the area that is well suited to cul-
tivation of the currently available MVs is scarce. Appropriate
policy interventions would depend on which of these is true, but
further study is needed to determine this as the present research
is unable to distinguish these alternative explanations. If local
agricultural conditions constrain adoption, then development
of new high yielding varieties with improved drought adoption
tolerance may be desirable, and development and introduction
of low cost water control technologies would hold promise of
improving the MV adoption rate. Alternatively, if the low rate
of MV results from binding cash/credit constraints, then pol-
icy interventions addressing this aspect of market imperfection
would be needed.

Our research also suggests there is potential for improving
technical efficiency in TV cultivation on the medium land and
lowland (e.g., technical extension to enable inefficient farms
to produce closer to the production frontier). Development and
diffusion of sound crop management practices for rainfed TVs
through agricultural research could also be promising for these
plots. Our analysis also suggests that investing in infrastruc-
ture could reduce the gap in technical efficiency levels between
remote areas and more accessible areas, as could improved
access to schooling. However, given our findings that the ob-
served technical inefficiency is not as extensive as it might first
appear from more aggregate analysis, efforts at improvement of
technical efficiency may have relatively limited impact in terms
of improving farm productivity and food security in Eastern
India.

6. Conclusions

Existing studies applying stochastic frontier production func-
tion estimation to examine technical efficiency of farms in
the context of developing country agriculture have found
widespread evidence of farm inefficiency. In contrast, we find
that farm technical efficiency varies across farm plots distin-
guished by their position in a low-scale toposequence and by the
rice variety (modern or traditional) cultivated. Analysis of farm
technical efficiency at the disaggregated plot-level suggests that
poor rice farming households in eastern India are considerably
more technically efficient than they appear based on the ag-
gregate farm-level analysis. Farms appear to be efficient in the
cultivation of some plots and inefficient in others—rather than

being uniformly inefficient in farming. To understand why this
is the case, analysis must consider the local environment and
distinct cultivation practices applied in cultivation of rice on
plots of different land types. Farm-wide analysis incorrectly
attributes differences in output levels to farm mismanagement
when more disaggregated analysis indicates technical short-
comings are due to small-scale variations in soil quality and
other environmental characteristics observable only at the plot
level.
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