論文

査読有り
2011年3月

Toward Unsupervised Adaptation of LDA for Brain-Computer Interfaces

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
  • C. Vidaurre
  • ,
  • M. Kawanabe
  • ,
  • P. von Buenau
  • ,
  • B. Blankertz
  • ,
  • K. R. Mueller

58
3
開始ページ
587
終了ページ
597
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1109/TBME.2010.2093133
出版者・発行元
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

There is a step of significant difficulty experienced by brain-computer interface (BCI) users when going from the calibration recording to the feedback application. This effect has been previously studied and a supervised adaptation solution has been proposed. In this paper, we suggest a simple unsupervised adaptation method of the linear discriminant analysis (LDA) classifier that effectively solves this problem by counteracting the harmful effect of nonclass-related nonstationarities in electroencephalography (EEG) during BCI sessions performed with motor imagery tasks. For this, we first introduce three types of adaptation procedures and investigate them in an offline study with 19 datasets. Then, we select one of the proposed methods and analyze it further. The chosen classifier is offline tested in data from 80 healthy users and four high spinal cord injury patients. Finally, for the first time in BCI literature, we apply this unsupervised classifier in online experiments. Additionally, we show that its performance is significantly better than the state-of-the-art supervised approach.

Web of Science ® 被引用回数 : 182

リンク情報
DOI
https://doi.org/10.1109/TBME.2010.2093133
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000287661900014&DestApp=WOS_CPL
URL
http://dblp.uni-trier.de/db/journals/tbe/tbe58.html#journals/tbe/VidaurreKBBM11
ID情報
  • DOI : 10.1109/TBME.2010.2093133
  • ISSN : 0018-9294
  • DBLP ID : journals/tbe/VidaurreKBBM11
  • Web of Science ID : WOS:000287661900014

エクスポート
BibTeX RIS