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ABSTRACT
The mean-DCCA portfolio is known to consider the assets’ nonlinearity and scaling properties by 
embedding the fractal correlation into the mean-variance criterion, with specific strategies under 
the assumption that the scale preference of investors is constant. We examine whether accounting 
for changes in investors’ scale preference in response to market conditions improves portfolio 
performance. A portfolio with preference on short-scales is effective under market uncertainty, 
while long-scale preference strategy is effective under a steady market. Our results support the 
Fractal Market Hypothesis and reveal the potential effect of investor heterogeneity on portfolio risk 
reduction.
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I. Introduction

Modern portfolio theory, which determines the allo-
cation of investments in financial assets, requires 
controlling and minimizing risk to achieve diversi-
fication. In the traditional mean-variance analysis, 
the investor’s decision-making is characterized by 
expected returns and variances, and the optimal 
combination of assets should be identical among 
investors (Markowitz 1952). However, since there 
are different types of investors with different trading 
strategies and investment horizons, it is unlikely that 
they are homogeneous in their expectations with an 
agreement on specific risk measures as called for the 
Efficient Market Hypothesis (EMH) (Fama 1991; 
Kristoufek 2018). Markets are rather inefficient, 
complex, and likely to exhibit heterogeneous beha-
viours (Battiston et al. 2016; Tilfani, Ferreira, and 
Boukfaoui 2020), and portfolio selection based on 
traditional approaches may not be appropriate 
(Kristoufek 2018; Tilfani, Ferreira, and Boukfaoui  
2019; Zhang et al. 2022). According to the alternative 
framework of the Fractal Market Hypothesis (FMH) 
proposed by Peters (1994), financial series exhibit 
fractal properties due to the different valuations for 
information flows among investment horizons, 
thereby justifying sudden spikes in market volatility 
and lack of market liquidity during crashes. Zhang 
et al. (2022) developed the mean-DCCA analysis by 

incorporating the fractal correlation characteristics 
of multiple assets into the mean-variance portfolio 
strategy, where the detrended cross-correlation ana-
lysis (DCCA) function (Podobnik and Stanley 2008) 
was used in place of the covariance function to 
substitute the risk definition.

At different scales, i.e. at different investment 
time horizons, the portfolio risk can be defined 
nonlinearly and allows investment allocations 
from various decision-making standards.

The mean-DCCA portfolio performs well, 
assuming that investors’ scale preference stays con-
stant (Zhang et al. 2022). However, their preference 
may shift to a different level since they change 
positions in response to changes in economic 
states. Evans (1994) and Ferson and Schadt (1996) 
show that time-varying risk prices play an impor-
tant role in the expected returns of the stock market 
by using conditional factor models. Motivated by 
the fact that investors’ preference for time horizons 
may vary over time and that their emphasis on 
short scales triggers market crashes (Peters 1994), 
we examine whether incorporating changes in scale 
preference improves portfolio performance. In par-
ticular, we construct a strategy that switches pre-
ference between short and long scales in response 
to maximum drawdown. For the first time within 
the fractal portfolio framework, the idea of utilizing 
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market information is introduced. This allows us to 
find opportunities for positions with lower market 
risk. Our results indicate that short-scale prefer-
ence strategy gains risk control during volatile mar-
ket conditions, which supports the background 
hypothesis of the FMH. The study contributes to 
a fresh understanding of how we can benefit from 
investors’ heterogeneous behaviour in terms of 
portfolio allocation.

II. Methodology and data

Methodology

In the mean-variance (MV) analysis, the portfolio 
is selected to minimize variance under some 
required expected return. The mean-DCCA (MD) 
analysis of Zhang et al. (2022) minimizes the 
DCCA (covariance) function (Podobnik and 
Stanley 2008) instead to consider assets’ fractal 
correlations and multiscale property.

For a given time series fxtg
N
t¼1 and fytg

N
t¼1, we 

split their cumulative sums, XðtÞ ¼
Pt

i¼1 xi and 
YðtÞ ¼

Pt
i¼1 yi, into Ns ¼ N=s non-overlapping 

segments of length s. The division is repeated 
from the other end, having 2Ns segments in total. 
For each segment, we eliminate the local trend and 
calculate 

f 2
XYðs; vÞ ¼

1
s

Xs

t¼1
XvðtÞ � ~XvðtÞ
� �

YvðtÞ � ~YvðtÞ
� �

;

(1) 

where ~XvðtÞ and ~YvðtÞ denotes the degree-2 poly-
nomial fits used to detrend the vth segment of XðtÞ
and YðtÞ, respectively. By averaging f 2

XYðs; vÞ over 
all segments we get the DCCA function 

F2
XYðsÞ ¼

1
2Ns

X2Ns

v¼1
f 2
XYðs; vÞ: (2) 

The function is scale-dependent and characterized 
by long-range power-law correlations F2ðsÞ,sH, 
providing valuable supplemental information. 1 

Different correlation levels can be uncovered 
under different investment horizons.

The MD portfolio of n assets is constructed 
using DCCA and the expected portfolio return 

calculated from the expected return of each asset, 
�ri. With the constraint that risk minimization is 
achieved under some given return greater than re, 
the investment weight wiðsÞ is calculated by solving 
the optimization problem 

minimize
wðsÞ

Pn

i;j¼1
wiðsÞwjðsÞF2

ijðsÞ

subject to
Pn

i¼1
�riwiðsÞ � re;

Pn

i¼1
wiðsÞ ¼ 1;

wiðsÞ � 0; i ¼ 1; . . . ; n:

(3) 

Each weight is determined to meet the optimal 
values under each different scale s. Since the FMH 
explains that investors trade from all kinds of 
investment horizons, the impact from multiple 
time scales must be reflected in the optimal 
weights. The weight wiðsÞ under a single horizon 
is only one component of the complex multiscale 
market behaviour and, therefore, not appropriate 
to conclude as the optimal investment weight. 
Additional steps are required to ensure the effec-
tiveness of MD portfolio. Following Zhang et al. 
(2022), we consider a set of multiple scales 
S ¼ s1 ¼ smin; s2; . . . ; sn� 1; sn ¼ smaxf g, where smin 
and smax are the minimum and maximum 
elements.

Then, the optimal investment weight wopt
i is 

defined as the weighted average of wiðsÞ
expressed as 

wopt
i ¼

P

s2S
αiðsÞwiðsÞ; (4) 

where 
P

s2S αiðsÞ ¼ 1 holds and αiðsÞ 2 ½0; 1�
represents the investor’s relative preference degree 
for scale s. The preference degree can be adjusted 
depending on how we associate αiðsÞ with s. Given 
the heterogeneity of investors, we consider three 
types of investment strategies according to their 
scale preference – equal preference among time 
scales, more preference for shorter time scales, 
and more preference for longer time scales. If, for 
example, investors have no specific preference 
among different investment horizons, we set 
αiðsÞ ¼ 1

#S, where #S denotes the total number of 
elements in set S.

1For instance, the scaling exponent H helps find traces of long- and short-memory in addition to the prevailing fractal behaviours.
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Data

The fractal portfolio is applied to eight empirical 
daily indexes of S&P500 stock, US Treasury bond 
(1–3 years, 10 years), US High-yield corporate 
bond, and US Investment-grade corporate bond 
(Aaa, Aa, A, Baa) for the period of 5 January 2004 
to 31 December 2021. A high-yield bond provides 
higher yields than Investment-grades with riskier 
with lower credit ratings.

III. Results and discussions

Multi-time scale property of data

Before implementing the MD analysis, we investigate 
whether the fractal portfolio reflects the diversifica-
tion effect, if any, among the datasets at study. For 
each pair of daily returns, we calculate the DCCA 
cross-correlation coefficient of Zebende (2011) at dif-
ferent scales defined as ρDCCAðsÞ ¼

F2
XYðsÞ

FXXðsÞFYYðsÞ
(Figure 1). We confirm that coefficient levels tend to 
vary depending on scales. This means that there exist 
different diversification effects at heterogeneous 
scales. Therefore, the MD approach can shed light 
on the scale-dependent property, and there may be 
room for portfolio improvement.

Performance under different scaling preferences

Given that the market exhibits fractal correlations 
in addition to different diversification effects by 
scale, we construct an MD portfolio that takes 
into account the investors’ scale preferences classi-
fied into three types: long-, short-, and balanced- 
scales. In particular, referring to Equation (4), we 
set αiðsjÞ ¼ sj=

P
s2S s for long-scale preference, 

and αiðsjÞ ¼ s#Sþ1� j=
P

s2S s for short-scale prefer-
ence, where sj denotes the jth element of subset 
S ¼ fs1; . . . ; sj; . . . ; s#Sg. For the balanced-scale 
type, the optimal weight is calculated by averaging 
all the scale-dependent weights. In our analysis, we 
use a historical data length of 2 years and employ 
S ¼ f5; 10; 15; . . . ; 130g as the subset.

Table 1 presents the maximum drawdown per-
formance of MV and MD portfolios based on the 
three strategy types, given an expected annual return 
of 2.5%. All three types of MD generally outperform 
the traditional MV. More interestingly, the higher 

performance of MD appears to vary by market per-
iod. For example, during the global financial crisis 
(2008–2009), the MD with short-term preference 
reduces drawdown the most, whereas after market 
recovery (2012–2013), the MD with long-term pre-
ference reduces the most. The results imply that 
understanding the heterogeneity of investors and 
their scale inclination plays an essential role in 
increasing portfolio risk control. In a relatively 
unstable market condition, short-scale MD mini-
mizes portfolio risk, which is consistent with the 
FMH concept in that investors tend to focus more 
on the short term in downside situations.

Out-sample performance of the switching strategy

The out-sample performance of the MD portfolio 
is also discussed by backtesting. We use a 2-year 
rolling window (520 daily returns) estimation with 
quarterly rebalancing. To regard the effect of the 
heterogeneity of investors under different market 
conditions, we introduce a new strategy, that is, 
when rebalancing the portfolio, we switch the 
scale preference types among the three MD strate-
gies. If the maximum drawdown of the balanced- 
scale MD over the past 2 years is worse than −1.5%, 
we consider the market to be in an unfavourable 
state and select the short-scale strategy. Otherwise, 
we assume the market to be out of recession or not 
in its downtrend and expectations for longer 
investment horizons have increased; thus, we select 
the long-scale strategy. Figure 2 shows the switch 
and maximum drawdown results throughout the 
entire period, and Figure 3 compares the draw-
down with other strategies. Although in 2008 
a significant drawdown is observed due to the 
global financial crisis, the impact on portfolio per-
formance is the least (yellow dash lines). We also 
find improvement in drawdown for other periods – 
the effect of heterogeneous investors is constantly 
reflected in the allocation. In other words, MD- 
switching strategy for the US market achieves 
a more risk conservative set of allocations com-
pared to MV and other types of MD. It not only 
reduces maximum drawdown but also improves 
Value-at-Risk (VaR) and expected shortfall (ES) 
while increasing portfolio returns under the same 
2.5% annual required return (Table 2). Therefore, 
dynamically changing the scale preference of the 
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Figure 1. Multi-scale cross-correlation coefficients of the investigated assets.

Table 1. Maximum drawdown performance (%) of the portfolios under a required annual 
return level of 2.5%.

Sample period MV MD-balanced MD-short MD-long

2004–2005 −2.227 −2.222 −2.229 −2.215
2006–2007 −0.584 −0.533 −0.542 −0.524
2008–2009 −1.919 −1.610 −1.515 −1.706
2010–2011 −0.662 −0.674 −0.665 −0.683
2012–2013 −1.417 −1.206 −1.238 −1.174
2014–2015 −1.913 −1.684 −1.657 −1.710
2016–2017 −0.606 −0.518 −0.540 −0.540
2018–2019 −0.508 −0.480 −0.469 −0.492
2020–2021 −2.557 −1.888 −1.990 −1.786

The bold values represent the portfolio with the best performance.
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Figure 2. Strategy switching and maximum drawdown throughout the period. The red (green) ranges represent long (short) scale preference.

Figure 3. Comparison of the backtest results for MV and MD portfolio strategies.
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MD portfolio in response to market conditions is 
key to allocate more effectively.

In addition to investors’ heterogeneity and time- 
varying dependencies, data frequency matters in var-
ious financial concepts (Bannigidadmath and 
Narayan 2016; Narayan and Sharma 2015; Narayan, 
Ahmed, and Narayan 2015). Investigating whether 
the present results are robust to using different fre-
quencies will reveal a further understanding of the 
profitability of fractal portfolios, which is our future 
work.

IV. Conclusion

This article applies the fractal MD portfolio to 
the US market and investigates scale dependence 
to find opportunities for greater portfolio risk 
control. Since investors’ scale dependence shifts 
to a different level according to changing eco-
nomic conditions, further development is 
achieved by incorporating time-varying features 
in the MD portfolio. We find empirical evidence 
that short-scale preference strategy increases 
diversification effect when the market outlook is 
uncertain, while long-scale preference strategy is 
more effective when the market is less turbulent. 
Such a strategy works well for both in-sample 
and out-sample data with improvement in the 
maximum drawdown, VaR, and ES. The results 
imply that market condition is useful for making 
a decision at which scale preference the fractal 
portfolio should be evaluated. In real terms, 
investors switch their preference oftentimes, 
potentially providing higher profitability and 
diversification. An extension of our study would 
be to examine frequency data dependence on 
fractal portfolio performance. Another extension 
would be to consider the multifractality of the 
assets by introducing a multifractal type of risk 
function. This may allow for more sophisticated 
portfolio diversification.
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