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We present a Bayesian updating method on the inter-event time intervals at different magnitude thresholds in a marked
point process toward probabilistic forecasting of an upcoming large event using temporal information on smaller events.
Bayes’ theorem that yields the one-to-one relationship between intervals at lower and upper magnitude thresholds is
presented. This theorem is extended to Bayesian updating for an uncorrelated marked point process that yields the
relationship between multiple consecutive lower intervals and one upper interval. We derive the inverse probability
density function and the condition under which it has a peak. Further, we derive its approximation function that consists
of the kernel part that includes the product of conditional probabilities and a correction term. Bayesian updating is
applied numerically to the time series of a seismic activity model. We estimate the time of an upcoming large event
using the maximum point of the kernel part and evaluate its accuracy by the relative error with the actual occurrence
time. We further evaluate the forecasting effectiveness by the continuity of updates with acceptable accuracy before the
large event. Statistical results indicate that forecasting is relatively effective immediately or long after the last major
event in which stationarity dominates in time series.

1. Introduction

The probabilistic forecasting of the timing of future major
earthquakes is important for seismic risk assessment. Such
forecasting is based on earthquakes’ magnitude and time
information that can be illustrated by a marked point process
schematically shown in Fig. 1. A basic approach involves
using the hazard rate, which is calculated using the inter-
event time distribution1,2) extracted from the marked point
process. The inter-event time distribution is defined as a
probability density function of a length between adjacent
points in the point process determined by setting a magnitude
threshold for the marked point process. For the magnitude
threshold M (m), we denote the inter-event times using a
variable �M (�m), and the inter-event time distribution it
follows by pMð�MÞ [pmð�mÞ].

The inter-event time distribution has been studied in
seismic activity not only for risk assessment2) but also for
advancing the understanding of statistical properties in
seismic activity from several perspectives. Such studies
encompass the unification of seismic laws3–10) that include
the Gutenberg–Richter (GR)11) and Omori–Utsu12,13) laws,
and the scaling universality in inter-event time distribu-
tions5,14) that were critically examined15–20) and further
extended21–23) with the help of the Epidemic Type Aftershock
Sequence (ETAS) model.24–29)

The ETAS model is capable of generating an inhomoge-
neous marked Poisson process like seismic activity:24,30–33)

the event time t is stochastically determined by the
occurrence rate [�ðtÞ] that is represented by the combination
of the Omori–Utsu and Utsu–Seki34,35) laws24–29) as,24,30)

�ðtÞ ¼ �0 þ
X
j:tj<t

K10�ðMj�M0Þ

ðt � tj þ cÞ�þ1
; ð1Þ

where ftj; Mjg ( j 2 N) are the time and magnitude of events
before time t; while the magnitude is generated randomly and
independently obeying the GR law, PðMÞ (probability
density of magnitude at M) / 10�bM.24) M0 represents the
minimum magnitude and ð�0; K; �; c; �; bÞ the parameters that
characterize the activity; in particular, �0 represents the

constant rate for background seismicity.24,30) The combina-
tion of the remaining parameters yields the branching ratio
nbr ¼ K

�c�
b

b�� (when � > 0)30) that determines the stationarity
of the time series as well as the ratio of aftershocks generated
by mainshocks.36)

The ETAS model provides a standard seismicity for
detecting anomalous activity.24,25) This model has been
extended to spatio-temporal versions26,28) and further hier-
archical space-time version.27,29) The conditional intensity
function provides the risk of an event at a given time and
space based on the history of seismic activity,29,37) which
includes small earthquakes.

In the aforementioned probabilistic evaluation using the
inter-event time distribution, temporal information on events
smaller than the magnitude threshold set on the marked point
process is not utilized. Therefore, in this paper, we propose
another approach to probabilistically forecast major earth-
quakes based on the inter-event time distribution while
considering the temporal information on smaller events. This
is achieved by utilizing a conditional probability that yields
the statistical relationship between the inter-event times at
different two magnitude thresholds.38)

For two magnitude thresholds m and M (¼ m þ �m,
�m > 0) set in the time series, the conditional probability
[pmMð�mj�MÞ, hereafter referred to as the conditional
probability density function] is defined as the probability
density function of a lower interval length (�m) provided that
it is inside the upper interval of length �M (Fig. 1).38) Inter-
event time distributions at magnitude thresholds m and M are
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Fig. 1. (Color online) Schematic of a marked point process to represent the
time and magnitude for each event in seismic activity (after Refs. 38 and 39).
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connected by an integral equation, the kernel of which
includes this conditional probability density function.38) This
integral equation is given as

Nmpmð�mÞ ¼ NM

Z 1

�m

�M
hh�mii�M

pmMð�mj�MÞpMð�MÞ d�M; ð2Þ

where Nm and NM represent the total number of intervals at
magnitude thresholds m and M, respectively, and hh�mii�M
represents the average of the conditional probability density
function, hh�mii�M :¼

R 1
0

�mpmMð�mj�MÞ d�m.38)
Thus, the conditional probability density function yields

the statistical relation between inter-event times at different
magnitude thresholds. This suggests that the information on
the lower intervals can be utilized for estimating the length of
the upper interval through the conditional probability density
function. Given this context, we consider Bayes’ theorem and
Bayesian updating on the intervals at different magnitude
thresholds in this paper; further, we report the results of the
numerical analysis related to the inverse probability density
function.39)

In Sect. 2, we derive Bayes’ theorem for intervals at
different magnitude thresholds in the marked point process.
In Sect. 3, the inverse probability density function is derived
for the uncorrelated time series that corresponds to the
background seismicity of the ETAS model. In Sect. 4, the
Bayesian updating method is considered for the uncorrelated
time series, and the inverse probability density function and
its approximation function are derived. These functions are
calculated numerically and compared in Sect. 5. In Sect. 6,
Bayesian updating is applied to the time series of the ETAS
model. The approximation function is examined numerically,
and the property of the maximum point of its kernel part is
analyzed statistically considering the effectiveness for fore-
casting. Finally, Sect. 7 presents additional discussions and
conclusions. Variables and constants that emerge in this
paper are summarized in Table I.

2. Bayes’ Theorem for Inter-event Times at Different
Magnitude Thresholds

We consider Bayes’ theorem between the inter-event times
at different magnitude thresholds (m and M) in a marked
point process, and we derive the general relationship between
the conditional probability density function pmMð�mj�MÞ and
the inverse probability density function pMmð�Mj�mÞ. Here
pMmð�Mj�mÞ represents the probability density function of the
upper interval length under the condition that it includes a
lower interval of length �m.

Let NmMð�M; �mÞ be the total number of the pairs of the
upper interval of length within ½�M; �M þ d�MÞ and the lower
interval of length within ½�m; �m þ d�mÞ (Fig. 2). Hereafter,
we express this NmMð�M; �mÞ as the number of the pairs of the
intervals such that the length of the upper interval is �M and
the length of the lower interval is �m, for simplicity, and other
numbers of the intervals are expressed in the same way.
NmMð�M; �mÞ can be represented in two ways:

1) Derive NmMð�M; �mÞ by counting the cumulative total
number of the upper intervals of length �M that include the
lower interval of length �m [Fig. 3(a)]. Among the Nm lower
intervals in the time series, there are Nmpmð�mÞ d�m intervals
of length �m. There exists only one upper interval that
includes each of such lower intervals. The probability that

the length of that upper interval is �M is given by
pMmð�Mj�mÞ d�M. Therefore

NmMð�M; �mÞ ¼ Nmpmð�mÞpMmð�Mj�mÞ d�m d�M: ð3Þ

2) Derive NmMð�M; �mÞ by counting the total number of the
lower intervals of length �m included in the upper interval
of length �M [Fig. 3(b)]. The number of the upper intervals
of length �M in the time series is NMpMð�MÞ d�M. Therefore,
the number of the lower intervals included in these upper
intervals is

NMpMð�MÞ
�M

hh�mii�M
d�M:

Among them, the proportion of the lower intervals whose
length is �m is pmMð�mj�MÞ d�m. Therefore

NmMð�M; �mÞ ¼ NMpMð�MÞ
�M

hh�mii�M
pmMð�mj�MÞ d�m d�M:

ð4Þ
From Eqs. (3) and (4)

Nmpmð�mÞpMmð�Mj�mÞ ¼ NMpMð�MÞ
�M

hh�mii�M
pmMð�mj�MÞ:

ð5Þ
By using the average intervals at each magnitude threshold

h�mi :¼
Z 1

0

�mpmð�mÞ d�m;

h�Mi :¼
Z 1

0

�MpMð�MÞ d�M;

and NM=Nm ¼ h�mi=h�Mi, Eq. (5) is rewritten as

pMmð�Mj�mÞ ¼
h�mi
h�Mi

�M
hh�mii�M

� �
pmMð�mj�MÞpMð�MÞ

pmð�mÞ
: ð6Þ

Equation (6) can be considered as Bayes’ theorem for a
marked point process. The parenthesized part is from the
difference in the number of intervals for each magnitude
threshold (h�mi=h�Mi) and the inclusion relationship between
the upper and lower intervals (�M=hh�mii�M ), i.e., a lower
interval is always included in only one upper interval,
whereas an upper interval includes �M=hh�mii�M lower
intervals on average. This part disappears by using
generalized probability density functions

zmð�mÞ :¼
�m
h�mi

pmð�mÞ;

zMð�MÞ :¼
�M
h�Mi

pMð�MÞ;

zmMð�mj�MÞ :¼
�m

hh�mii�M
pmMð�mj�MÞ:

ð7Þ

These functions satisfy the normalization condition of the
probability density function. Equations (2) and (6) are
simplified as

zmð�mÞ ¼
Z 1

0

zmMð�mj�MÞzMð�MÞ d�M; ð8Þ

pMmð�Mj�mÞ ¼
zmMð�mj�MÞzMð�MÞ

zmð�mÞ
: ð9Þ

These equations indicate that pMmð�Mj�mÞ satisfies the
normalization condition.
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Table I. Variables and constants used in this paper.

Symbols Meaning

m;M Lower (m) and upper (M) magnitude thresholds for an marked point process.
�m :¼ M �m.
�m; �M Inter-event time interval for the point process at magnitude threshold m;M.
pmð�mÞ; pMð�MÞ Probability density functions of �m; �M (inter-event time distributions).
tj Time of j-th event in ETAS time series or of j-th Bayesian update.
Mj Magnitude of j-th event in ETAS time series.
�ðtÞ Event occurrence rate at time t.
�0 Constant occurrence rate of background seismicity.
K; �; c; � Parameters in the ETAS model to determine history-dependence.
M0 The minimum magnitude in ETAS time series.
PðMÞ Probability density of magnitude being M.
b Parameter named the b-value that characterizes the Gutenberg–Richter law.
pmMð�mj�MÞ Conditional probability density function of a lower interval length given the upper interval length �M.
Nm;NM Number of intervals at magnitude threshold m;M.
hh�mii�M Average of the conditional probability density function [pmMð�mj�MÞ].
pMmð�Mj�mÞ Inverse probability density function of an upper interval length given the length �m of a lower interval in it.
NmMð�mj�MÞ Number of upper and lower interval pairs of lengths �M and �m.
h�mi; h�Mi Average of pmð�mÞ; pMð�MÞ.
zmð�mÞ; zMð�MÞ Generalized inter-event time distributions at magnitude threshold m;M.
zmMð�mj�MÞ Generalized conditional probability density function.
�mMð�mji; �MÞ Conditional probability density function of a lower interval length given the upper interval with length �M including i lower

intervals.
�mMðij�MÞ Probability mass function of the number of lower intervals in the upper interval of length �M.
A�m :¼ h�Mi=h�mi � 1 (¼ 10b�m � 1).
�ð�Þ Dirac’s delta function.
�ð�Þ Unit step function.
f� ð1Þm ; . . . ; � ðnÞm g n consecutive lower intervals of lengths f� ð1Þm ; . . . ; � ðnÞm g.
NmMð�M; � ð1Þm ; . . . ; � ðnÞm Þ Number of combinations of an upper interval of length �M and f� ð1Þm ; . . . ; � ðnÞm g.
pMmð�Mj� ð1Þm ; . . . ; � ðnÞm Þ Inverse probability density function of an upper interval length given f� ð1Þm ; . . . ; � ðnÞm g in it.
T Sum of the lengths of consecutive lower intervals.
N 0
mMð� ð1Þm ; . . . ; � ðnÞm j�MÞ Number of f� ð1Þm ; . . . ; � ðnÞm g in the new time series in Fig. 5(b).

PLð�mj�MÞ [PRð�mj�MÞ] Probability density function of the left (right) most lower interval length in an upper interval of length �M.
Pð� ð1Þm ; . . . ; � ðlÞm j�MÞ Probability density function of the left (right) most lower intervals lengths in an upper interval of length �M.
Pið� ðiÞm j�MÞ Probability density function of the i-th interval length in consecutive lower intervals in an upper interval of length �M.
pMmð�Mj� ð1Þm ; . . . ; � ðnÞm Þ Inverse probability density function of an upper interval length given f� ð1Þm ; . . . ; � ðnÞm g.
papproxMm ð�Mj� ð1Þm ; . . . ; � ðnÞm Þ Approximation function of pMmð�Mj� ð1Þm ; . . . ; � ðnÞm Þ.
pkernelMm ð�Mj� ð1Þm ; . . . ; � ðnÞm Þ Kernel part of the approximation function papproxMm ð�Mj� ð1Þm ; . . . ; � ðnÞm Þ.
pcorrectMm ð�Mj� ð1Þm ; . . . ; � ðnÞm Þ Correction term in the approximation function papproxMm ð�Mj� ð1Þm ; . . . ; � ðnÞm Þ.
�m; j; �M;k Discretized intervals defined by Eq. (42).
jmin; jmax ð jðkÞmin; j

ðkÞ
maxÞ Minimum and maximum of j in Eq. (42) (with explicit dependence on k).

kmin; kmax Minimum and maximum of k in Eq. (42).
le Parameter for the calculation regarding extrapolation of the range of the bivariate distributions.
lc Parameter for testing the effect of the edge in the P1.
��m;��M Increments in discretized intervals.
pm; pM Numerically calculated inter-event time distributions defined by Eq. (43).
pmM;P1 Numerically calculated conditional probability density function and P1ð�mj�MÞ defined by Eq. (43).
N Number of time series for sample data.
psup; pinf Upper and lower bounds imposed on numerical calculations.
Dð fkgÞ Distance between two square-integrable functions f and g defined by Eq. (46).
D0ð�k�Þ Distance calculated by Eq. (47) with Eqs. (40) and (41).
D00ð�k�Þ Distance calculated by Eq. (47) with Eqs. (37) and (38).
T Elapsed time from the event with magnitude above M.
�̂max
M Maximum peak time in Eq. (25) which is discretized in Eq. (42).
�max,approx
M Maximum peak time in Eq. (37).
kmax; kmax,approx The k corresponds to �̂max

M and �max,approx
M by Eq. (42).

�max
M (�max,n

M ) Maximum peak time of the kernel part in Eq. (38) (at the n-th update).
kmax (kmax,n) The k corresponds to �max

M (�max,n
M ) by Eq. (42) (at the n-th update).

�max,L
M , �max,R

M Maximum peak time in Eq. (37) where Pi are all replaced by PL or PR.
kmax,L; kmax,R The k corresponds to �max,L

M and �max,R
M by Eq. (42).

��M The time interval from the previous to the next events with magnitudes > M.
�n Relative error between �max,n

M and ��M defined by Eq. (49).
�th Threshold of relative error �n to judge the accuracy of the estimation.
nfin Total number of updates until the next event greater than M.
n� Consecutive number of updates that satisfy j�nj � �th and include nfin-th update.
Rn, Occurrence rate of events defined by Eq. (52).
� log10 Rn;�k

max
n Variations of log10 Rn and kmax,n defined by Eqs. (53) and (54).

Pfin Probability of j�nfin j � �th.
P�30 Probability of n� � 30 among n� > 0.
��th Time duration corresponds to the n� consecutive updates.
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3. Bayes’ Theorem for Uncorrelated Time Series

In this section, we derive pMmð�Mj�mÞ for an uncorrelated
time series generated by the ETAS model with �ðtÞ � �0. In
this case, the magnitudes and inter-event times obey the
following probability density functions independently.

PðmÞ / 10�bm; ð10Þ

pmð�mÞ ¼
1

h�mi
e�

�m
h�mi : ð11Þ

First, we derive pmMð�mj�MÞ, which can be expressed
generally as

pmMð�mj�MÞ ¼

X1
i¼1

i�mMð�mji; �MÞ�mMðij�MÞ

X1
i¼1

i�mMðij�MÞ
; ð12Þ

where i (2 N) represents the number of lower intervals
included in the upper interval of length �M; �mMðij�MÞ
represents the probability mass function of such i under the
condition that the length of the upper interval is �M; and

�mMð�mji; �MÞ represents the probability density function of
a lower interval length given that the length of the upper
interval is �M and the number of the lower intervals in it is i.
We can calculate the conditional probability density function
and other related amounts when we know these functions.

In the case of the uncorrelated time series, these functions
can be obtained as follows. For the selected stationary
Poisson process, the average number of events included in
the upper interval of length �M is ð�M=h�mi � �M=h�MiÞ,
because no event greater than M occurs in the interval
considered, and therefore, �M=h�Mi-events larger than M
occurring in the interval of length �M on average must be
excluded from the average number �M=h�mi of events
occurring in the interval of length �M. Then, the average
occurrence rate in the upper interval of length �M is
ð1=h�mi � 1=h�MiÞ. The number of events with m <
magnitude � M in �M is one less than that of the lower
intervals, and therefore, the probability of including i lower
intervals is equal to the probability of including ði � 1Þ events
with an average occurrence rate (1=h�mi � 1=h�Mi). There-
fore

�mMðij�MÞ ¼

�
A�m

�M

h�Mi

�i�1

ði � 1Þ!
e�A�m

�M
h�Mi ; ð13Þ

where

A�m :¼ h�Mi
h�mi

� 1

¼ 10b�m � 1:

The second transformation in the above equation does not
strictly hold for a time series with a finite number of events
because the number of the events is different from that of the
intervals by 1. However, we consider that the statistical
properties are for infinite samples, and in a time series
containing an infinite number of events, the two are
equivalent and the equality holds.

The other function �mMð�mji; �MÞ is obtained as follows.
For i ¼ 1,

�mMð�mj1; �MÞ ¼ �ð�M � �mÞ; ð14Þ

where �ð�Þ represents the Dirac’s delta function. For
i � 2,40,41)

�mMð�mji; �MÞ ¼
ði � 1Þ
�M

1 � �m
�M

� �i�2
�ð�M � �mÞ; ð15Þ

where �ð�Þ represents the unit step function that takes 1 for
positive argument and 0 for negative or 0 argument.

From Eqs. (13)–(15), pmMð�mj�MÞ is derived as (Appen-
dix A)

pmMð�mj�MÞ ¼
e�A�m

�M
h�Mi�ð�M � �mÞ þ

A�m

h�Mi
e�A�m

�m
h�Mi

�
A�m

�M � �m

h�Mi
þ 2

�
�ð�M � �mÞ�

A�m
�M

h�Mi
þ 1

� : ð16Þ

This conditional probability composed of Eqs. (13)–(15) certainly has exponential distributions as the solution of Eq. (2)
(Appendix A).
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Fig. 2. (Color online) Schematic of the approach to count the number of
pairs of upper and lower intervals whose lengths are �M and �m, respectively.
Four pairs are shown in the figure, and NmMð7; 1Þ ¼ 2, NmMð7; 2Þ ¼ 1, and
NmMð7; 3Þ ¼ 1.
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Fig. 3. (Color online) Schematic of the two approaches for calculating
NmMð�M; �mÞ. (a) The first approach involves counting the cumulative total
number of the upper intervals of length �M that include the lower interval of
length �m. (b) The second approach involves counting the number of the
lower intervals of length �m included in the upper interval of length �M.
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Second, we derive pMmð�Mj�mÞ. From Eqs. (11) and (16), pMmð�Mj�mÞ is obtained as (Appendix A)

pMmð�Mj�mÞ ¼
e�

�M��m
h�mi �ð�M � �mÞ þ

A�m

h�Mi
e�

�M��m
h�Mi

�
A�m

�M � �m

h�Mi
þ 2

�
�ð�M � �mÞ

ðA�m þ 1Þ2
: ð17Þ

We emphasize that pMmð�Mj�mÞ has a peak at

�max
M ¼ �m þ h�Mi 1 � 2

A�m

� �
; ð18Þ

when the next condition is satisfied (Appendix A).

�m >
log10 3

b
: ð19Þ

4. Bayesian Updating for Uncorrelated Time Series

Bayes’ theorem shows a one-to-one relationship between
an upper and a lower interval. In this section, we extend it
to the relationship between an upper interval and multiple
consecutive lower intervals by considering Bayesian updat-
ing for the uncorrelated time series. We derive the inverse
probability density function pMmð�Mj�ð1Þm ; . . . ; � ðnÞm Þ, as well as
its approximation function, for the upper interval under the
condition that it includes the consecutive lower intervals of
lengths f�ð1Þm ; . . . ; �ðnÞm g.

4.1 Inverse probability density function
As in Sect. 2, we derive the inverse probability density

function by expressing the total number of combinations of
the upper interval of length �M and the consecutive lower
intervals of lengths f� ð1Þm ; . . . ; � ðnÞm g included in it denoted by
NmMð�M; �ð1Þm ; . . . ; �ðnÞm Þ in two ways.

First, we derive NmMð�M; �ð1Þm ; . . . ; �ðnÞm Þ by counting the
cumulative total number of the upper intervals of length
�M that include the consecutive lower intervals of lengths
f�ð1Þm ; . . . ; �ðnÞm g [Fig. 4(a)]. We begin with the case n ¼ 2.
The intervals in the uncorrelated time series emerge
independently, and therefore, the total number of the two
consecutive lower intervals of lengths �ð1Þm and � ð2Þm is

Nmpmð�ð1Þm Þpmð�ð2Þm Þ d�2m:

Among them, some pairs do not belong to the same upper
interval [the case of (3) in Fig. 4(a)]. In that case, the
magnitude of the event sandwiched between the two lower
intervals is larger than M. In the uncorrelated time series, the
proportion that the consecutive lower intervals belong to the
same upper interval equals to the probability that the
magnitude of the event sandwiched between the two lower
intervals is smaller than M. It is given by the GR law as

1 � PðMÞ
PðmÞ ¼ 1 � 10�b�m

¼ 1 � h�mi
h�Mi

:

Therefore

NmMð�M; �ð1Þm ; �ð2Þm Þ ¼ Nm 1 � h�mi
h�Mi

� �
pmð�ð1Þm Þpmð� ð2Þm Þ

� pMmð�Mj�ð1Þm ; � ð2Þm Þ d�2m d�M: ð20Þ
Equation (20) is generalized for n (� 2) consecutive lower
intervals.

NmMð�M; �ð1Þm ; . . . ; �ðnÞm Þ

¼ Nm 1 � h�mi
h�Mi

� �n�1 Yn
i¼1

pmð�ðiÞm Þ
 !

� pMmð�Mj�ð1Þm ; . . . ; �ðnÞm Þ d�nm d�M: ð21Þ

Second, we derive NmMð�M; � ð1Þm ; . . . ; �ðnÞm Þ by counting the
total number of the consecutive lower intervals of lengths
f�ð1Þm ; . . . ; �ðnÞm g included in the upper interval of length �M
[Fig. 4(b)]. To this end, we start with the case n ¼ 2 again
[Fig. 4(b)]. When the upper interval of length �M includes i
(� 2) lower intervals, the first interval of the two consecutive
lower intervals is selected from ði � 1Þ intervals except for
the rightmost one. The probability that this first interval has
length �ð1Þm is �mMð�ð1Þm ji; �MÞ d�m. The second lower interval is
fixed at adjacent to the first one. This second interval is one
of the ði � 1Þ intervals that divide the remaining length
�M � � ð1Þm , and therefore, the probability that the second
interval has length � ð2Þm is �mMð�ð2Þm ji � 1; �M � �ð1Þm Þ d�m.
Thus, considering all i (� 2)

NmMð�M; � ð1Þm ; �ð2Þm Þ

¼ NMpMð�MÞ d�M
X1
i¼2

ði � 1Þ�mMðij�MÞ�mMð�ð1Þm ji; �MÞ

� �mMð� ð2Þm ji � 1; �M � � ð1Þm Þ d�2m: ð22Þ
Equation (22) is generalized for the case n (� 2) lower
intervals as
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Fig. 4. (Color online) Schematic of the two approaches to calculate
NmMð�M; � ð1Þm ; � ð2Þm Þ. (a) The first approach involves counting the cumulative
total number of the upper intervals of length �M that include the consecutive
lower intervals of lengths f� ð1Þm ; � ð2Þm g. (b) The second approach involves
counting the number of the consecutive lower intervals of lengths f� ð1Þm ; � ð2Þm g
included in the upper interval of length �M.
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NmMð�M; � ð1Þm ; . . . ; �ðnÞm Þ ¼ NMpMð�MÞ d�M

�
X1
i¼n

ði � n þ 1Þ�mMðij�MÞ�mMð� ð1Þm ji; �MÞ
Yn
j¼2

�mM �ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

� ðkÞm

 !
d�nm: ð23Þ

From Eqs. (21) and (23), pMmð�Mj�ð1Þm ; . . . ; � ðnÞm Þ is derived as

pMmð�Mj�ð1Þm ; . . . ; �ðnÞm Þ ¼ h�mi
h�Mi

1�
1 � h�mi

h�Mi

�n�1
pMð�MÞYn

i¼1
pmð�ðiÞm Þ

�
X1
i¼n

ði � n þ 1Þ�mMðij�MÞ�mMð� ð1Þm ji; �MÞ
Yn
j¼2

�mM �ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

�ðkÞm

 !
: ð24Þ

Furthermore, the explicit form of the inverse probability density function is derived by substituting Eqs. (11) and (13)–(15)
into Eq. (24) as (Appendix B)

pMmð�Mj�ð1Þm ; . . . ; �ðnÞm Þ ¼ h�mi
h�Mi

� �2
(
e�

�M�
Pn

i¼1
� ðiÞm

h�mi � �M �
Xn
i¼1

�ðiÞm

 !

þ A�m

h�Mi
e�

�M�
Pn

i¼1
� ðiÞm

h�Mi
A�m

h�Mi
�M �

Xn
i¼1

�ðiÞm

 !
þ 2

" #
� �M �

Xn
i¼1

� ðiÞm

 !)
: ð25Þ

Equation (25) includes the case n ¼ 1 [Eq. (17)]. In
addition, Eq. (25) is identical to Eq. (17) when �m is replaced
with T :¼

Pn
i¼1 �

ðiÞ
m ; this implies that the occurrence pattern

of small events does not affect that of upper intervals. This
seems natural for the uncorrelated time series.

The same property as Eqs. (18) and (19) holds for
pMmð�Mj�ð1Þm ; . . . ; �ðnÞm Þ; it has a peak at

�max
M ¼ T þ h�Mi

h�Mi
h�mi

� 3

h�Mi
h�mi

� 1

ð> T Þ;

under the condition

�m >
log10 3

b
: ð26Þ

In the above-mentioned Bayesian updating, the position of
the consecutive lower intervals in an upper interval is not
restricted. However, the update can be started only from the
lower interval immediately after the event with the magnitude
above M. In such a method, the inverse probability density
function is different from Eq. (25) (Appendix C). At a
glance, this updating method seems suitable under the
situation wherein the information on the lower intervals
observed one after another is imported sequentially; however,
seismic catalogs are known to be incomplete immediately
after a large earthquake.42) In that case, the lower intervals
should be considered not from the leftmost one but from
somewhere else. Therefore, in the present paper, we limit
ourselves to examining the property of the inverse probability
density function of the unrestricted updating method that is
more appropriate for application to earthquake catalogs.

4.2 Approximation function of inverse probability density
function

Equation (24) indicates that new information on the lower
intervals cannot be added by the product of the conditional
probabilities as is usual in Bayesian updating. In this sub-
section, we derive its approximation function with a

convenient form applicable to the time series with correla-
tions between events.

To this end, we use the approximate derivation of
NmMð�M; �ð1Þm ; . . . ; �ðnÞm Þ described below instead of the second
approach for deriving Eq. (23). In the following, the upper
and the lower consecutive intervals are assumed to satisfy

�M �
Xn
i¼1

� ðiÞm : ð27Þ

First, consider the case n ¼ 2. There are NMpMð�MÞ d�M
upper intervals of length �M in the time series. These upper
intervals are as shown in Fig. 5(a), and we use them to
generate a new time series by connecting them in the order of
appearance as in Fig. 5(b). Let the number of the consecutive
lower intervals of lengths f�ð1Þm ; �ð2Þm g in this new time series
be denoted by N 0

mMð� ð1Þm ; �ð2Þm j�MÞ. The total number of the
lower intervals in this new time series is given as

τM

τM τM τM τM

M

m

M

m

τM τM τM

τ(1)m τ(1)mτ(2)m

τ(1)m τ(2)m τ(1)m τ(2)m τ(1)m τ(2)m

τ(1)m τ(2)mτ(2)m

Time

*

Fig. 5. (Color online) Schematic of another approach to count the total
number of consecutive lower intervals of lengths � ð1Þm and � ð2Þm included in the
upper interval of length �M. (a) First, pick up all upper intervals of length �M
from the time series. (b) Second, generate new time series by connecting
these upper intervals in the order of appearance. Third, N 0

mMð� ð1Þm ; � ð2Þm j�MÞ is
calculated by counting the total number of the consecutive lower intervals
of lengths f� ð1Þm ; � ð2Þm g in this new time series. In this counting process, an
approximate calculation using the product of the conditional probability is
conducted. Finally, NmMð�M; � ð1Þm ; � ð2Þm Þ is obtained by excluding such pairs
where the two consecutive lower intervals are not included in the same upper
interval (the cases indicated with �) from N 0

mMð� ð1Þm ; � ð2Þm j�MÞ.
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NMpMð�MÞ
�M

hh�mii�M
d�M:

Therefore, based on the assumption that �ð1Þm and � ð2Þm emerge
independently, N 0

mMð�ð1Þm ; � ð2Þm j�MÞ is approximately calculated
as

N 0
mMð� ð1Þm ; � ð2Þm j�MÞ

	 NMpMð�MÞ
�M

hh�mii�M
pmMð� ð1Þm j�MÞpmMð�ð2Þm j�MÞ d�2m d�M:

ð28Þ
N 0
mMð�ð1Þm ; � ð2Þm j�MÞ is not equivalent to NmMð�M; �ð1Þm ; � ð2Þm Þ

because N 0
mMð� ð1Þm ; � ð2Þm j�MÞ includes cases where the two

consecutive lower intervals do not belong to the same upper
interval [the case indicated by � in Fig. 5(b)]. Therefore, it is
necessary to count such cases in the time series, and subtract
them from N 0

mMð� ð1Þm ; �ð2Þm j�MÞ.
These cases to exclude occur when an upper interval of

length �M whose rightmost lower interval has length � ð1Þm is
adjacent to the left of another upper interval whose leftmost
lower interval has length �ð2Þm . The probability density that the
length of the rightmost or leftmost lower interval of the upper
interval of length �M is �m is, because the position of the
rightmost or leftmost interval is confirmed among the i-lower
intervals, calculated as

PRð�mj�MÞ ¼ PLð�mj�MÞ

¼
X1
i¼1

�mMðij�MÞ�mMð�mji; �MÞ: ð29Þ

Here, the probability density for the rightmost lower interval
is denoted by PRð�mj�MÞ, and the leftmost by PLð�mj�MÞ.

Equation (29) can be explicitly written using Eqs. (13)–(15)
as (Appendix D)

PRð�mj�MÞ ¼ PLð�mj�MÞ

¼ e�A�m
�M
h�Mi�ð�M � �mÞ þ

A�m

h�Mi
e�A�m

�m
h�Mi�ð�M � �mÞ:

ð30Þ
By using PLð�mj�MÞ and PRð�mj�MÞ, the number of cases to
exclude can be expressed for a sufficiently large NM [because
NMpMð�MÞ d�M in Eq. (31) is precisely NMpMð�MÞ d�M � 1]
as

NMpMð�MÞPRð� ð1Þm j�MÞPLð�ð2Þm j�MÞ d�2m d�M: ð31Þ

Therefore, NmMð�M; � ð1Þm ; �ð2Þm Þ is approximately derived as

NmMð�M; � ð1Þm ; � ð2Þm Þ 	 NMpMð�MÞ
�M

hh�mii�M
pmMð� ð1Þm j�MÞpmMð� ð2Þm j�MÞ � PRð� ð1Þm j�MÞPLð� ð2Þm j�MÞ

� �
d�2m d�M: ð32Þ

Next, we consider the case n (� 3). Equation (28) is generalized as

N 0
mMð� ð1Þm ; . . . ; � ðnÞm j�MÞ 	 NMpMð�MÞ

�M
hh�mii�M

Yn
i¼1

pmMð�ðiÞm j�MÞ
 !

d�nm d�M: ð33Þ

From this N 0
mMð� ð1Þm ; . . . ; � ðnÞm j�MÞ, the cases wherein the consecutive lower intervals of lengths f�ð1Þm ; . . . ; � ðnÞm g are not included

in the same upper interval need to be excluded. Considering the condition of Eq. (27), a sequence of consecutive lower
intervals is divided by only one boundary event with a magnitude above M (Fig. 6). Let Pð�ð1Þm ; . . . ; �ðlÞm j�MÞ be the probability
that the rightmost or leftmost lower intervals of the upper interval of length �M is f�ð1Þm ; . . . ; � ðlÞm g (l � 2). Then, as the position
of the rightmost or leftmost lower intervals is confirmed among the i (� l) lower intervals, Pð�ð1Þm ; . . . ; �ðlÞm j�MÞ is

Pð� ð1Þm ; . . . ; � ðlÞm j�MÞ ¼
X1
i¼l

�mMðij�MÞ�mMð� ð1Þm ji; �MÞ
Yl
j¼2

�mM �ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

�ðkÞm

 !
: ð34Þ

By substituting Eqs. (13)–(15) into Eq. (34) (Appendix E)

Pð�ð1Þm ; . . . ; �ðlÞm j�MÞ ¼
Yl
i¼1

Pið�ðiÞm j�MÞ; where Pið� ðiÞm j�MÞ ¼
A�m

h�Mi

� �
e�A�m

� ðiÞm
h�Mi : ð35Þ

There are ðn � 1Þ possible choices for the boundary position of the consecutive lower intervals [Fig. 6(a)], each with an equal
probability

Qn
i¼1 Pi. The number of consecutive upper intervals in the new time series is almost NMpMð�MÞ d�M, and therefore,

the number of cases to be excluded is

NMpMð�MÞðn � 1Þ
Yn
i¼1

Pið�ðiÞm j�MÞ
 !

d�nm d�M:

Then
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Fig. 6. (Color online) Schematic of the patterns of the consecutive lower
intervals of lengths f�ð1Þm ; . . . ; �ðnÞm g excluded from N 0

mMð�ð1Þm ; . . . ; �ðnÞm j�MÞ. (a)
There are ðn � 1Þ ways to divide the sequence of lower intervals by the event
with a magnitude greater than M at the boundary of the upper intervals of
length �M. (b) The sequence can not be divided by more than one boundary
according to condition (27).
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NmMð�M; �ð1Þm ; . . . ; �ðnÞm Þ 	 NMpMð�MÞ
�M

hh�mii�M

Yn
i¼1

pmMð� ðiÞm j�MÞ � ðn � 1Þ
Yn
i¼1

Pið�ðiÞm j�MÞ
" #

d�nm d�M: ð36Þ

Therefore, from Eqs. (21) and (36), the approximation function [papproxMm ð�Mj�ð1Þm ; . . . ; � ðnÞm Þ] of the inverse probability density
function is derived as

papproxMm ð�Mj�ð1Þm ; . . . ; � ðnÞm Þ ¼ h�mi
h�Mi

1�
1 � h�mi

h�Mi

�n�1
�M

hh�mii�M

Yn
i¼1

pmMð�ðiÞm j�MÞ
pmð�ðiÞm Þ

 !
pMð�MÞ

� h�mi
h�Mi

ðn � 1Þ�
1 � h�mi

h�Mi

�n�1

Yn
i¼1

Pið�ðiÞm j�MÞ
pmð�ðiÞm Þ

 !
pMð�MÞ: ð37Þ

Equation (37) is composed of two parts: the first term on the right hand side (r.h.s.) involves the product of the conditional
probability density functions, and we refer to this part as the kernel part of the approximation function [pkernelMm ð�Mj� ð1Þm ; . . . ;
�ðnÞm Þ] hereafter.

pkernelMm ð�Mj�ð1Þm ; . . . ; �ðnÞm Þ ¼ h�mi
h�Mi

1�
1 � h�mi

h�Mi

�n�1
�M

hh�mii�M

Yn
i¼1

pmMð�ðiÞm j�MÞ
pmð�ðiÞm Þ

 !
pMð�MÞ: ð38Þ

The second term of the r.h.s. is referred to as the correction term, and we denote the part other than ðn � 1Þ by
pcorrectMm ð�Mj� ð1Þm ; . . . ; � ðnÞm Þ as

correction term ¼ ðn � 1ÞpcorrectMm ð�Mj�ð1Þm ; . . . ; �ðnÞm Þ; ð39Þ

where pcorrectMm ð�Mj� ð1Þm ; . . . ; � ðnÞm Þ ¼ h�mi
h�Mi

1�
1 � h�mi

h�Mi

�n�1

Yn
i¼1

Pið� ðiÞm j�MÞ
pmð�ðiÞm Þ

 !
pMð�MÞ:

Equation (37) can be explicitly written as (Appendix F)

papproxMm ð�Mj�ð1Þm ; . . . ; � ðnÞm Þ ¼ h�mi
h�Mi2

1 � h�mi
h�Mi

� �
A�m

�M
h�Mi

þ 1

� �
e�

�M�
Pn

i¼1
� ðiÞm

h�Mi

�
Yn
i¼1

1 �
�ðiÞm � h�Mi

A�m

�M þ h�Mi
A�m

0
BBB@

1
CCCA

2
6664

3
7775 � h�mi

h�Mi2
1 � h�mi

h�Mi

� �
ðn � 1Þe�

�M�
Pn

i¼1
� ðiÞm

h�Mi : ð40Þ

The kernel part is explicitly expressed as

pkernelMm ð�Mj�ð1Þm ; . . . ; �ðnÞm Þ ¼ h�mi
h�Mi2

1 � h�mi
h�Mi

� �
A�m

�M
h�Mi

þ 1

� �
e�

�M�
Pn

i¼1
� ðiÞm

h�Mi
Yn
i¼1

1 �
�ðiÞm � h�Mi

A�m

�M þ h�Mi
A�m

0
BBB@

1
CCCA

2
6664

3
7775: ð41Þ

Note that functions (37)–(41) do not satisfy the normal-
ization condition. Furthermore, in some cases,
papproxMm ð�Mj� ð1Þm ; . . . ; � ðnÞm Þ in Eqs. (37) and (40) may take
negative values when the correction term is larger than the
kernel part. The relationship between the inverse probability
density function and its approximation function is discussed
in Appendix G.

5. Examination of Bayesian Updating Method in
Uncorrelated Time Series

In this section, we compute the inverse probability density
function given by Eq. (25) and the (part of ) approximation
function [Eqs. (37)–(41)] for the numerically generated
uncorrelated time series, and we compare their properties.
We examine the numerical method of Bayesian updating by
changing some conditions to see its utility.

5.1 Time series generation and Bayesian updating methods
The uncorrelated time series can be numerically generated

by setting �ðtÞ � �0 in Eq. (1). In fact, it was numerically
generated as the renewal process in which magnitudes and
time intervals were generated randomly obeying Eqs. (10) and
(11), respectively. We set the parameter values to be b ¼ 1 and
�0 ¼ 0:0007. M0 was set to 3. It should be noted that the
magnitudes were set to be generated in the range greater than
M0 ¼ 3; however, as the outputs were only six decimal places,
a small number of events with magnitude � 3 existed. Such
cases were excluded from the analysis by setting the following
lower magnitude threshold at m ¼ M0. The magnitude
thresholds were set to ðM;mÞ ¼ ð5; 3Þ. The b-value condition
of Eq. (26) is satisfied for these settings. The occurrence time
of each event was recorded to 20 decimal places. For such time
series, Bayesian updating was applied as explained below.

J. Phys. Soc. Jpn. 93, 024001 (2024) H. Tanaka and K. Umeno

024001-8 ©2024 The Physical Society of Japan©2024 The Author(s)

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by 61.196.80.111 on 03/04/24



Bayesian updating was executed for each lower interval in
the order of appearance starting from the one immediately
after the event with a magnitude aboveM by substituting their
lengths f�ð1Þm ; � ð2Þm ; . . . ; � ðnÞm g into Eqs. (25), (40), and (41). The
summation of the lower intervals at the n-th update

Pn
i¼1 �

ðiÞ
m

is equivalent to the elapsed time T from the previous event
with a magnitude above M. Further, the updating was
performed until the event immediately before the next large
event with a magnitude above M (i.e., the rightmost lower
interval in an upper interval was not used). Therefore, we
considered only cases where at least one event was (or two
lower intervals were) included in an upper interval.

In addition, we used the following numerical method based
on Eqs. (37) and (38). First, we generated N time series each
contains 105 events as sample data. From these sample data,
numerically obtained the statistics required for the calculating
Eqs. (37) and (38), i.e., pmð�mÞ, pMð�MÞ, pmMð�mj�MÞ, and
Pið�mj�MÞ, and the average number of lower intervals inside
the upper interval of length �M, �M=hh�mii�M . Although the
last one is a quantity related to the conditional probability,
we calculated it separately. Moreover, we calculated only
P1ð�mj�MÞ and used it instead of Pið�mj�MÞ for i � 2.

These statistics were obtained as a vector or a matrix on
discretized intervals as

�m;j :¼ 10ð jþ0:5Þ��m ;

�M;k :¼ 10ðkþ0:5Þ��M ; ð42Þ
where j; k 2 Z, such that

pm ¼ ½pm;j
j¼jmin;...; jmax
; pM ¼ ½pM;k
k¼kmin;...;kmax

;

pmM ¼ ½½pmM;jk
j¼j ðkÞmin ;...; j
ðkÞ
max

k¼kmin ;...;kmax

;

P1 ¼ ½½P1; jk
j¼j ðkÞmin;...; j
ðkÞ
max

k¼kmin ;...;kmax

:

ð43Þ

In Eq. (43), jmin, jmax, kmin, and kmax represent the smallest
and largest bin numbers of each distribution. For the statistics
obtained as a matrix, the range of j depends on k, and this is
indicated as jðkÞmin and jðkÞmax. The ranges of j and k are different
for distribution; however, the same symbol is used in
Eq. (43). In this paper, we fix ��m ¼ 0:1, and in this section,
we examine the cases N ¼ 103; 105 and ��M ¼ 0:1; 0:025.
In the case N ¼ 105, they were fully used only for

pmMð�mj�MÞ and P1ð�mj�MÞ, and only 103 of them were used
for pmð�mÞ, pMð�MÞ, and �M=hh�mii�M .

To use these amounts in numerical Bayesian updating, we
performed the following interpolations between the data
points and extrapolations outside the data range. We describe
these procedures using the example of the case N ¼ 103 and
��M ¼ 0:1.

First, for the inter-event time distributions ( pm and pM), we
interpolated between the data points of each distribution
(between �m;j and �M;k, respectively) using cubic spline
functions. Outside the data range (i.e., �m < �m;jmin ; �m >
�m;jmax and �M < �M;kmin ; �M > �M;kmax ), we extrapolated the
fitting curve for the edge 10 points (Fig. S143)). The
distributions were defined for all continuous �m values and
for all �M;k using this process.

Second, for the bivariate distributions ( pmM and P1), we
performed the same interpolations and extrapolations for �m;j

(Figs. S2 and S343)). Meanwhile, for �M;k, the domain was
extended using the average of the functions at f�M;kmin ; . . . ;
�M;kminþle�1g as the substitute for �M;k with k < kmin, whereas
using the functions at f�M;kmax�leþ1; . . . ; �M;kmaxg as the
substitute for �M;k with k > kmax. We set le ¼ 5 for ��M ¼
0:1 and le ¼ 20 for ��M ¼ 0:025.

Finally, for �M;k=hh�mii�M;k
, the interpolation and extrap-

olation procedures were conducted in the same way as
pM, although the extrapolation functions were different
(Fig. S443)).

Thus, the discrete variable �m;j became continuous as �m,
and the distribution functions were defined for all �m larger
than 0. This made it possible to return a value for any input of
the length of a lower interval when performing Bayesian
updating. Further, the distribution functions were defined for
any k in Eq. (42). We set the range of k to be �120 � k � 70

for ��M ¼ 0:1, and �480 � k � 280 for ��M ¼ 0:025.
Although this yielded the maximum range of Bayesian
updating, the updating at the n-th step was performed within
the range maxf�ð1Þm ; . . . ; �ðnÞm g < �M. The properties of the
inverse probability density function and the (part of )
approximation function were examined within this range.

The kernel parts of the approximation functions were
computed by calculating Eq. (38) in a step-by-step manner as

ln pkernelMm ð�M;kj�ð1Þm Þ ¼ ln
h�mi
h�Mi

�M;k

hh�mii�M;k

 !
þ ln pmMð�ð1Þm j�M;kÞ � ln pmð�ð1Þm Þ þ ln pM;k;

ln pkernelMm ð�M;kj� ð1Þm ; �ð2Þm Þ ¼ �ln 1 � h�mi
h�Mi

� �
þ ln pmMð�ð2Þm j�M;kÞ � ln pmð�ð2Þm Þ þ ln pkernelMm ð�M;kj� ð1Þm Þ;

ln pkernelMm ð�M;kj� ð1Þm ; � ð2Þm ; �ð3Þm Þ ¼ �ln 1 � h�mi
h�Mi

� �
þ ln pmMð�ð3Þm j�M;kÞ � ln pmð�ð3Þm Þ þ ln pkernelMm ð�M;kj� ð1Þm ; �ð2Þm Þ;

..

.
ð44Þ

The correction terms of the approximation functions were calculated by first update as

ln pcorrectMm ð�M;kj�ð1Þm Þ ¼ ln
h�mi
h�Mi

� �
þ lnP1ð�ð1Þm j�M;kÞ � ln pmð� ð1Þm Þ þ ln pM;k;

ln pcorrectMm ð�M;kj�ð1Þm ; �ð2Þm Þ ¼ �ln 1 � h�mi
h�Mi

� �
þ lnP1ð� ð2Þm j�M;kÞ � ln pmð� ð2Þm Þ þ ln pcorrectMm ð�M;kj�ð1Þm Þ;

ln pcorrectMm ð�M;kj� ð1Þm ; �ð2Þm ; �ð3Þm Þ ¼ �ln 1 � h�mi
h�Mi

� �
þ lnP1ð� ð3Þm j�M;kÞ � ln pmð� ð3Þm Þ þ ln pcorrectMm ð�M;kj�ð1Þm ; � ð2Þm Þ;

..

.
ð45Þ
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and then, we added lnðn � 1Þ for each ln pcorrectMm ð�Mj� ð1Þm ; . . . ;
�ðnÞm Þ.

The approximation functions were obtained by adding
together the kernel part and the correction term calculated
by these separate updates. The approximation functions
were calculated only for such k’s that psup > ln pkernelMm ;
ln pcorrectMm > pinf . Here, psup (¼ 600) and pinf (¼ �600)
yielded the upper and lower limits of pkernelMm and pcorrectMm to
ensure that these were within the range of the computer
capacity. In addition, such k’s for which the correction
term was so large that Eq. (37) became negative were
excluded.

Figure S543) shows an example of Bayesian updating
for the uncorrelated time series. The inverse probability
density function given by Eq. (25) has a characteristic
peak that is not observed in pMð�MÞ. The correction
term makes the kernel part obtained from Eq. (41) closer to
the inverse probability density function. Moreover, the
numerical calculations based on Eqs. (37) and (38) with
N ¼ 103 and ��M ¼ 0:1 appear to be consistent with these
results.

In the next subsection, we compare these functions
statistically to examine numerical Bayesian updating method.

5.2 Examination of numerical Bayesian updating method
In this subsection, we compare the probability density

functions and the (part of ) approximation functions statisti-
cally. The Bayesian updating method described in the
previous subsection is applied to 100 test data time series,
each containing 105 events prepared separately from the
sample data.

5.2.1 Comparison by distance
We define the distance for two square-integrable functions

fð�Þ and gð�Þ as

Dð fkgÞ :¼
Z 1

T

j fð�MÞ � gð�MÞj2 d�M: ð46Þ

The range of the integral is set to ðT;1Þ to exclude the
Dirac’s delta function at �M ¼ T in the inverse probability
density function. For f ¼ pMmð�Mj�ð1Þm ; . . . ; �ðnÞm Þ and g ¼
pMð�MÞ, the distance can be analytically derived (Appen-
dix H), whereas when fð�Þ or gð�Þ is the (part of )
approximation function, the distance is calculated numeri-
cally as

Dð fkgÞ ’
X

k; �M;k>T
psup> ln f; ln g>pinf

j fð�M;kÞ � gð�M;kÞj2ðln 10Þ�M;k��M:

ð47Þ
Dð fkgÞ was calculated for each update throughout the 100

test data time series. If no k’s satisfied psup > ln f; ln g > pinf ,
it was not included in the following calculation. The average
distance hDð fkgÞi was calculated by averaging these
distances for each elapsed time T 2 ½100:1l; 100:1ðlþ1ÞÞ with
l 2 Z from the previous event larger than M.

Figure 7(a) shows the average distance for the cases
f ¼ pMmð�Mj�ð1Þm ; . . . ; � ðnÞm Þ, papproxMm ð�Mj� ð1Þm ; . . . ; � ðnÞm Þ,
pkernelMm ð�Mj� ð1Þm ; . . . ; � ðnÞm Þ, and g ¼ pMð�MÞ. In addition to the
analytical calculation in Eq. (46) for DðpMmkpMÞ, the results
of the numerical integration of Eq. (47) are presented; the
calculations using Eqs. (40) and (41) are indicated by D0ð�k�Þ.
The results of the calculation using Eqs. (37) and (38) with
the numerical method in Sect. 5.1 with N ¼ 103 and
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Fig. 7. (Color online) Average distances for each elapsed time (T ) from the previous large event with a magnitude aboveM. (a) Distances between the inter-
event time distribution and other function. DðpMmkpMÞ [Eq. (H·2) in Appendix H] is shown by the red curve, and the symbols are numerical results for
Eq. (47). (b) Distances between the inverse probability density function and other function numerically calculated by Eq. (47).
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��M ¼ 0:1 are presented by D00ð�k�Þ. The results for N ¼ 105

with ��M ¼ 0:1 and 0.025 are shown in Fig. S6.43)

First, one can see that hD0ðpMmkpMÞi is almost
consistent with hD0ðpapproxMm kpMÞi, which indicates that
papproxMm ð�Mj� ð1Þm ; . . . ; � ðnÞm Þ derived in the previous section
certainly approximates the inverse probability density
function, regardless of the elapsed time (or regardless of
the number of updates, because the occurrence rate is
constant). However, these separate from DðpMmkpMÞ at
around T � 105 and at a large T. As such separations
disappear when ��M ¼ 0:025 [Figs. S6(c) and S6(d)43)], this
is attributed to the coarseness of the numerical integration.

Second, hD0ðpkernelMm kpMÞi is nearly consistent with
hD00ðpkernelMm kpMÞi. This suggests that the numerical updating
method in Eq. (44) certainly calculates the kernel part.
However, hD00ðpapproxMm kpMÞi gradually separates from
hD0ðpapproxMm kpMÞi at a large T. This separation is more clearly
illustrated in Fig. 7(b), which shows the average distances
between f ¼ papproxMm ; pkernelMm and g ¼ pMm calculated by
Eq. (47). This separation can be attributed to the calculation
of the correction term in Eq. (45), in particular to the
fluctuation in the numerically obtained P1 (Appendix I).

5.2.2 Comparison by maximum peak time
In the previous subsection, the approximation function

calculated by the numerical Bayesian updating method was
suggested to be separate from the inverse probability density
function. However, we show that such a separation does not

have a considerable effect around the maximum peak. To this
end, we further compare the maximum points (hereafter,
maximum peak time) of the inverse probability density
function in Eq. (25) and its approximation function in
Eq. (37) with the numerical updating method, each denoted
by �̂max

M and �max,approx
M . Both functions are discretized as

Eq. (42); the corresponding k in Eq. (42) is denoted by k̂max

and kmax,approx, respectively.
k̂max and kmax,approx were numerically searched for each

update. These were determined as such k that the function
took the maximum value within the range for which the
above-mentioned numerical results were obtained, while
excluding its edges. Thus, if k̂max or kmax,approx was located at
such edges, it was not considered the peak and was set to
k ¼ 80 when ��M ¼ 0:1 and k ¼ 320 when ��M ¼ 0:025.
Further, when the numerical results of the approximation
function were not obtained for any k (when the correction
term exceeded the kernel part for all k), kmax,approx was set to
be 80 or 320.

Figure 8 shows the joint probability mass function (p.m.f.)
of ðk̂max; kmax,approxÞ for N ¼ 103 and ��M ¼ 0:1. Those for
N ¼ 105 are presented in Fig. S7.43) Here, the population is
all the pairs of ðk̂max; kmax,approxÞ obtained for each update
throughout the test data. In the following, we further discuss
the area where the maximum peaks appeared. The maximum
peak search was conducted in the two ranges; (a) �M >
maxf� ð1Þm ; . . . ; � ðnÞm g, and (b) �M > T. In the former case, the
p.m.f. was bimodal; the higher peak existed around k̂max ¼
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Fig. 8. (Color online) Joint probability mass function for ðk̂max; kmax,approxÞ. Numerical search of the maximum peak is conducted for (a) �M >

maxf�ð1Þm ; . . . ; �ðnÞm g and (b) �M > T. The horizontal line at kmax,approx ¼ 80 and the vertical line at k̂max ¼ 80 correspond to the cases when the peak is not
detected by the peak search. The lower panels show the enlarged versions of the upper panels.
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kmax,approx, and the other lower peak around k̂max > kmax,approx.
The second peak disappeared in the latter case, and the first
peak is intrinsic, i.e., the positions of the maximum peak were
close between the inverse probability density function and its
approximation function. The situation was the same for other
cases (Fig. S743)). These results indicate that it is the off-peak
region of the approximation function that contributes to the
separation of the average distances.

The results obtained in this section indicate that the
numerical method using 1100 time series (1000 for sample
data and 100 for test data) is sufficient to calculate the kernel
part as well as the maximum peak time of the approximation
function that is important in the inference, and to examine
their statistical property. Further, these results indicate that
Bayesian updating can be applied with the numerical method
even if the explicit functional forms of the inter-event time
distribution and the conditional probability density function
and so on are unclear, such as the time series of the ETAS
model.

6. Bayesian Updating for the Time Series of the ETAS
Model

In this section, Bayesian updating is applied to the time
series of the ETAS model. In this case, due to the correlations
among events, it is difficult to derive the inverse probability
density function and its approximation function analytically.
Therefore, we compute the approximation function [Eq. (37)]
and its kernel part [Eq. (38)] using the numerical Bayesian
updating method. The maximum peak time of the kernel part
is used as the estimate for the time to occur the next large-
magnitude event greater than the upper threshold, and the
effectiveness of forecasting based on that estimate is
evaluated statistically.

6.1 Time series generation and Bayesian updating methods
We applied the numerical Bayesian updating method in

Sect. 5.1 to the time series generated by Eq. (1)26,44) with the
parameter values b ¼ 1, � ¼ 0:8, � ¼ 0:2, c ¼ 0:01, M0 ¼ 3,
�0 ¼ 0:0007, and K ¼ 0:0125; the parameter values were set
in partially reference to the preceding numerical study20) so

that the branching ratio is less than 1.30) The magnitude
thresholds were ðM;mÞ ¼ ð5; 3Þ. As in Sect. 5.1, we found
some events (149 out of 1:1 � 108) had magnitude � 3, those
were excluded by the setting the lower threshold m ¼ 3.
Although the entire time series is stationary because the
branching ratio (nbr 	 0:785) is less than 1, it is locally non-
stationary obeying nearly the Omori–Utsu law after a large
event, as shown in Fig. 9 [note that the local Omori–Utsu law
in Eq. (1) is different from the global aftershock decay,30) and
thus, the actual decaying must be slightly different from
shown in Fig. 9]. The activity can be categorized into three
regimes with respect to the elapsed time (T) from the
mainshock, as summarized in Table II.

We prepared 1100 time series, with each containing 105

events. First, random numbers generated from five different
seed values were used to generate 240 time series for each
seed. Among them, those containing events with magnitude
� 10 were excluded. This is because the aftershock sequence
excited by such an unrealistic large event does not fit within a
single time series, and then, the non-stationarity affects the
statistics of the sample data. We used 1100 of the remaining
time series. N ¼ 1000 were used as the sample data to obtain
statistics with ��M ¼ 0:1; the interpolation and extrapolation
procedures were conducted with le ¼ 5 in the same way as
explained in Sect. 5.1 (Figs. S8–S1243)). Bayesian updating
[Eqs. (44) and (45)] was applied to the remaining 100 time
series. The maximum range of k was set to �120 � k � 70,
and the n-th update from the occurrence time of the event
above M was conduced in the range maxf� ð1Þm ; . . . ; �ðnÞm g <
�M. The numerical update was conducted when the lower
interval was above 0 (for the occurrence times recorded to 20
decimal places); otherwise, the update was skipped.

The following normalizations were performed in the
calculations of Bayesian updating. The result of the

10-8

10-6

10-4

10-2

100

102

104

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 107

0=0.0007

c=10-2 103

(I) (II) (III)

O
cc

ur
re

nc
e 

R
at

e

T

Mm=5.0
Mm=6.0
Mm=7.0

Fig. 9. (Color online) Omori–Utsu law for the parameter values in the text with a differentmainshockmagnitudeMm (after Ref. 39). The number of aftershocks
per unit day against the elapsed time (T ) from the mainshock obeys �ðTÞ ¼ K10�ðMm�M0Þ=ðT þ cÞ�þ1. The background rate (�0 ¼ 0:0007) is also shown.

Table II. Three regimes in the time series of the ETAS model.

Category Regime Property

(I) T ≲ c (¼ 0:01) Stationary, high occurrence rate
(II) c ≲ T ≲ � (	 103) Non-stationary, relaxation process
(III) � ≲ T Stationary, low occurrence rate (≲ �0)
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calculation in Eq. (44) can be very large. In order to compute
the approximation functions together with Eq. (45), it is
necessary to use the function value of pkernelMm as it is, though it
can exceed psup. Therefore, to avoid such enlargement, we
normalized the result of Eq. (44) for each update by sub-
tracting the following numerical integration from Eq. (44).

ln
X

k; �M;k>T
psup> ln pkernelMm >pinf

pkernelMm ð�M;kj�ð1Þm ; . . . ; � ðnÞm Þðln 10Þ�M;k��M

0
BB@

1
CCA:

ð48Þ
Further, it is necessary to subtract Eq. (48) from the
correction term in Eq. (45) at the same time (thereby the
entire approximation function is multiplied by a constant).
Thus, for each update of Eqs. (44) and (45), the numerical
integration (48) was computed and subtracted from both.

6.2 Comparison of the approximation function and its
kernel part

It is difficult to obtain Pið�mj�MÞ for the ETAS model, and
therefore, we examined the contribution from the correction
term to the approximation function as follows. Instead of
Pið�mj�MÞ, we calculated the probability density functions
PLð�mj�MÞ and PRð�mj�MÞ (Figs. S10 and S1143)). According
to the Omori–Utsu law, we consider that these two are
the end-members of Pið�mj�MÞ. Then, the approximation
functions were calculated numerically by replacing all
Pið�mj�MÞ’s in Eq. (45) by either PLð�mj�MÞ or PRð�mj�MÞ.
We denote the maximum peak times of these approximation
functions by �max,L

M and �max,R
M , and their corresponding k’s in

Eq. (42) by kmax,L and kmax,R, respectively. Similarly, they
are denoted by �max

M and kmax for the kernel part, hereafter.
The numerical search of kmax,L, kmax,R, and kmax was
conducted in the same way as indicated in Sect. 5.2 in the
range �M > maxf�ð1Þm ; . . . ; �ðnÞm g.

Figure 10 shows the joint p.m.f. of ðkmax; kmax,LÞ and
ðkmax; kmax,RÞ, which was calculated in the same way as
indicated in Sect. 5.2. From the results when the maximum
peaks were detected, the maximum peak time of the kernel
part is not significantly affected by the correction term, and
then, it can be used to infer that of the inverse probability
density function [in some cases, the maximum peak was
undetected in the approximation function; particularly those
with PLð�mj�MÞ showed high probability at kmax,L ¼ 80. It
should be noted that the discussion here is based on the cases
without when the maximum peak time was undetected].
However, its confidence interval or average cannot be used
because the correction term is not taken into account. In the
following, we use the maximum peak time of the kernel part
(�max

M ) as the estimator of when the event above M will occur,
and we discuss the effectiveness of the forecasting based on
the estimates.

6.3 Estimation of the next large event timing and
effectiveness of forecasting

We denote the estimate at the n-th update by �max,n
M

(¼ 10ðk
max,nþ0:5Þ��M ), and the actual elapsed time of the next

large event from the previous one by ��M. We evaluated the
accuracy of the estimation at the n-th update using the
relative error (�n), which is given as

�n :¼
��M � �max,n

M

��M
: ð49Þ

Equation (49) considers that the error j��M � �max,n
M j gets

larger as ��M becomes longer. The relative error makes it
possible to evaluate the accuracy in a manner that is
comparable regardless of ��M.

The accuracy at the n-th update was judged by whether �n
was within the threshold (�th)

��th � �n � �th: ð50Þ

When Eq. (50) is satisfied, the estimation at the n-th update is
judged to be plausible for the given threshold value �th in the
present paper. This is equivalent for the actual occurrence
time to be within the range

�max,n
M

ð1 þ �thÞ
� ��M � �max,n

M

ð1 � �thÞ
: ð51Þ

Based on the above accuracy at each update, we further
evaluated whether a series of estimations yields effective
forecasting. Here, effective forecasting implies that �max

M takes
a nearly constant value around ��M continuously from well
before the elapsed time ��M. This can be quantitatively
expressed as follows: Let n�th be the number of consecutive
updates immediately before the next large event, in which
Eq. (50) is satisfied. Further, we denote the last update as
the nfin-th update. When the sequence of updates with a
sufficiently long n�th exists in the range of n 2 ðnfin �
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Fig. 10. (Color online) Joint probability mass functions for (a) ðkmax;

kmax,LÞ and (b) ðkmax; kmax,RÞ. The horizontal lines at kmax,L ¼ 80 and
kmax,R ¼ 80 and the vertical line kmax ¼ 80 are the cases where the peak is
not detected.
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n�th; nfin
, we consider the forecasting to be effective. We
judge the stability of �max,n

M by Eq. (50), and therefore, �th
should not be too large. In the present paper, we set �th ¼ 0:5
and 0.25.

To observe the relationship between the effectiveness of
forecasting and the stationarity of the time series, we
examined the occurrence rate (Rn), variation of its log
(� log10 Rn), and variation of log-estimate (�kmax

n ) defined
below.

Rn :¼ 10=ðtnþ9 � tnÞ; ð52Þ
� log10 Rn :¼ log10 Rnþ10 � log10 Rn; ð53Þ

�kmax
n :¼ kmax,n+10 � kmax,n; ð54Þ

where tn represents the occurrence time of the n-th update.

6.4 Examples of Bayesian updating
Figures 11–13 show examples of Bayesian updating and

other related amounts for the cases where ��M is included in
each regime in Table II. �th was set to 0.5.

Figure 11 shows the first example for ��M 2 ðIÞ.
Figure 11(d) indicates that the occurrence rate is high, and
it stays almost constant. The kernel part has a peak as shown
in Fig. 11(a), and its maximum peak time (�max,n

M ) continues
to be nearly constant around ��M from well before the large
event as shown in Fig. 11(b); this is confirmed in Fig. 11(c),
which indicates that j�nj � �th is satisfied consecutively for
n 2 ðnfin � n�th; nfin
 with a long n�th, and in Fig. 11(e), that
shows that �kmax

n fluctuates around 0. Therefore, in this
example, ��M is judged to be effectively forecasted.

Figure 12 is the second example for ��M 2 ðIIIÞ. In this
example, the occurrence rate is low and keeps almost constant
around �0 ¼ 0:0007 as shown in Fig. 12(d). Figure 12(a)
indicates that the kernel part has a peak and Figs. 12(b) and
12(c) show that the maximum peak time (�max,n

M ) transitions to
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Fig. 11. (Color online) The first example of Bayesian updating and related amounts for the case where ��M is in regime (I). (a) The kernel part for each
update (n). The lower panel shows the enlarged view of the upper panel near the peak. The dotted curve indicates pMð�MÞ. The vertical solid line indicates ��M
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M ) and the tolerance of error ½�
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M
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1��th 
 in Eq. (51) with �th ¼ 0:5. The elapsed
time from the last larger-magnitude event than M is indicated by the blue dotted line. (c) Evolution of the relative error (�n). The orange band indicates the
tolerance range ½��th; �th
. (d) Evolution of the occurrence rate [Rn defined by Eq. (52)]. The magnitude of the event at each update is indicated by black bars.
(e) Evolutions of the variation of the log-occurrence rate [� log10 Rn defined by Eq. (53)] and the variation of the log-estimate [�kmax
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around ��M, and it consecutively satisfies j�nj � �th ¼ 0:5
from long to immediately before the next large event. This
is also confirmed by �kmax

n 	 0 in Fig. 12(e). Thus in this
case also the forecasting is judged to be effective.

Unlike these two examples, in the third example in Fig. 13
for ��M 2 ðIIÞ, the time series is dominated by the non-
stationary activity as shown in Figs. 13(d) and 13(e).
Although j�nj � �th ¼ 0:5 is satisfied only immediately
before the large shock, �max,n

M continues shifting and j�nj �
�th does not hold as shown in Figs. 13(b), 13(c), and 13(e).
Thus, the forecasting is not effective in this case.

Although these are only examples and not all updating
proceeded in these ways, the examples suggest that the
stability of the estimate is related to the stationarity of the
time series.

6.5 Statistical analysis of the effectiveness of forecasting
We show the results of the statistical analysis on the

effectiveness of forecasting. Only the cases of nfin � 30 were
used in the analysis to ensure that the temporal information

of lower intervals was fully reflected in the estimate.
Figure 14(a) shows the total number of upper intervals (N)
obtained from the test data for each ��M 2 ½100:5l; 100:5ðlþ1ÞÞ
with l 2 Z. Further, N30 represents the total number of upper
intervals such that nfin � 30, which is shown with the ratio to
N. The updates included in these N30 upper intervals were
analyzed.

Figures 14(b)–14(d) show the results of the statistical
analysis with �th ¼ 0:5. Figure 14(b) shows the probability
(Pfin) of n�th > 0 (or j�n

fin
j � �th) for each ��M. The average of

Pfin for the overall ��M is about 0.52, and the Pfin for each ��M
is about the same, except for ��M > h�Mi in which Pfin takes a
higher probability around 0.67. Of such n�th > 0 cases, the
proportion (P�30) of those with relatively long n�th � 30 is
also shown in Fig. 14(b) [the probability distribution of n�th
is shown in Fig. S13(a)43)]. Thus the regions of high P�30 are
overlapped with regimes (I) and (III), though the former is
shifted toward larger ��M. On the other hand, P�30 is lower in
regime (II); it gradually decreases as ��M gets larger. This is
consistent with the average of n�th (hn�thi, this average
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is taken for n�th > 0), but also with the average of its
proportion to nfin (hn�th=nfini) as shown in Fig. 14(c). This
implies that, as the fraction of non-stationary times in ½0; ��MÞ
increases in regime (II), the domination rate of n�th in the
total nfin-updates decreases gradually. These properties are
preserved for �th ¼ 0:25 (Fig. S1443)).

Figure 15 shows the joint probability density-mass
functions of � log10 R and �kmax calculated numerically
for each ��M. The case kmax ¼ 80 was excluded from the
population. If ��M is in the regions of high P�30, the
distribution is almost symmetrically concentrated near the
origin. This implies that, when the time series is dominated
by stationarity (� log10 R 	 0), the estimated value is stable
(�kmax 	 0). On the other hand, if ��M is in regime (II), the
probability density-mass function gradually has a region in
the second quadrant as ��M gets larger. This region indicates
the existence of a non-stationary time series in which the
estimate has an increasing trend (�kmax > 0).

These results present the following conclusions. First, the
probability that the relative error is within the threshold at the
last update (j�n

fin
j � �th) is almost independent of the actual

occurrence time (��M). This suggests that the length of the
upper interval can be estimated by the inverse probability
density function reflecting the temporal pattern of lower
intervals, at the last update when the information of the lower
intervals can be utilized fully. Second, the stationarity of the
time series is related to the stability of the estimate; if the time
series is non-stationary, it causes the estimate �max

M to shift.
Third, the domination rate of stationarity in the time series
determines the effectiveness of forecasting. Immediately or
long after the large event, the stationary time series is
dominant. Therefore, based on the second point mentioned
above, the estimate becomes stable, which leads to an
effective forecasting with a relatively long n�th. However,
these regions are not identical to regimes (I) and (III). This is
attributed to lag until the ratio of the non-stationary region in
the time series becomes dominant. On the other hand, in
regime (II), the non-stationarity becomes gradually domi-
nant, which leads to the shifting of �max

M and shortening of
n�th.

Finally, we discuss the effectiveness of forecasting in terms
of the duration time (��th) during the n�th updates.
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J. Phys. Soc. Jpn. 93, 024001 (2024) H. Tanaka and K. Umeno

024001-16 ©2024 The Physical Society of Japan©2024 The Author(s)

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by 61.196.80.111 on 03/04/24



Figure 14(d) shows the average of the duration time (h��thi)
and the average of its ratio to the actual occurrence time
(h��th=��Mi) for each ��M [the probability density of ��th is
shown in Fig. S13(b)43)]. Unlike hn�thi in Fig. 14(c), h��thi
increases linearly as ��M gets larger, and it is sufficiently long
in regime (III). On the other hand, ��th is very short in
regime (I); however, the ratio h��th=��Mi is high (around 0.7).
Therefore, from the perspective of the time interval, the
forecasting is also considered to be effective immediately or
long after the large event.

7. Discussion and Conclusions

Bayes’ theorem and Bayesian updating on the inter-event

times at different magnitude thresholds in a marked point
process were considered. The analytical results for the
uncorrelated time series were used to apply Bayesian
updating to the time series of the ETAS model for examining
its utility toward forecasting a large event using the temporal
pattern of the smaller events.

First, Bayes’ theorem was considered for the general
marked point process. Bayes’ theorem provides the relation-
ship between the conditional and inverse probability density
functions for the lengths of one upper interval and one lower
interval. The inverse probability density function was
represented by the generalized forms of the inter-event time
distribution and the conditional probability density function.
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This inverse probability density function was derived for the
uncorrelated time series analytically, and the condition to
have a peak was also found.

Bayes’ theorem was extended to Bayesian updating that
yields the inverse probability density function between the
lengths of multiple consecutive lower intervals and the
upper interval that includes them. Although the inverse
probability density function is different for the updating
manner, we considered the updating without the restriction
on the position of the lower intervals. For the uncorrelated
time series, the inverse probability density function and its
approximation function were derived, and the latter
approximation was shown to be reasonable using the
distances.

Bayesian updating was applied to the time series of the
ETAS model. We numerically analyzed the approximation
function and its kernel part. We used the maximum point of
the kernel part as the estimate of when the larger-magnitude
event than the upper threshold will occur because the
maximum peaks of these two functions were shown to be
not drastically different. The accuracy of the estimation at
each update was evaluated by the relative error with the
actual time the large event happened (��M); the effectiveness
of the forecasting throughout the series of updates was
judged by the continuity of the plausible estimations prior to
the large event.

Statistical analysis indicated that the accuracy of the
estimation at the last update was not drastically dependent on
��M. This suggests that the inverse probability density function
can estimate ��M in response to the temporal pattern of minor
events. However, the continuity of plausible estimation
depended on ��M. This is because the dominance rate of the

non-stationary time series in which the estimate becomes
unstable varies with the elapsed time from the previous large
event obeying the Omori–Utsu law. The stationarity was
dominant either immediately after or long after the previous
major event. Therefore, the forecasting by the Bayesian
updating method can be effective for secondary disaster
prevention in the former case, and for long-term risk
assessment in the latter case.

The approximation function derived for the uncorrelated
time series was applied in Bayesian updating for the time
series of the ETAS model. This allows us to perform the
update in the convenient form of the product of the
conditional probabilities. However, this implicitly assumes
that there is no correlation between events and lower
intervals; such an assumption can be reasonable for the
stationary part of the time series, although it is not reasonable
for the non-stationary part. This probably is one of the
reasons why forecasting was ineffective in the non-stationary
regime.

In this study, we confirmed that the kernel part could be
monomodal in the ETAS time series, which was not for
the inter-event time distribution in our parameter setting,
suggesting the advantage of the Bayesian approach for
narrowing the possible range of the next large event timing
down. Thus, we demonstrated qualitatively the superiority of
the Bayesian approach to forecasting. However, this study
did not compare their forecasting performance quantitatively.
Probabilistic ways such as using the hazard function can
make such a quantitative comparison, and thus it is necessary
to further examine the inverse probability density or its
approximation function in time series with correlations
between events; a detailed analysis of the correction term
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in the approximation function will be necessary. The kernel
part enables us only the point estimate at the peak time, and
therefore derivation of the entire approximation function is
also significant for realizing point estimation by average,
interval estimation, and probabilistic risk assessment in the
Bayesian framework.

Although the statistical property of Bayesian updating was
examined for only one set of ETAS parameters, it is
considered to be different for activities generated by other
parameter values. For example, for the time series with the
high background rate (�0) that corresponds to taking up a
large spatial area,20) forecasting is considered to be less
effective because in such time series, different mainshock–
aftershocks sequences overlap20) and the correlations between
the upper and lower intervals are weakened. Further, if the
background rate is low, forecasting is considered to be
improved because a single mainshock–aftershocks sequence
is exposed,20) and the correlation is easily reflected in the
conditional probability. Forecasting is also considered to be
improved for the time series with a large branching ratio
(nbr); a larger branching ratio boosts aftershocks for a
mainshock,36) which increases the number of updates in
Bayesian updating and thus is advantageous for forecasting.

In this study, only one lower threshold magnitude (m) was
set for a given upper threshold (M). Although the lower
threshold m can be set freely in between ½M0;MÞ, the
theoretical result for the stationary marked Poisson process
suggests that it is better to set m such that �m > log10 3=b;
under this condition, the inverse probability is monomodal
other than the one by the delta function, and such a peak is
convenient for the estimation of ��M. This condition indicates
that there is a trade-off between the b-value and �m, and
then, the range of lower thresholds that can be set varies with
the b-value. One approach for performing Bayesian updating
using more temporal information of the lower intervals is to
set multiple lower thresholds [m1 < m2 < � � � ð< MÞ], all of
them satisfy the condition �m > log10 3=b. Considering such
an extension is important for applying the Bayesian updating
method to the real seismic catalogs in which the number of
earthquakes is limited. It should be noted that the condition
�m > log10 3=b is for the uncorrelated time series; finding
the corresponding condition for the time series of the ETAS
model is a future work.

Another idea to apply the Bayesian updating method to
seismic catalogs while compensating for the shortage of data
is to use the ETAS model in combination. The ETAS
model’s capability to generate sufficient synthetic data with
the parameter set determined for past seismic activity enables

the preparation of precise statistical amounts necessary in
the numerical Bayesian updating method. Moreover, it is
necessary to develop further ingenuity by studying the
properties of the conditional and inverse probability density
functions through the analysis of seismic catalogs. With these
auxiliaries, the application of the Bayesian updating method
to real seismic activity is expected to proceed while solving
the limitation of seismic data.

Another way to combine with the ETAS model is to
replace the prior distribution of the Bayesian updating with
the inter-event time distribution derived from the ETAS
model’s conditional intensity function; such replacement
would incorporate the seismicity information before the last
major earthquake in the Bayesian approach. From the
viewpoint of probabilistic forecasting with the conditional
intensity function, this replacement can be a way to improve
forecasting by taking into account the correlation between a
major earthquake and its preceding seismic pattern, which
is typically not considered,45) by combining the Bayesian
approach. Note that, because this statement is based on the
assumption that such a correlation between a seismic pattern
and its following large shock that the ETAS model does not
cover (for example, Refs. 46 and 47) can be managed by the
conditional probability, this approach is not compatible with
the method described in the previous paragraph to compen-
sate for the shortage of data utilizing the ETAS model.
Further examination of the Bayesian approach using actual
seismic catalog data is necessary to clarify the credibility of
the assumption and effectiveness of the approach.

Finally, extending the Bayesian approach to a spatiotem-
poral version is an important issue for more practical
forecasting while incorporating spatial seismic features,
which is discussed in Ref. 48.
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Appendix A: Derivation of the Conditional and Inverse
Probability Density Functions for the
Uncorrelated Time Series

First, we derive the conditional probability density
function [Eq. (16)] by substituting Eqs. (13)–(15) into
Eq. (12). The denominator of Eq. (12) is

X1
i¼1

i�mMðij�MÞ ¼ A�m
�M
h�Mi

þ 1;

and the numerator is

X1
i¼1

i�mMð�mji; �MÞ�mMðij�MÞ ¼ e�A�m
�M
h�Mi�ð�M � �mÞ

þ e�A�m
�m
h�Mi

A�m

h�Mi
X1
i¼0

ði þ 2Þ

�
A�m

�M

h�Mi

�
1 � �m

�M

��i
i!

e�A�m
�M
h�Mið1�

�m
�M
Þ�ð�M � �mÞ

¼ e�A�m
�M
h�Mi�ð�M � �mÞ þ e�A�m

�m
h�Mi

A�m

h�Mi
A�m

�M
h�Mi

1 � �m
�M

� �
þ 2

� �
�ð�M � �mÞ:

Equation (16) is obtained by rearranging the above equations.
We confirm that Eq. (2) with this conditional probability in its kernel has the exponential distribution [Eq. (11)] as the

solution. By dividing both sides of Eq. (2) by Nm and rewriting it using NM=Nm ¼ h�mi=h�Mi as well as Eq. (16)
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pmð�mÞ ¼
h�mi
h�Mi

Z 1

�m

�
e�A�m

�M
h�Mi�ð�M � �mÞ þ

A�m

h�Mi
e�A�m

�m
h�Mi A�m

�M � �m
h�Mi

þ 2

� �
�ð�M � �mÞ

�
pMð�MÞ; ðA:1Þ

where the following general relation is used.

�M
hh�mii�M

¼
X1
i¼1

i�mMðij�MÞ:

We show that the r.h.s. of Eq. (A·1) is equivalent to the left hand side (l.h.s.), pmð�mÞ ¼ e�
�m
h�mi=h�mi. Substitute pMð�MÞ ¼

e�
�M
h�Mi=h�Mi into the r.h.s. of Eq. (A·1) and note that A�m þ 1 ¼ h�Mi=h�mi; the integral involving the delta function (R1) is

R1 ¼
h�mi
h�Mi2

e�
�m
h�mi ; ðA:2Þ

and the integral involving the step function (R2) is

R2 ¼
h�mi
h�Mi3

A�me
�A�m

�m
h�Mi

Z 1

�m

A�m
�M � �m
h�Mi

þ 2

� �
e�

�M
h�Mi d�M

¼ h�mi
h�Mi2

A�mðA�m þ 2Þe�
�m
h�mi : ðA:3Þ

Therefore, the r.h.s. of Eq. (A·1) is shown to be equivalent to the l.h.s. of Eq. (A·1) as follows:

R1 þ R2 ¼
h�mi
h�Mi2

ð1 þ A�mÞ2e�
�m
h�mi

¼ 1

h�mi
e�

�m
h�mi : ðA:4Þ

Second, we derive the inverse probability density function [Eq. (17)]. From Eq. (16), the generalized probability density
functions for the uncorrelated time series are derived as

zmð�mÞ ¼
�m

h�mi2
e�

�m
h�mi ;

zMð�MÞ ¼
�M

h�Mi2
e�

�M
h�Mi ;

zmMð�mj�MÞ ¼
�m
�M

e�A�m
�m
h�Mi �ð�M � �mÞ þ

A�m

h�Mi
A�m

�M
h�Mi

1 � �m
�M

� �
þ 2

� �
�ð�M � �mÞ

� �
:

Equation (17) is obtained by substituting the above equations in Eq. (9).
Derivative of Eq. (17) by �M is

@

@�M
pMmð�Mð> �mÞj�mÞ ¼ � h�mi2

h�Mi5
A2
�me

�m��M
h�Mi �M � �m þ h�Mi 1 � 2

A�m

� �� �� �
:

Therefore, the inverse probability density function has a peak at

�max
M ¼ �m þ h�Mi 1 � 2

A�m

� �
;

under the condition of �max
M > �m, which is equivalent to

�m >
log10 3

b
:

Appendix B: Derivation of Eq. (25) from Eq. (24)

The summation part in the r.h.s. of Eq. (24) isX1
i¼n

ði � n þ 1Þ�mMðij�MÞ�mMð� ð1Þm ji; �MÞ
Yn
j¼2

�mM �ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

� ðkÞm

 !

¼ �mMðnj�MÞ�mMð� ð1Þm jn; �MÞ
Yn
j¼2

�mM � ð jÞm jn � j þ 1; �M �
Xj�1
k¼1

�ðkÞm

 !

þ
X1
i¼nþ1

ði � n þ 1Þ�mMðij�MÞ�mMð�ð1Þm ji; �MÞ
Yn
j¼2

�mM � ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

�ðkÞm

 !
:

The first term on the r.h.s. of the above equation is transformed by substituting Eqs. (13)–(15) as
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�
A�m

�M

h�Mi

�n�1
ðn � 1Þ!

e�A�m
�M
h�Mi

ðn � 1Þ
�M

�M � �ð1Þm

�M

� �n�2 ðn � 2Þ
�M � �ð1Þm

�M � � ð1Þm � � ð2Þm

�M � � ð1Þm

� �n�3

� � �
� �M �

Xn
i¼1

�ðiÞm

 !

�M �
Xn�2
i¼1

� ðiÞm

¼ A�m

h�Mi

� �n�1
e�A�m

�M
h�Mi� �M �

Xn
i¼1

� ðiÞm

 !
: ðB:1Þ

The second term except the step function is also transformed as

X1
i¼nþ1

ði � n þ 1Þ

�
A�m

�M

h�Mi

�i�1

ði � 1Þ!
e�A�m

�M
h�Mi

ði � 1Þ
�M

�M � �ð1Þm

�M

� �i�2Yn
j¼2

ði � jÞ

�M �
Xj�1
k¼1

�ðkÞm

�M �
Xj
k¼1

�ðkÞm

�M �
Xj�1
k¼1

�ðkÞm

0
BBBB@

1
CCCCA

i�j�1

¼
X1
i¼nþ1

ði � n þ 1Þ
ði � n � 1Þ!

A�m

h�Mi

� �i�1
e�A�m

�M
h�Mi �M �

Xn
k¼1

� ðkÞm

 !i�n�1

¼
X1
i¼0

i þ 2

i!

A�m

h�Mi

� �iþn
e�A�m

�M
h�Mi �M �

Xn
k¼1

�ðkÞm

 !i

¼ A�m

h�Mi

� �n

e�A�m

Pn

i¼1
� ðiÞm

h�Mi
X1
i¼0

i þ 2

i!

A�m

h�Mi
�M �

Xn
k¼1

�ðkÞm

 !" #i

e�A�m

�M�
Pn

k¼1
� ðkÞm

h�Mi

¼ A�m

h�Mi

� �n

e�A�m

Pn

i¼1
� ðiÞm

h�Mi A�m

�M �
Xn
i¼1

� ðiÞm

h�Mi
þ 2

0
BBB@

1
CCCA: ðB:2Þ

Finally, Eq. (25) is obtained by substituting Eqs. (B·1) and (B·2) in Eq. (24), with the denominator of the r.h.s. of Eq. (24)Yn
i¼1

pmð�ðiÞm Þ ¼ 1

h�min
e�
Pn

i¼1
� ðiÞm

h�mi :

Appendix C: Another Bayesian Updating Method

In this appendix, we consider another method of Bayesian updating from the one introduced in Sect. 4; this method
considers the consecutive lower intervals in the order of the appearance from the last event with magnitude greater than M. We
derive the inverse probability density function for this updating method in the uncorrelated time series.

Let N�
mMð�M; � ð1Þm ; . . . ; � ðnÞm Þ be the total number of such upper intervals of length �M that include the consecutive lower

intervals of lengths f� ð1Þm ; . . . ; � ðnÞm g start from the leftmost one in the upper interval. Further, we denote the inverse probability
density function for this updating by p�Mmð�Mj� ð1Þm ; . . . ; �ðnÞm Þ. We derive it by representing N�

mMð�M; �ð1Þm ; . . . ; � ðnÞm Þ in two ways as
follows:

First, we derive N�
mMð�M; � ð1Þm ; . . . ; � ðnÞm Þ by counting the total number of the upper intervals of length �M that include the

leftmost consecutive lower intervals of lengths f� ð1Þm ; . . . ; �ðnÞm g. The position of the first interval in the sequence of the
consecutive lower intervals is fixed at the leftmost one in an upper interval, and therefore, the number of the sequence
f�ð1Þm ; . . . ; �ðnÞm g in the time series is

NM

Yn
i¼1

pmð� ðiÞm Þ d�nm:

Among them, the number of sequences that belong to the same upper interval is

NM 1 � h�mi
h�Mi

� �n�1Yn
i¼1

pmð� ðiÞm Þ d�nm:

Therefore, the first representation is obtained as

N�
mMð�M; �ð1Þm ; . . . ; �ðnÞm Þ ¼ NM 1 � h�mi

h�Mi

� �n�1 Yn
i¼1

pmð� ðiÞm Þ
 !

p�Mmð�Mj� ð1Þm ; . . . ; � ðnÞm Þ d�M d�nm:

This equation is rewritten using Eq. (11) in the explicit form as
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N�
mMð�M; � ð1Þm ; . . . ; � ðnÞm Þ ¼ NM 1 � h�mi

h�Mi

� �n�1
1

h�min
e�
Pn

i¼1
� ðiÞm

h�mi p�Mmð�Mj� ð1Þm ; . . . ; � ðnÞm Þ d�M d�nm: ðC:1Þ

Second, we derive N�
mMð�M; �ð1Þm ; . . . ; �ðnÞm Þ by counting the total number of consecutive lower intervals that start from the

leftmost one in the upper intervals of length �M. There is only one way for the sequence of consecutive lower intervals of
lengths f�ð1Þm ; . . . ; �ðnÞm g to be involved in each of the NMpMð�MÞ d�M upper intervals of length �M. The probability of the
occurrence of that sequence in the upper interval is, when i (� n)-lower intervals are included in it

�mMð�ð1Þm ji; �MÞ
Yn
j¼2

�mM � ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

� ðkÞm

 !
d�nm:

Therefore, the second representation is obtained as

N�
mMð�M; �ð1Þm ; . . . ; �ðnÞm Þ ¼ NMpMð�MÞ

X1
i¼n

�mMðij�MÞ�mMð�ð1Þm ji; �MÞ
Yn
j¼2

�mM � ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

�ðkÞm

 !
d�M d�nm:

This equation is rewritten in the explicit form using Eqs. (13)–(15) in the same way as in Appendix B.

N�
mMð�M; �ð1Þm ; . . . ; �ðnÞm Þ ¼ NM

1

h�Mi
e�

�M
h�Mi d�M d�nm

A�m

h�Mi

� �n�1

� e�A�m
�M
h�Mi� �M �

Xn
i¼1

� ðiÞm

 !
þ A�m

h�Mi

� �
e�A�m

Pn

i¼1
� ðiÞm

h�Mi � �M �
Xn
i¼1

� ðiÞm

 !" #
: ðC:2Þ

Finally, p�Mmð�Mj�ð1Þm ; . . . ; �ðnÞm Þ is derived from Eqs. (C·1) and (C·2) as

p�Mmð�Mj�ð1Þm ; . . . ; �ðnÞm Þ ¼ h�mi
h�Mi

A�m

h�Mi
e�

�M�
Pn

i¼1
� ðiÞm

h�Mi � �M �
Xn
i¼1

� ðiÞm

 !
þ e�

�M�
Pn

i¼1
� ðiÞm

h�mi � �M �
Xn
i¼1

� ðiÞm

 !" #
: ðC:3Þ

This is different from Eq. (25), which reflects the difference whether the position of lower intervals is specified.

Appendix D: Derivation of Eq. (30)

First, we substitute Eqs. (13)–(15) into Eq. (29)

PRð�mj�MÞ ¼ PLð�mj�MÞ

¼ e�A�m
�M
h�Mi�ð�M � �mÞ þ

X1
i¼2

ði � 1Þ
�M

1 � �m
�M

� �i�2

�
A�m

�M

h�Mi

�i�1

ði � 1Þ!
e�A�m

�M
h�Mi�ð�M � �mÞ:

In the above equation, the summation part of the term including the step function can be transformed as

X1
i¼2

ði � 1Þ
�M

1 � �m
�M

� �i�2

�
A�m

�M

h�Mi

�i�1

ði � 1Þ!
e�A�m

�M
h�Mi

¼ A�m

h�Mi
e�A�m

�m
h�Mi
X1
i¼0

�
A�m

�M

h�Mi

�
1 � �m

�M

��i
i!

e�A�m
�M
h�Mið1�

�m
�M
Þ

¼ A�m

h�Mi
e�A�m

�m
h�Mi :

Finally, Eq. (30) is obtained by rearranging the above equations.

Appendix E: Derivation of Eq. (35)

In this appendix, Pð�ð1Þm ; . . . ; �ðlÞm j�MÞ is derived for the uncorrelated time series. First, we divide the summation in Eq. (34)
into two parts:

Pð� ð1Þm ; . . . ; � ðlÞm j�MÞ ¼
X1
i¼l

�mMðij�MÞ�mMð�ð1Þm ji; �MÞ
Yl
j¼2

�mM � ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

�ðkÞm

 !

¼ �mMðlj�MÞ�mMð�ð1Þm jl; �MÞ
Yl
j¼2

�mM � ð jÞm jl � j þ 1; �M �
Xj�1
k¼1

� ð jÞm

 !

þ
X1
i¼lþ1

�mMðij�MÞ�mMð� ð1Þm ji; �MÞ
Yl
j¼2

�mM �ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

� ðkÞm

 !
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This equation is further rewritten by substituting Eqs. (13)–(15) in the same way as in Appendix B. The second term on the
r.h.s. except for the step function is

X1
i¼lþ1

�
A�m

�M

h�Mi

�i�1

ði � 1Þ!
e�A�m

�M
h�Mi

i � 1

�M

�M � � ð1Þm

�M

� �i�2Yl
j¼2

ði � jÞ

�M �
Xj�1
k¼1

� ðkÞm

�M �
Xj
k¼1

� ðkÞm

�M �
Xj�1
k¼1

� ðkÞm

0
BBBB@

1
CCCCA

i�j�1

¼
X1
i¼lþ1

1

ði � l � 1Þ!
A�m

h�Mi

� �i�1
e�A�m

�M
h�Mi �M �

Xl
k¼1

� ðkÞm

 !i�l�1

¼
X1
i¼0

1

i!

A�m

h�Mi

� �iþl
e�A�m

�M
h�Mi �M �

Xl
k¼1

�ðkÞm

 !i

¼ A�m

h�Mi

� �l

e�A�m

Pl

i¼1
� ðiÞm

h�Mi
X1
i¼0

A�m

h�Mi
�M �

Xl
k¼1

�ðkÞm

 !" #i

i!
e�

A�m
h�Mi

�
�M�
Pl

k¼1 �
ðkÞ
m

	

¼
Yl
i¼1

Pið�ðiÞm j�MÞ;

where Pið� ðiÞm j�MÞ :¼ ðA�m

h�MiÞe
�A�m

� ðiÞm
h�Mi .

Therefore

Pð�ð1Þm ; . . . ; � ðlÞm j�MÞ ¼
A�m

h�Mi

� �l�1
e�A�m

�M
h�Mi� �M �

Xl
i¼1

� ðiÞm

 !
þ
Yl
i¼1

Pið� ðiÞm j�MÞ� �M �
Xl
i¼1

�ðiÞm

 !
:

Finally, because �M ≩
Pl

i¼1 �
ðiÞ
m holds for l < n by the condition of Eq. (27)

Pð� ð1Þm ; . . . ; � ðlÞm j�MÞ ¼
Yl
i¼1

Pið�ðiÞm j�MÞ:

Appendix F: Derivation of Eq. (40)

In this appendix, the approximation function of the inverse probability density function for the uncorrelated time series
[Eq. (40)] is derived. By substituting Eqs. (11), (16), and (35) into Eq. (37)

pMmð�Mj�ð1Þm ; . . . ; �ðnÞm Þ

¼ h�mi
h�Mi

�
A�m

�M

h�Mi
þ 1

�
�
A�m

h�mi
h�Mi

�n�1

Yn
i¼1

e�A�m
� ðiÞm
h�Mi

A�m

h�Mi

�
A�m

�M

h�Mi

�
1 � � ðiÞm

�M

�
þ 2

�
1

h�mi
e�

� ðiÞm
h�mi

�
A�m

�M

h�Mi
þ 1

�
8>>><
>>>:

9>>>=
>>>;

1

h�Mi
e�

�M
h�Mi

� h�mi
h�Mi

ðn � 1Þ�
A�m

h�mi
h�Mi

�n�1

Yn
i¼1

�
A�m

h�Mi

�
e�A�m

� ðiÞm
h�Mi

1

h�mi
e�

� ðiÞm
h�mi

2
6664

3
7775 1

h�Mi
e�

�M
h�Mi ; ðF:1Þ

where the following relation is used.

�M
hh�mii�M

¼
X1
i¼1

i�mMðij�MÞ

¼ A�m
�M
h�Mi

þ 1:

The two products (f� � �g and ½� � �
) in Eq. (F·1) are respectively transformed as

Yn
i¼1

e�A�m
� ðiÞm
h�Mi

A�m

h�Mi

�
A�m

�M

h�Mi

�
1 � �ðiÞm

�M

�
þ 2

�
1

h�mi
e�

� ðiÞm
h�mi

�
A�m

�M

h�Mi
þ 1

�
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¼ A�m
h�mi
h�Mi

� �n Yn
i¼1

e�A�m
� ðiÞm
h�Miþ

� ðiÞm
h�mi

 ! Yn
i¼1

A�m
�M

h�Mi
þ 1 �

�
A�m

�ðiÞm
h�Mi

� 1

�

A�m
�M

h�Mi
þ 1

2
6664

3
7775

¼ A�m
h�mi
h�Mi

� �n Yn
i¼1

e
� ðiÞm
h�Mi

 ! Yn
i¼1

1 �
�ðiÞm � h�Mi

A�m

�M þ h�Mi
A�m

0
BBB@

1
CCCA

2
6664

3
7775: ðF:2Þ

Yn
i¼1

�
A�m

h�Mi

�
e�A�m

� ðiÞm
h�Mi

1

h�mi
e�

� ðiÞm
h�mi

¼ A�m
h�mi
h�Mi

� �nYn
i¼1

e�A�m
� ðiÞm
h�Miþ

� ðiÞm
h�mi

¼ A�m
h�mi
h�Mi

� �nYn
i¼1

e
� ðiÞm
h�Mi : ðF:3Þ

Finally, Eq. (40) is derived by substituting Eqs. (F·2) and (F·3) into Eq. (F·1).

Appendix G: Relation between the Inverse Probability Density Function and Its Approximation Function in the
Uncorrelated Time Series

In this appendix, we discuss the relation between the inverse probability density function [Eq. (24)] and Eq. (37), i.e., the
approximations made on Eq. (24) that correspond to the assumptions made in Sect. 4.2 to derive Eq. (37).

The summation in Eq. (24) can be decomposed into

X1
i¼n

ði � n þ 1Þ�mMðij�MÞ�mMð� ð1Þm ji; �MÞ
Yn
j¼2

�mM �ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

�ðkÞm

 !

¼ �ðn � 1Þ
X1
i¼n

�mMðij�MÞ�mMð�ð1Þm ji; �MÞ
Yn
j¼2

�mM � ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

�ðkÞm

 !

þ
X1
i¼n

i�mMðij�MÞ�mMð� ð1Þm ji; �MÞ
Yn
j¼2

�mM �ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

� ðkÞm

 !
: ðG:1Þ

The first term on the r.h.s. of Eq. (G·1) is equivalent to
�ðn � 1Þ

Qn
i¼1 Pi (Appendix E), and then, this term formally

coincides with the correction term in Eq. (37). Therefore, the
second term corresponds to the kernel part [Eq. (38)].

n-consecutive lower intervals must be included in only one
upper interval. Under this condition, three constraints are
imposed on the lower intervals, which appear on the l.h.s. of
Eq. (G·1) as follows: (1) The number of lower intervals
included in the upper interval must be larger than or equal to
n. Then, the summation is taken in the range of i � n. (2) The
way to choose the n-consecutive intervals from the i-lower
intervals in an upper interval is only ði � n þ 1Þ. If the first
lower interval (or the leftmost one in the sequence of the
consecutive lower intervals) is in either remaining ðn � 1Þ
ways, the sequence overflows from the upper interval. (3)
The probability of the length of the j-th interval in the
consecutive lower intervals depends on the way other (k-th,
1 � k < j) lower intervals appear, i.e., it is dependent on the
remained time �M �

Pj�1
k¼1 �

ðkÞ
m and number of pieces of lower

intervals ði � j þ 1Þ, �mMð�ð jÞm ji � j þ 1; �M �
Pj�1

k¼1 �
ðkÞ
m Þ.

These constraints are relaxed in the derivation in Sect. 4.2.
In the view in Sect. 4.2, the upper intervals of length �M are
collected and the new time series is generated as shown in
Fig. 5. For this new time series, the only constraint imposed
on the lower intervals is that they are included in the upper

interval of length �M; each interval is assumed to occur
independently. Therefore, the three constraints are changed in
the following manner: (1) The new time series is generated
by gathering all upper intervals of length �M, regardless of the
number of lower intervals included in it. In addition, the
restriction on the range of the summation (i � n) does not
make much sense because the consecutive lower intervals are
not assumed to be within only one upper interval, i.e., it is
expanded to i � 1. (2) The number of ways to choose the
n-consecutive intervals from i-lower intervals is unchanged;
this exceeds the above mentioned upper limit ði � n þ 1Þ
although such cases are subtracted by the first term on the
r.h.s. of Eq. (G·1), i.e., the correction term in Eq. (37).
(3) The constraints imposed on the condition in �mM are
removed; because the probability of the length of j-th interval
is only not affected by other lower intervals, the temporal part
of �mM is replaced by �M [Eq. (G·2)]. In addition, the
constraint on the number of division can be eliminated by
taking the average [Eq. (G·3)].

�mM �ð jÞm ji � j þ 1; �M �
Xj�1
k¼1

� ðkÞm

 !

	 �mMð� ð jÞm ji � j þ 1; �MÞ ðG:2Þ
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X1
i¼1

i�mMðij�MÞ�mMð� ð jÞm ji; �MÞ

X1
i¼1

i�mMðij�MÞ
ðG:3Þ

¼ pmMð�ð jÞm j�MÞ:
Thus, �mM’s are simply replaced by the conditional
probability density functions.

In this way, the approximate view in Sect. 4.2 implies
the following replacement in the exact inverse probability
density function.

X1
i¼n

i�mMðij�MÞ�mMð� ð1Þm ji; �MÞ

�
Yn
j¼2

�mM �ð jÞm ji � j þ 1; �M �
Xn
k¼1

�ðkÞm

 !

	
X1
i¼1

i�mMðij�MÞ
Yn
j¼1

pmMð�ð jÞm j�MÞ

¼ �M
hh�mii�M

Yn
j¼1

pmMð�ð jÞm j�MÞ:

Appendix H: Distance between the Inverse Probability
Density Function and the Inter-Event
Time Distribution

In this Appendix, we derive the distance between the
inverse probability density function [Eq. (25)] and the inter-
event time distribution [pMð�MÞ]

DðpMmkpMÞ :¼
Z 1

T

jp�ð�M; TÞ � pMð�MÞj2 d�M; ðH:1Þ

where

p�ð�M; TÞ ¼
h�mi
h�Mi2

1 � h�mi
h�Mi

� �
e�

�M�T
h�Mi A�m

�M � T

h�Mi
þ 2

� �
;

pMð�MÞ ¼
1

h�Mi
e�

�M
h�Mi :

By substituting these functions in Eq. (H·1), the distance is
derived as

DðpMmkpMÞ ¼
h�MiC2

1

4
þ C1C2ðTÞ

2
þ C2ðTÞ2

2h�Mi
; ðH:2Þ

where

C1 ¼
1

h�Mi
1 � h�mi

h�Mi

� �2

;

C2ðTÞ ¼ 2
h�mi
h�Mi

1 � h�mi
h�Mi

� �
� e�

T
h�Mi :

Appendix I: On the Cause of the Separation of
hD0ð papproxMm kpMÞi and hD00ð papproxMm kpMÞi at
Large T

In this appendix, we examine the cause of the separation
between hD0ðpapproxMm kpMÞi and hD00ðpapproxMm kpMÞi at long-
elapsed time T. Let us compare Fig. 7 to Figs. S6(a) and
S6(c)43) for N ¼ 105. The separation is suppressed compared
to that shown in Fig. 7, which indicates that the fluctuations
in the spline functions of P1 caused by a relatively small

number of samples in the calculation of P1 are suppressed by
increasing the sample data. This leads to the reduction of
errors in the calculations (45), and to the improvement of the
calculation of distance in Eq. (47).

In addition, we tested numerical updating withN ¼ 105 by
excluding some larger columns of the matrix P1, i.e., by
using the following matrix P0

1 with an integer lc

P0
1 ¼



½P1; jk
j¼j ðkÞmin ;...; j

ðkÞ
max

�
k¼kmin;...;kmax�lc : ðI:1Þ

For this P0
1, the interpolation and extrapolation procedures

were conducted in the same way as in Sect. 5.1, and the
numerical updating was executed.

Figures S6(b) and S6(d) show the results of the distance
for such updating with (b) ��M ¼ 0:1 and lc ¼ 5, and (d)
��M ¼ 0:025 and lc ¼ 20. Compared to the results obtained
using P1 in Figs. S6(a) and S6(c),43) the separation is
suppressed further. Combined with the results for the kernel
part, these results suggest the following; the number of
samples to calculate P1 is so small compared to that of the
conditional probability (the number of sample is only one for
an upper interval for P1 whereas all the lower intervals
included in an upper interval are used as a sample to calculate
the conditional probability), in particular for a large k, that its
fluctuation becomes too large to compute the correction term
precisely.
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