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Stem cells isolated from perinatal tissue sources possess tremendous potential for
biomedical and clinical applications. On the other hand, emerging data have
demonstrated that bioactive natural compounds regulate numerous cellular and
biochemical functions in stem cells and promote cell migration, proliferation, and
attachment, resulting in maintaining stem cell proliferation or inducing controlled
differentiation. In our previous studies, we have reported for the first time that various
natural compounds could induce targeted differentiation of hAESCs in a lineage-specific
manner by modulating early biological and molecular events and enhance the therapeutic
potential of hAESCs through modulating molecular signaling. In this perspective, we will
discuss the advantages of using naturally occurring active compounds in hAESCs and
their potential implications for biological research and clinical applications.
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INTRODUCTION

The term placenta is considered as an exploitable source of a number of pluripotent stem cells
including, human amniotic epithelial stem cells (hAESCs), human amniotic mesenchymal
stromal cells (hAMSCs), and human umbilical cord mesenchymal stromal cells (hUMSCs)
(Miki and Strom, 2006; Ilancheran et al., 2007; Toda et al., 2007; Hu et al., 2009; Antoniadou
and David, 2016; De Coppi and Atala, 2019). As derived from the biological waste product
placenta, these perinatal stem cells are readily available, have an abundant supply, require no
invasive harvesting procedures as well as have minimal ethical constraints. However, hAESCs
possess unique biological characteristics compared to other perinatal pluripotent cells because
of their developmental origin from the epiblast at around eight days after fertilization (Miki
et al., 2005). They are derived from the innermost single layer of epithelial cells of the amnion
that contacts the amniotic fluid directly. Isolated hAESCs express octamer-binding
transcription factor-4 (OCT-4), a key transcription factor that maintain pluripotency and
self-renewal in embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs).
hAESCs also express other pluripotent stem cell markers, such as Nanog homeobox
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(NANOG), SRY-Box transcription factor 2 (SOX2), stage-
specific embryonic antigen (SSEA)3 and SSEA4, and tumor
rejection antigen (TRA)1-60 and TRA 1-80 (Miki et al., 2005;
Miki et al., 2010; Murphy et al., 2010; Gaggi et al., 2020).
hAESCs lack telomerase activity and have short telomeres,
which limit their proliferation efficiency (Gaggi et al., 2020).
However, because of their limited proliferation capacity,
hAESCs do not pose the risk of tumor or teratoma
formation like ESCs (Miki et al., 2005). Moreover, under
appropriate differentiation protocol, hAESCs can be

differentiated into cells from all three germ layers, such as
cells from the endodermal origin-liver, pancreas and lung
epithelium, neural cells from the ectodermal origin, and bone
and fat cells from mesodermal origin (Sakuragawa et al., 1996;
Cai et al., 2005; Miki et al., 2005; Pan et al., 2006; Toda et al.,
2007; Miki et al., 2010; Niknejad et al., 2010; Serra et al., 2018;
Furuya et al., 2019). Notably, hAESCs have distinct expression
profiles of human leukocyte antigens (HLAs). hAESCs show
low expression of classical HLA-I: HLA-A, B, and C and no
expression of HLA-II: HLA-DP, DQ, and DR, which

TABLE 1 | Biological functions of natural compounds in hAESCs.

Compound Methodology Differentiation direction Biological functions (Enriched
Gene Ontology and
KEGG pathway)

References

Cyanidin 3-glucoside Whole genome transcriptome
analysis on day 7 cell treatment

Towards adipocyte
differentiation

Inhibits cell cycle-related gene expression and
induces positive regulation of fibroblast growth
factor receptor signaling pathway (GO:0045743),
response to muscle activity (GO:0014850)

Takahashi et al.
(2021)

Ethanol extract of
Aurantiochytrium-derived
squalene

Whole genome transcriptome
analysis on day 7 cell treatment

Towards neuronal
differentiation

Induces positive regulation of neuron differentiation
(GO:0045666), positive regulation of MAPK
cascade (GO:0043410), fibroblast growth factor
receptor signaling pathway (GO:0008543),
regulation of lipid biosynthetic process (GO:
0046890), cellular response to oxidative process

Ferdousi et al.
(2021)

Isorhamnetin Whole genome transcriptome
analysis on day 10 cell treatment,
functional analysis

Towards hepatic-lineage
specific differentiation

Positive regulation of canonical Wnt signaling
pathway (GO:0090263) and TGFb receptor
signaling pathway (GO:0007179), cell-matrix
adhesion

Uchida et al.
(2020)

(GO:0007160), extracellular matrix organization
(GO:0030198)

Rosmarinic acid Whole genome transcriptome
analysis on day 7 cell treatment

Towards neuronal
differentiation

neurogenesis (GO: 0022008), and neuron Ferdousi et al.
(2019)differentiation (GO: 0030182), Chemical synaptic

transmission (GO:0007268)
3,4,5-tri-O-caffeoylquinic
acid (TCQA)

Whole genome transcriptome
analysis on day 7 cell treatment

Towards neuronal and
pigment cell differentiation

pigment cell differentiation (GO: 0050931),
neurogenesis (GO: 0022008), MAPK cascade,
downregulates the expressions of inflammatory
cytokines, inhibits cell cycle progression

Bejaoui et al.
(2021)

Verbenalin Whole genome transcriptome
analysis on day 7 cell treatment,
functional analysis

— positive regulation of dendrite development (GO:
1900006), negative regulation of type 2 immune
response (GO: 0002829), ErbB and MAPK
signaling pathways

Ferdousi et al.
(2020)

Lycopene Combination treatment with
lycopene and hAESCs in AD rat
model

— Ameliorates Aβ-induced neuroinflammation in vivo Xu et al. (2021)
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contribute to immune recognition and rejection of PSCs after
transplantation. hAESCs also express non-classical HLA-I:
HLA-E, F, and G, specifically HLA-G, which have inhibitory
effects on immune cells (Akle et al., 1981; Li et al., 2005). Thus,
hAESCs are regarded as a promising source of stem cells in
biological research and regenerative medicine.

On the other hand, natural resource-derived biologically active
compounds, such as polyphenols, flavonoids, tannins, terpenoids,
and fatty acids, have long been investigated for promoting cell
division, and differentiation of pluripotent and adult stem cells
(PSCs) under standard culture conditions (Udalamaththa et al.,
2016; Udagama and Udalamaththa, 2018). Effects of plant extracts
and their bioactive compounds on the proliferation and
differentiation of mesenchymal stem cells (MSCs) have been
extensively studied (Kornicka et al., 2017; Saud et al., 2019;
Maeda, 2020). However, in spite of the fact that hAESCs were
discovered nearly two decades ago, only a few studies have
attempted to investigate the effects of natural compounds in
hAESCs. As part of our continual effort to explore the
bioactivities and functionalities of natural compounds of plant
origin, we have been investigating their effects on modulating the
early biological events in hAESCs (Ferdousi et al., 2019; Aonuma
et al., 2020; Ferdousi et al., 2020; Uchida et al., 2020; Bejaoui et al.,
2021; Ferdousi et al., 2021; Takahashi et al., 2021). In this
perspective, we will discuss the multidirectional research
opportunities through integrating natural bioactive compounds
with the existing hAESCs research platforms.

NATURAL COMPOUND-TREATED
HAESCS: POTENTIAL RESEARCH
OPPORTUNITIES
Natural Bioactive Compounds as Promising
Differentiation Inducers of hAESCs
As hAESCs are derived from the pluripotent epiblast, these cells
exert a high level of differentiation plasticity. A series of studies
demonstrated successful induction of hAESCs into hepatocyte-
like cells (Marongiu et al., 2011; Maymó et al., 2018; Furuya et al.,
2019), hepatic sinusoidal endothelial cells (Serra et al., 2018),
insulin-producing pancreatic β cells (Szukiewicz et al., 2010)
through a combined approach using growth factors, cytokines,
extracellular matrix proteins, or cocultured with mouse
hepatocytes. Similarly, following treatment with noggin, serum,
basic fibroblast growth factor (bFGF), and retinoic acid, hAESCs
are able to differentiate into neural cells (Ishii et al., 1999; Okawa
et al., 2001; Niknejad et al., 2010). Additionally, proper culture
condition also induces mesodermal-lineage cells, including
adipocytes, osteocytes, chondrocytes, and cardiomyocytes
(Miki and Strom, 2006; Fang et al., 2012). Therefore, hAESCs
provide an excellent cell source for cell therapy and regenerative
medicine. However, hAESCs consist of a heterogeneous cell
population according to different stem cell markers profiling
(Centurione et al., 2018), which hinders the large-scale clinical
transformation of hAESCs.

Additionally, the recombinant growth factors, synthetic and
semi-biological cytokines, and proteins used for maintaining

proliferation and inducing differentiation of stem cells, are
reported to have toxic effects and possible risk of rejection.
Also, these reagents are rapidly degradable and are required to
replace continuously, making the whole procedure highly
expensive, hence limiting their use in therapeutic tissue
engineering (Marion and Mao, 2006; Raghavan et al., 2013).
In this regard, exploring new biological approaches to facilitate
hAESCs differentiation potential is highly needed.

In recent years, a new research stream has been developing to
use naturally occurring bioactive compounds as stimulants of
stem cells because of their high availability, low toxicity, and
minimum side effects. Certain phytochemicals have been
extensively studied for adult stem cell proliferation and
inhibition of cancer cell proliferation (Udalamaththa et al.,
2016). Those plant-derived pharmacologically active substances
are reported to increase the rate of cell division and differentiation
through modulating complex signal pathways and to facilitate
tissue regeneration and immunomodulation. However, in
hAESCs, the effects of natural compounds have not been

FIGURE 1 | Heat map showing the significance and specificity of the
tissue expressions by the differentially expressed genes of different
compounds in hAESCs. Cells were treated with compounds for 7–10 days
and RNAs were isolated from the control and treated hAESCs for
microarray experiments using the Affymetrix’s GeneAtlas

®
System (Affymetrix

Inc., Santa Clara, CA, USA, human genome array strips; HG-U219). Genes
with a linear fold change >1.1 (verbenalin), 1.2 (RA, TCQA and EEASQ), and 2
(ISO, CY3G) and a p-value < 0.05 (one-way between-subjects ANOVA) were
considered as differentially expressed genes. Enrichment analysis was
conducted using the Tissue Specific Expression Analysis (TSEA) tool (http://
genetics.wustl.edu/jdlab/tsea//). Heat map was generated on Morpheus tool
(https://software.broadinstitute.org/morpheus//). Significance of tissue
enrichment were identified by Fisher’s Exact test. pSI, Specificity Index
thresholds; pSI 0.05, significantly enriched all transcripts; pSI 0.0001, most
specific subset of significantly enriched transcripts; CY3G, cyanidin 3-
glucoside; EEASQ, ethanol extract of Aurantiochytrium-derived squalene;
ISO, isorhamnetin; RA, rosmarinic acid; TCQA, 3,4,5-tri-O-caffeoylquinic acid;
Ver, verbenalin.
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explored widely. In our previous studies, we have reported for the
first time that several natural compounds could regulate early
biological events in hAESCs suitable for controlled differentiation
of hAESCs. A caffeic acid ester, rosmarinic acid (RA), showed the
potential of enhanced neural cell differentiation in hAESCs
through downregulating the gene expressions related to
canonical WNT pathway, BMP/TGF-b pathway, and notch
signaling pathway (Ferdousi et al., 2019). RA also upregulated
the expression of nemo like kinase (NLK), the positive effector of
non-canonical WNT pathway. A caffeoylquinic acid derivative,
3,4,5-Tri-O-Caffeoylquinic acid (TCQA), enhanced the
expressions of catenin beta 1 (CTNNB1), bone morphogenetic
protein 5 (BMP5), versican (VCAN), melanocortin 1 receptor
(MC1R), and dermokine (DMKN) in hAESCs, which are known
to be involved in neural and pigment cell differentiation (Bejaoui
et al., 2021). A flavonol aglycone isorhamnetin could induce the
expression of several hepatic progenitor markers, like delta-like
non-canonical Notch ligand 1 (DLK1), epithelial cell adhesion
molecule (EPCAM), and albumin (ALB). Isorhamnetin-treated
hAESCs also showed several mature hepatocyte functions,
including ICG uptake, glycogen storage, and urea production,
and weak hepatic cytochrome P450 (CYP) enzyme activity
(Uchida et al., 2020). An anthocyanin, cyanidin 3-glucoside
(CY3G), upregulated the expression of meteorin like glial cell
differentiation regulator (METRNL) in hAESCs, which is an
adipomyokine with pleiotropic activities in adipose tissue
(Takahashi et al., 2021). These findings in hAESCs are
supported by previous studies on these compounds in
different in vitro and in vivo settings. For example, RA has
been reported to exert neuroprotective effects in
neuroinflammatory and neurodegenerative diseases (Takeda
et al., 2002; Ito et al., 2008; Sasaki et al., 2013; Kondo et al.,
2015; Makhathini et al., 2018), which has been attributed to RA’s
capacity to induce neural differentiation and neurotransmitter
release. Similarly, TCQA has been reported to improve cognitive
function in aging model mice through inducing adult
neurogenesis (Sasaki et al., 2019a). TCQA has also been
reported to promote hair regrowth and pigmentation in vitro
and in vivo (Bejaoui et al., 2019; 2020). Isorhamnetin has been
widely reported to alleviate hepatic fibrosis in a number of in vivo
models (Lee et al., 2008; Ganbold et al., 2019; Liu et al., 2019),
while CY3G is known for its anti-obesity and anti-diabetic effects
through modulating adipocyte differentiation (Matsukawa et al.,
2015; Olivas-Aguirre et al., 2016; Saulite et al., 2019). In Figure 1,
we have shown the enriched cell types by differentially expressed
genes in different compound-treated hAESCs. Detailed
experimental and analysis procedures are available in our
previously published paper (Ferdousi et al., 2019). In the
future, establishing the optimal hAESCs culture procedure by
utilizing appropriate preconditioning with natural compounds is
worth further investigation.

Natural Bioactive Compounds to Enhance
Therapeutic Potential of hAESCs
The distinct immunomodulatory properties of hAESC make it
the most promising candidate for cell-based therapy (Miki, 2011).

Specifically, hAESCs have very low immunogenicity, thus are
suitable for allotransplantation. Indeed, mounting studies have
revealed the beneficial outcomes of hAESCs-based therapy for
wound healing (Zhao et al., 2018; Zheng et al., 2018), skin graft
(Li et al., 2012), injury repair (Kamiya et al., 2005; Parmar
et al., 2006; Bai et al., 2020), pulmonary and liver fibrosis
(Manuelpillai et al., 2012; Tan et al., 2014; Miki, 2016; Tan
et al., 2017; Cargnoni et al., 2018), and importantly in
neurological diseases (Di Germanio et al., 2016; Sanluis-
Verdes et al., 2017), including spinal cord injury (Gao et al.,
2014), Parkinson’s disease (Yang et al., 2010), Alzheimer’s
disease (AD) (Xue et al., 2012; Kim et al., 2020), and multiple
sclerosis (McDonald et al., 2011; Liu et al., 2012). However,
successful clinical outcomes of hAESC transplantation depend
on its immunomodulating functions. A previous study showed
that expansion of hAESCs in serum-free culture media leads to
significantly different expressions of stem cell markers,
increased differentiation capacity and immunosuppression
(Yang et al., 2018). Another study reported that prolonged
exposure of hAESCs to the inflammatory cytokines, namely
interleukin (IL)-1β and interferon (INF)-γ, resulted in
enhanced secretion of immunomodulatory molecules
(Kolanko et al., 2019). However, while current studies focus
on the safety and efficacy of translating hAESC-based therapy
into clinical practices, using natural compounds for priming
approaches to improve the therapeutic efficacy of hAESCs has
not been explored.

Our previous studies showed that treatment with natural
compounds increases anti-inflammatory potential of hAESCs
(Bejaoui et al., 2021; Ferdousi et al., 2021; Takahashi et al.,
2021). We have also reported that isorhamnetin may have the
potential to improve anti-fibrotic effects of hAESCs (Aonuma
et al., 2020). Additionally, we showed that an iridoid glucoside
verbenalin may enhance therapeutic potential of hAESCs for AD
through targeting multiple pathologies simultaneously, including
lysosomal dysfunction, pathological angiogenesis,
neurometabolic aging, pathological protein aggregation, and
circadian rhythms (Ferdousi et al., 2020). A recent interesting
study reported that a combination of oral administration of
lycopene, a carotenoid hydrocarbon found in bright red fruits
and vegetables, and hAESCs transplantation could significantly
ameliorate cognitive function in an in vivo AD model compared
to a single treatment of lycopene and hAESC (Xu et al., 2021).
Additionally, combination treatment of lycopene and hAESC also
improved immunosuppressive activities in chroid plexus of AD
rats. In Table 1, biological functions of different compounds in
hAESCs are listed. We envision the emerging combination of
naturally occurring compounds and hAESCs will offer additional
opportunities for successful clinical translation of hAESC.

hAESCs as a Drug Screening Tool for
Natural Compounds
Human PSCs, including both ESCs and iPSCs, have been used
extensively as physiologically relevant in vitro human models in
high-throughput drug screening, from target identification to
preclinical compound evaluation. Stem cell-based methods
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reduce the timelines and attrition rate of new therapeutics
(McNeish, 2004; Ebert and Svendsen, 2010; Laustriat et al.,
2010; Grskovic et al., 2011; Rubin and Haston, 2011; Engle
and Puppala, 2013). However, limited cell resources, invasive
extraction procedures, expensive cell reprogramming and
maintenance procedures, and ethical constraints are the main
challenges for the large-scale use of ESCs and iPSCs for drug
screening and toxicity testing.

On the other hand, a huge number of small molecules derived
from or based on natural compounds become available for drug
screening and biological investigations each year. However,
despite substantial technological advances, the rate of new
medicine discovery is exceptionally low. Indeed, drug
discovery is greatly hampered by the gap between the
validation of the compound and its successful clinical
application. The unpredictability of the currently used in vitro
cellular models, where the crucial elements of drug-biology
interaction are lost, and the complexity of the in vivo
microenvironment are behind the translational inefficiency of
new target compounds.

In this regard, hAESCs and other perinatal stem cells, which
are derived from biological waste products, may offer promising
cell sources in drug screening and toxicity testing efforts. In
Figure 2, we have shown important biological functions of

different natural compounds observed in hAESCs (please refer
to Supplementary Figure file for details). In hAESCs,
isorhamnetin showed anti-fibrotic potential, which was then
validated in the cardiac fibrosis in vivo model (Aonuma et al.,
2020). The observed neuroprotective potential of microalgae-
derived squalene (Ferdousi et al., 2021) has also been validated in
aging model mice (Sasaki et al., 2019b; Sasaki et al., 2020).
Similarly, the chemical synaptic transmission activity of RA
was observed in depression model mice (Sasaki et al., 2013;
Kondo et al., 2015), and the neurogenesis-regulating effect of
TCQA was confirmed in aging mice (Sasaki et al., 2019a). Our
observations strongly suggest that hAESCs would provide a
promising platform to perform initial functionality screening
of natural compounds.

DISCUSSION

Biologically active compounds have been incorporated into stem
cell research to maintain stem cell proliferation or to facilitate
controlled differentiation into more defined tissues
(Udalamaththa et al., 2016; Udagama and Udalamaththa,
2018; Saud et al., 2019). Our previous studies have suggested
the potential of natural compounds in optimizing the

FIGURE 2 | k-means clustering and PPI network of the differentially expressed genes (computed using STRING; https://string-db.org/). Significantly enriched gene
ontologies (biological processes) in each network are presented. Nnodes = number of nodes. (A) Cyanidin 3-glucoside; (B) ethanol extract of Aurantiochytrium-derived
squalene (EEASQ); (C) Isorhamnetin; (D) Rosmarinic acid; (E) 3,4,5-tri-O-caffeoylquinic acid (TCQA); (F) Verbenalin. Cells were treated with compounds for 7–10 days
and RNAs were isolated from the control and treated hAESCs for microarray experiments using the Affymetrix’s GeneAtlas

®
System (Affymetrix Inc., Santa Clara,

CA, USA, human genome array strips; HG-U219). Genes with a linear fold change >1.1 (verbenalin), 1.2 (RA, TCQA and EEASQ), and 2 (ISO, CY3G) and a p-value < 0.05
(one-way between-subjects ANOVA) were considered as differentially expressed genes.
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microenvironment and regulating the early biological events to
induce directed differentiation of hAESCs. Although hAESCs
have already been studied extensively for their therapeutic
potential (Toda et al., 2007), we anticipate that the emerging
combination of natural compounds and hAESCs would lead to a
stable molecular signature, enhanced proliferation capacity, and
improved therapeutic efficacy.

One of the major challenges in hAESCs research is the
heterogeneity in primary amnion-derived epithelial cell
populations based on their cell surface profiling (Centurione
et al., 2018; Ghamari et al., 2020). For example, studies showed
that NANOG is expressed in only 1–3% of hAESCs, about 50% of
term hAESCs express SSEA-4, and co-expression of SSEA-4,
TRA1-60, and TRA1-81 is found in 4% of amniotic epithelial
cells (Miki et al., 2005; Miki and Strom, 2006; Miki et al., 2007;
Bryzek et al., 2013). Additionally, hAESCs derived from different
areas of amniotic membrane exhibited different pluripotent surface
markers expression and proliferative ability (Centurione et al.,
2018). However, several studies have proposed better controllable
approaches for generating hAESCs homogeneous enough for
biological and clinical application (Miki et al., 2010; Murphy
et al., 2010; Zhou et al., 2013; Gramignoli et al., 2016;
Gottipamula and Sridhar, 2018; Yang et al., 2018). Another
study showed that expansion of hAESCs in 3D culture system
and subsequent isolation from the adherent subpopulations may
enhance the stemness properties of hAESCs (Furuya et al., 2019).

From one human term amniotic membrane, nearly 200
million hAESCs can be harvested, allowing sufficient cell
supply for large-scale use in academic research,
pharmaceutical industry, and clinical application. For our
studies on natural compound-treated hAESCs, we received the
cells from ‘The Tsukuba Human Tissue Biobank Center (THB)’
established at the University of Tsukuba Hospital in 2013
(Takeuchi et al., 2016). The hAESCs were isolated from the
mothers’ donated placenta who underwent cesarean section.
Biobanking of perinatal stem cells began over three decades
ago with the establishment of umbilical cord blood biobank.
However, as the field of perinatal cells and regenerative medicine
is progressing rapidly, biobanking of other types of perinatal stem
cells, including hAESCs, will be an integral part of successful cell-
based therapy.

Recent advances in genome-wide expression profiling, single-
cell multi-omics analysis followed by machine learning-based
analyses permit systematic approaches to the biological discovery
of regulatory mechanisms and biochemical pathways (Chavan
et al., 2006; Kumar et al., 2012). They have indeed provided

certain unique opportunities for widening the application of
hAESC research platform.

In the future, integrating natural compounds to hAESCs to
establish an optimal culture condition, to achieve appropriate
preconditioning for enhancing the therapeutic potential would be
new opportunities for further investigation.
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