2012年4月
Anti-Aging Effects of Hesperidin on Saccharomyces cerevisiae via Inhibition of Reactive Oxygen Species and UTH1 Gene Expression
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY
- ,
- ,
- ,
- ,
- ,
- 巻
- 76
- 号
- 4
- 開始ページ
- 640
- 終了ページ
- 645
- 記述言語
- 英語
- 掲載種別
- 研究論文(学術雑誌)
- DOI
- 10.1271/bbb.110535
- 出版者・発行元
- TAYLOR & FRANCIS LTD
This study used a replicative lifespan assay of K6001 yeast to screen anti-aging food factors in commercial flavonoids. Hesperidin derived from the Citrus genus extended the lifespan of yeast at doses of 5 and 10 mu M as compared with the control group (p < 0.01, p < 0.01). Reactive oxygen species (ROS), real-time PCR (RTPCR), and lifespan assays of uth1 and skn7 mutants with the K6001 background were used to study the anti-aging mechanisms in yeast. The results indicate that hesperidin significantly inhibits the ROS of yeast, and UTH1 gene expression, and that SKN7 gene are involved in hesperidin-mediated lifespan extension. Further, increases in the Sir2 homolog, SIRT1 activity, and SOD gene expression were confirmed at doses of 5 (p < 0.01) and 10 mu m (p < 0.05). This suggests that Sir2, UTH1 genes, and ROS inhibition after administration of hesperidin have important roles in the anti-aging effects of yeast. However, the aglycon hesperetin did not exhibit anti-aging effects in yeast.
- リンク情報
- ID情報
-
- DOI : 10.1271/bbb.110535
- ISSN : 0916-8451
- eISSN : 1347-6947
- PubMed ID : 22484922
- Web of Science ID : WOS:000304025900002