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Abstract. We report on computer search for generalized Gosper curve
for 37 < N < 61, where N is the degree of the generalized Gosper curve.
From the results of the computer search and some geometrical insight,
we conjecture that the degree N satisfies N = 6n+1. We investigate the
existence of infinite series of generalized Gosper curves. We show how to
generate these series and introduce two new methods, the ‘decomposition
method’ and the ‘modified layer method’.

1 Generalized Gosper space filling curves

The Gosper curve is a space filling curve discovered by William Gosper, an
American computer scientist, in 1973, and was introduced by Martin Gardner
in 1976 [1, 2]. The curve is constructed by recursively replacing a bold arrow,
called initiator, by seven arrows, called generators, Fig. 1(a), Fig. 1(b) and Fig.
1(c) illustrate the curves obtained by replacing the initiator by generators once
and twice respectively.

(a)   (b)    (c) 

Fig. 1. Gosper curve.

The Gosper curve is said to be a monster curve since it is a path from the root
to the tip of the initiator visiting all interior lattice points on a regular triangular
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lattice. In 2001 [3], we found many such monster curves, called generalized Gosper
curves, by computer search. Their shapes are similar to the original Gosper curve
as shown in Fig. 2.

Fig. 2. Generalized Gosper curve with N = 13, 43, 91.

The generalized Gosper curves are defined by the following procedure used
in the computer search in [3].

1. Choose the degree of the generalized Gosper curve N , the number of arrows
included in the generator.

2. Assemble N hexagons having equilateral triangles inside as shown in Fig. 3
(a). We call this assembly of hexagons B-figure.

3. Choose two vertices from the triangles in B-figure as root and tip of the
initiator.

4. Create a tiling by B-figures as shown in Fig. 3 (b), by using edges of the
equilateral triangle having the initiator as its one side, as translation vectors.
Then

N = x2 + y2 + xy (1)

where x and y (= 0, 1, 2, . . .) are the numbers of horizontal and vertical
triangles between the end points of the initiator as shown in Fig. 3 (c).

5. The B-figure has to have three-fold rotational axis. Therefore,

N = 3m or 3m + 1, m = 0, 1, 2, . . . . (2)

6. Both the root and tip of the initiator have to be three-fold rotational axes
of the tiling pattern of the B-figure.

7. By taking one edge from each equilateral triangle in the B-figure, construct
a path from the root to the tip of the initiator. Confirm that the path visits
all lattice points in the B-figure, except the points on the boundary, where
the points are covered by only one triangle.

8. Convert the edges in the path to the arrow so that the direction of the arrow
is counterclockwise in the equilateral triangle. Then obtain the generator
arrows as shown in Fig. 3 (d).
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      (a)                   (b)            (c)              (d) 

x’s 
y’s 

Fig. 3. B-figure and initiator triangle.

In [3], computer search for generalized Gosper curves for N ≤ 37 was per-
formed and the existence of infinite series of generalized Gosper curves was
confirmed. In this paper, we report on two new results. In section 2, results of
computer search for 37 < N ≤ 61 are reported. In section 3, many infinite series
of generalized Gosper curves are shown.

2 Degree and Number of Curves

Computer search was performed for the generalized Gosper curves for N ≤ 61.
We were able to determine the number of generalized Gosper curves CN and
the number of corresponding B-figures BN for given N . In Table 1, we tabulate
CN , BN and also CN(i), the number of curves on the i’th B-figure, for N given
by Eqs. (1) and (2).

Table 1. Number of generalized Gosper curves CN . N ’s with CN = 0 are omitted.

N x y CN = CN (1) + CN (2) + · · · + CN (BN)

7 1 2 1
13 1 3 1
19 2 3 1
31 1 5 7 = 1 + 5 + 1
37 3 4 8 = 1 + 2 + 3 + 2
43 1 6 24 = 3 + 1 + 19 + 1
49 0 7 134 = 58 + 5 + 3 + 60 + 4 + 4
49 3 5 75 = 41 + 18 + 1 + 6 + 2 + 1 + 5 + 1
61 4 5 (486) = 1 + 13 + 14 + 153 + 19 + 166 + 24 + 45 + 10 + 5 + 1 + 34 + 1

From Table 1, we observe that among N = x2 + y2 + xy only N = 6n + 1
seem to be degrees allowed for the curves. Therefore,
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Conjecture. The degree N of the generalized Gosper curves has to satisfy

N = 6n + 1, (3)

where n is positive integers.

We have a rough scheme of the proof of this conjecture, but it is not complete
and not simple. We hope to produce the proof in a future paper.

From Table 1 we observe that the number of B-figures, BN , increases gradu-
ally with N . On the other hand, the computational time for BN increases expo-
nentially with N and this is the reason why we stopped calculation at N = 61.
We show all B-figures with 43 ≤ N < 61 in Fig. 4–6. The B-figures for N < 43
are given in [3]. We note that the calculation for N = 61 is not completed, and
that the number CN given in parenthesis in Table 1 is a lower bound.

Fig. 4. B-figures for N = 43. i = 1, 2, 3, 4 from the left.

Fig. 5. B-figures for N = 49, (x, y) = (7, 0). i = 1, 2, . . . , 6 from the left top to right
bottom.

3 Infinite Series of Curves

We discussed the natural extension of the Gosper curve in [3]. It is a simple
procedure to generate infinitely many curves with

N = 3k2 + 3k + 1, k = 1, 2, 3, . . . (4)
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Fig. 6. B-figures for N = 49, (x, y) = (5, 3). i = 1, 2, . . . , 8 from the left top to right
bottom.

from the Gosper curve as shown in Fig. 7, where we can find a simple relation

Fig. 7. Infinite series of generalized Gosper curves with N = 3k2+3k+1. N = 7, 19, 37.

between successive generators in k. Since the B-figure for k + 1 is obtained by
adding a layer to the B-figure for k as shown in Fig. 8, we call this procedure
layer method. In this section, we introduce two new methods to generate infinite
series and show that there exist several other infinite series of curves.

Fig. 8. Layer method.
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3.1 Decomposition method

We consider the infinite series from N = 13. From the case N = 7, if we wrap
the B-figure by the layer method, we obtain 31 triangles shown in Fig. 9 (a). By

(a) (b)

Fig. 9. Wrapped B-figures for N = 13 and generalized Gosper curve on the B-figure.

comparing the results for N = 31 in [3], we find that this is a B-figure having
one generalized Gosper curve shown in Fig. 9 (b). However, it is difficult to find
any simple relation between the curve with N = 13 and Fig. 9 (b).

We introduce an assembly of hexagons which are obtained by replacing the
nodes of the generator by hexagons except two end points as shown in Fig. 10.
We call this assembly of N − 1 hexagons T-figure. From the definitions of the

Fig. 10. T-figure for N = 13. The filled circle is the three fold rotational axis.

B-figure, the T-figure has three-fold rotational axis. Therefore, the T-figure can
be decomposed into three congruent pieces α, β and γ as shown in Fig. 10.

Then we find that we can obtain the B-figure by adding layers of hexagons
onto each decomposed T-figure, as shown in Fig. 11, and can construct a path
from α to β then γ. In Fig. 11, the dashed hexagon with a circle inside is an
endpoint of the generator, and the filled circle is a three-fold rotational axis of
the T-figure.

As can be seen from Fig. 10, for N = 13, the path in α and γ starts from the
dashed hexagon with a circle inside and goes toward the hexagon with three-
fold rotational axis. The path in β starts from the dashed hexagon without a
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Fig. 11. Decomposed T-figure for N = 13 and wrapping process.

Fig. 12. Infinite series of generalized Gosper curves from N = 13 by decomposition
method. N = 13, 43, 91.

circle and goes toward the hexagon with three-fold rotational axis. The path in
successive bigger pieces are obtained similarly. In this way, we get an infinite
series from N = 13 shown in Fig. 12 with

N = 9k2 + 3k + 1, k = 1, 2, 3, . . . . (5)

We call this method decomposition method.
Up to now, we have not found another series generated by the layer method

other than the series found in [3]. However, the decomposition method generates
several infinite series. For example, the decomposition method works for a curve
with N = 31 and yields an infinite series shown in Fig. 13 with

N = 9k2 + 15k + 7, k = 1, 2, 3, . . . . (6)

The decomposed piece in this case is shown in Fig. 14.
For the generalized Gosper curve with N = 31 shown in Fig. 15 (a), a layer

is added to the decomposed T-figure in different a way as shown in Fig. 16. In
this case, the starting points and terminal points of the path in the decomposed
T-figures are also different from the previous two examples.

The path in α and β starts from the dashed hexagon with a circle inside and
goes toward the hexagon with a three-fold rotational axis. The path in γ starts
from the dashed hexagon without a circle and goes toward the hexagon with a
circle. This procedure yields the infinite series shown in Fig. 15 with

N = 9k2 + 15k + 7, k = 1, 2, 3, . . . (7)

from N = 31.
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Fig. 13. Infinite series of generalized Gosper curves from N = 31 by decomposition
method. N = 31, 73.

Fig. 14. Decomposed T-figure for N = 31 and wrapping process.

 (a)     (b)     (c) 

Fig. 15. Infinite series of generalized Gosper curves from N = 31 by decomposition
method. N = 31, 73, 133.

Fig. 16. Decomposed T-figure for N = 31 and wrapping process.

3.2 Modified layer method

In Fig. 17, a generalized Gosper curve for N = 37 and the corresponding B-figure
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Fig. 17. A generalized Gosper curve for N = 37 and its B-figure.

are shown. From this curve, we can generate an infinite series by modifying the
layer method as follows.

1. It is impossible to wrap the B-figure in Fig. 17 by a single layer as shown in
Fig. 18 (a).

(a) (b)

Fig. 18. Modified layer for N = 37.

2. We modify by removing the striped triangles from the B-figure and wrap it
by a single layer as shown in Fig. 18 (b).

3. After wrapping the modified B-figure, we add the removed triangles (striped
triangles) as shown in Fig. 18 (b).

4. Then we can connect a starting point of the new initiator and a terminal
point of the old initiator by a path, and a terminal point of the new initiator
and a starting point of the old initiator by a path.

5. It is possible to continue this procedure to obtain a new infinite series with

N = 3k2 + 15k + 19, k = 1, 2, 3, ... (8)

starting from N = 37 as shown in Fig. 19.

4 Summary

In this paper, we reported on new results of computer search for generalized
Gosper curves for 37 < N < 61. We then observed that the empirically allowed
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Fig. 19. Infinite series of generalized Gosper curve from N = 37 by modified layer
method. N = 37, 61, 91.

degree N for generalized Gosper curves seems to be N = 6n + 1. The proof of
this conjecture looks complex and lengthy. It is left for a future work.

Finally, we pointed out that there exist several infinite series of generalized
Gosper curves generated by three methods we introduced: the layer method, the
decomposition method, and the modified layer method. However, so far as our
investigation is concerned, several other series and methods exist and more than
three quarters of generalized Gosper curves can generate infinitely many curves.
For example, an infinite series with

N = 9k2 + 3k + 1 (9)

shown in Fig. 2 can not be generated by the above three method. Thus more
systematic investigation of infinite series for every generalized Gosper curve is
desired.
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