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Abstract

Single ionization of helium atoms in collisions with high-energy protons is

theoretically treated in the eikonal distorted-wave approximation. The mo-

mentum and angular distributions of the ejected electrons and the recoil ions

are calculated as functions of the proton scattering angle.

1 Introduction

Until recently, most measurements on ion-impact ionization had been of the cross

sections for single ionization integrated over the projectile scattering angles [1] and

of the energy and angular distributions of the ejected electr.ons [2]. However, recent

developments include the measurements of the angular distributions of scattered

protons in single and double ionization of helium atoms [3 - 5], and measurements

of the proton scattering angle in coincidence with recoil He+ ions [6] or with emitted

electrons [7]. Although such measurements are still limited, much further informa-

tion may be available in the near future. Therefore it would be worthwhile at this

time to study theoretically in detail the e~ergy and angular distributions of the

. .

emitted electrons and of the recoil ions for various fixed projectile scattering an-

gles.. The aim of this paper is to report the results of such work on single ionization

in proton-helium collisions. An approximation referred to as the eikonal distorted-

wave approximation is applied.. The details of the theory are found elsewhere [8].
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In Sec.2 of this paper, only a brief account of the theory is made. The momentum

and angular distributions are reported in Sec.3 for electrons and in Sec.4 for recoil

ions, and conclusive remarks are made in Sec.5.

2 Eikonal distorted-wave approximation

The scattering angle e of protons (with a mass m p ) for distant proton-helium colli­

sions at high energies is determined mainly by the perturbation by the electrostatic

potential of the helium atom. For" intermediate-distance collisions, e is determined

mainly by binary collisions with electrons (with a mass me). The maximum angle

of proton scattering by a stationary, free electron is rne/rnp or 0.545 mrad. The

proton angular distributions measured by Kamber et ale [4", 5] for collision energies

of 3-9 MeV clearly show a shoulder at about 0.55 mrad. 'rhis has been explained

to be a result of binary proton-electron collisions, which occur for e < 0.545 mrad

and not beyond [4 , 5]. The angular distributions calculated in the plane-wave Born

approximation are in good agreement with the measured angular distributions up to

angles slightly larger than 0.545 mrad, and reproduce the binary-collision shoulder

[4 ,5].

Scattering of protons by angles beyond the shoulder is determined mainly by

close collisions, and is influenced strongly by the Coulomb interaction with the

target nucleus, or the a particle. For this reason the proton angular distributions

at large angles are not reproducible in the plane-wave Born approximation. The

first-order Born method of Ref;[9] reproduces well the angular distribution over
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a wide angular range at 1 MeV, because it includes approximately the Coulomb

interaction between the proton and the helium nucleus. The shoulder is missing at

3 MeV in Ref. [9] because of the neglect of electrons ejected with high energies. This

neglect is due to the slow convergence of the partial-wave expansion, employed in

Ref.[9], of the wave functions of high-energy ejected electrons.

In the eikonal distorted-wave method of this paper and of Ref. [8] , we take into

account the distortion of the proton motion from the plane wave by the electrostatic

potential U(R) due to the helium atom in the ground state; R is the internuclear

distance. We avoid the partial-wave expansion of the wave function of the outgoing

electron. This method may be derived as follows [8]. We use atomic units in the

expressions in the text.

First, we apply the distorted-wave Born approximation using the distortion

potential U(R). In other words, the plane waves for the relative proton-helium

motion in the initial and final channels in the expression for the T matrix in the

plane-wave Born approximation are replaced by the wave functions distorted by

U(R). Normally, the distortion potential must be subtracted from the perturbation

potential to be sandwiched between the initial- and final-channel distorted waves. In

the present case, however, the distortion potential depends only on the internuclear

distance R, and contributes nothing to the T matrix because of the orthogonality

of the initial ground state <Pi and the final continuum state <PJ of the helium atom.

Next, the distorted waves are calculated in the eikonal approximation, i.e., are

expressed as the product of the plane wave and a factor exp(i,). In the calculations
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of the eikonal phase I' the momentum KJ of the relative motion in the final channel

is assumed to be unchanged from that Ki in the initial channel, which is a good

approximation at high energies. We refer to this whole procedure as the eikonal

distorted-wave meth0d.

The wave function <Pi is ~escribed in this work as

where the approximate Is orbital uo{r) is defined by

rc;
uo{r) = ~ ~exp{-(r)

(1)

(2)

with the variationally determined value 27/16 of the exponent (. The singlet con-

tinuum state )OJ is represented by a symmetrized product form

(3)

Here, <p+{r) is the wave function of the He+ ion in the ground state, and uc{r) is a

continuum orbital Schmidt-orthogonalized to the orbital uo{r) as

uc{r) = u~-)(r)-.< Uo, u~-) > uo{r)

with

(4)

The functions rand F here are the gamma function and the confluent hyperge-

ometric function as usual, !S is the momentum of the ejected electron, It = I~I,

and TJK. = -1t-1. The dependence of the cross sections on the quality of the wave
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functions is discussed in Ref.[S]. The above choice of the wave functions was found

to be accurate enough for the present purpose, except for small proton scattering

angles e less than about 0.1 mrad.

The T matrix in the eikonal distorted-wave approximation, denoted by T!iDW (K),

is expressible in terms of that in the plane-wave Born approximation, denoted by

TJi{K) and analytically calculable, where K is the momentum transferred from the

relative motion to the helium atom in the collision. The resultant expression is [8]

where

1 foo
A(Ql.) = 271" 10 bdbJo(Ql.b)(exp[i-y(b)] -1),

'j'(b) = - ~ [Ko(2(b) + (bK1(2(b)],

(6)

(7)

(8)

Jo is the Bessel function of order zero, K o and K 1 are modified Bessel functions,

It is the reduced mass of the relative proton-helium motion, Q = (Q.l, ZQ) =

(Q.l, <PQ, ZQ) in the cylindrical coordinates with the ZQ axis chosen along the mo-

mentum Ki of the relative motion in the initial channel, and T~(K + Ql.) is the

value of TJi(K + Q) for ZQ = O. As is seen from these expressions, there is no need

of partial-wave expansion of any kind.

The angular distributions of the protons calculated at proton energies Eo of 300

keY, 500 keY, 1 MeV, and 3 MeV using this method are discussed in Ref.[8]. They

agree quite well with the measured angular distributions in the angular region from

0.1 mrad 'to about 2 mrad, over which the differential cross section ranges over four

orders of magnitude. We found a substantial improvement over the plane-wave
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Born approximation, especially beyond the binary-collision shoulder, and even over

the method of Salin [9]. These encouraging results prompted us to proceed to the

study of more detailed information on all the outgoing particles in the ionization

process. A part of such work is reported in Ref. [8].

3 Momentum and angular distributions of ejected

electrons

The differential cross section calculated directly from the scattering amplitude

Tf;DW(K) is quintuply differential in Kand the momentum~ of the ejected electron.

It may be transformed into the cross section q(6, <.P, 1',$, K,y, K,z) quintuply differential

in the proton scattering angles (6, <.p) in the laboratory frame of reference, and in

1',. For visual· representation of the angular distributions 'of the ejected electrons
N

for different fixed values of 6, a convenient way is to choose the scattering plane

q> = 0, and plot q(e, 0,1',$,0, K,z) on the K,$-K,z plane. Examples of such a plot are

shown in Figs.la-le for Eo = 500 keY and for e = 0.1, 0.4, 0.6, 0.8, and 1.0 mrad.

Integration of the differential cross section q(6, <.P, 1',:&, "'y, K,z) over the angles

k leads to the cross section doubly differential in '" and 8, the dependence on
,.."

q> vanishing because of the symmetry of the collision system. Figure 2, taken

from Ref. [8] , shows normalized doubly differential cross sections for Eo = 500 keY

as functions of 1'" with e given as a parameter. Inspection of Figs.1 and 2 for

increasing values of e provides an understanding of how the momentum of the

ejected electrons change with the scattering angle or with the impact parameter of
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the collision.

For e = 0.1 mrad, the single-peak momentum distribution in Fig.2 in the eikonal

distorted-wave approximation is reproduced well in the plane-wave Born approxi­

mation. In Fig.la, this peak is seen around the point (~%, ~z) = (0,0). The peak

decays rapidly as either ~ in Fig.2 or (~; + ~;)1/2 in Fig.la increases. The electrons

are emitted mainly in the x direction in Fig.la, i.e., perpendicular to the direction

of the incidence of the protons, although the emission angle is slightly tilted towards

the direction of incidence.

For e = 0.4 mrad (Fig.1b), the main peak is shifted to be centered at (~x, ~z) ~

(-3,1) a.u. This peak is mainly due to the effect of the binary proton-electron col­

lisions; thus the binary collision effect is already seen at this scattering angle. This

peak is reproducible in the plane-wave Born approximation, but another, smaller

peak at (0,0) is not.

For e = 0.6 mrad, i.e., just, above the maximum deflection angle 0.545 mrad

in binary proton-electron collisions and where the effects of the binary collisions

are still observed quantum mechanically, the ~ distribution of Fig.2 in the eikonal

distorted-wave approximation has two peaks. The lower-~ peak is unreproducible

in the plane-wave Born approximation, but the higher-~ peak is reproducible, is

due to the binary collisions [8], and have two additional shoulders. In fact, the

higher-~ peak is triple-peaked at higher collision energies. Figure Ic shows that the

binary-collision peak has contours that are elongated towards the direction of the

proton incidence, the tendency already seen in the binary pe~k for e = 0.4 mrad.
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As e increases from 0.6 mrad, naturally, the binary peak rapidly decreases and

eventually only one peak around (~:z:, ~z) = (0,0) remains, which is unseen in the

plane-wave Born approximation.

4 Momentum and angular distributions of recoil

•Ions

In the light of the recent coincidence measurements of the scattered protons and

the recoil He+ ions [6], it would be interesting to transform the cross section

q(e, ~, I't,:z:, I't,y, ~z) into that differential in e, ~, and the momentum PR = (pR:z:, PRy, PRz)

of the recoil ion, which is denoted here as q(8, ~,P&'PRy,PRz). Figures 3a-3c show

contour maps of the recoil momentum distribution q(8, O,P&, O,PRz) on the scat-

tering plane q> ~ 0 for Eo = 500 keY, corresponding to Figs.la-Ie.

Let Po and p p denote the initial and final mome:nta of the proton. Also, the

usual notation is used for their absolute values and their z, y, and z components.

Then, the energy and momentum conservation laws lead to an ~pproximate relation

between ~ and PR
N

P& + ~:z: f'"ooJ_O
- 0,

Po

PRz + ~z Po - pp dE___ f'"OOJ f'"ooJ_

Po - Po - 2Eo'

(9)

(10)

where IlE is the energy of transition from the ground to the continuum state of

the helium atom, or the sum of the ionization potential (I.P.) and the energy of the

emitted electron.
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Equations (9) and (10) suggest that the peak around the point (~%, ~z) = (0,0)

in each of Figs.la-le is mapped onto the PR:&-PRz plane around the point defined

by these equations with x:% and X:z neglected. Each of Figs.3a-3c indeed contains

a peak at this position. The binary peak. for e = 0.6 mrad in Fig.Ic and Fig.2 is

mapped according to the full equations (9) and (10) retaining ~% and ~z. Because

of the upper-left boundary, however, it is unclear in Fig.3b whether there is a

peak at this posjtion. Each of Figs.3a-3c has a boundary that indicates that the

region outside the boundary is forbidden. In fact, the differential cross section

diverges towards the boundary because of the divergence of the Jacobian used in

transforming q(e'~''''%'~l1'''''z) into q(e,~,P&,PRY,pRz). The Jacobian takes a

form

(11)

where

Here, rna is the mass of the alpha particle.

5 Conclusion

Results of the eikonal distorted-wave calculations of single ionization in proton-

helium collisions have been presented in the form of contour maps of the differ-

ential cross sections q(e,~,,,,%,,,,y,~z) and q(e,~,P&,PRY,pRz) on the scattering

plane tP = o. Judging from th-e recent developments, briefly mentioned in Sec.!, in
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coincidence measurements of scattered protons and either ejected electrons or re­

coil ions, experiments on these differential cross sections may be feasible in the near

future for comparison with the present results. The present calculations neglect

the effect of charge transfer to continuum, which is important in forward scatter­

ing. For detailed information on the energy and angular distributions of emitted

electrons and recoil ions for e much smaller than the values treated in this paper,

calculations including this effect are necessary.
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FIGURE CAPTIONS

Fig.l. Contour map of the calculated (1'3:, I'z) distribution of the electrons emit­

ted in the scattering plane ~ = 0 in single ionization of helium by 500-keV protons.

The numbers on the contours represent the differential cross section q(e, 0, ~x, 0, ~z)

in atomic units per steradian, and the contours are drawn at intervals of a factor

of 101/n, n being 2, 3, or 4 depending on the figure. (a) e = 0.1 mrad. (b) e = 0.4

mrad. (c) e = 0.6 mrad. (d) e = 0.8 mrad. (e) e = 1.0 mrad.

Fig.2. Momentum distribution of the electrons ejected in single ionization of

helium by 500-keV protons that are scattered by angles e indicated as parameters

on the curves. EDW: results of the eikonal distorted-wave approximation normal­

ized by the cross section at e integrated over~. Born: results of the plane-wave

Born approximation with the same normalization as EDW. (The Born results for

e = 1.0 mrad are multiplied by 5.)

Fig.3. Contour map of the calculated (P&,PRz) distribution of the He+ ions

recoiled in the scattering plane tP = 0 in single ionization of helium by 500-keV

protons. The numbers on the contours represent the differential cross section

q(E),O'PR3:,O,PRz) in atomic units per steradian, and the contours are drawn at

intervals of a factor of 101/ 2 in (a) and (b) and 101/ 4 in (c). Po is the momentum of

the incident protons. (a) e = 0.1 mrad. (b) e = 0.6 mrad. (c) e = 1.0 mrad.
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