Hyper-radial adiadatic expansion for a muonic molecule dtp
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Abstract

By using the hyper-radius, adiabatic potential energy curves with
correct asymptotic energies are obtained for the Coulomb three body
problem. The bound state energies of the muonic molecules dtp
with total angular momentum J = 0 calculated adopting the three
lowest adiabatic potential energy curves are —318.72 eV and
—34.36 eV for vibrational quantum numbers v = 0 and 1,
respectively.
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It is well known that the wave function expanded in terms of basis
functions which are adiabatic in hyper-radius satisfies correct boundary
conditions for a general three body problem. In practical application of such
approach, five coordinates other than hyper-radius can be chosen in many
ways. Macek[1] and Lin[2] have succesfully used hyper-spherical coordinates
to treat atomic three body problems where one particle is heavy and two are
light. Recently Matveenko[3] and Matveenko and Abe[4] proposed to use
hyper-spheroidal coordinates for more genaral cases. In this letter, we
calculate, with sufficient accuracy, the adiabatic potential curves and non-
adiabatic coupling terms for the low lying states of dtp system with total
angular momentum J = 0 using hyper-spheroidal coordinates. We also
calculate the energies of the bound states withd = 0 by solving the three-
state coupled equations ;

The hyper-radius R for the system of a tritont, a deutron d and a negative
muon p is defined by
M R*=MX*+mx’, (1)
where M and m are reduced masses of systems (¢, d) and (¢+d, p),

UM = 1Um, +lUm,, - (2)

' (3)
1/m = ll(m‘+ md) + llmp,

X is the position vector of d relative to t and xis that of p with respect to
the centre of mass of (t+d) (see Fig. 1). My is an arbitrary mass constant.
We choose Mg = M in the following.

The Hamiltonian for our system is given using the hyper-radius by[1,3]

1 1 3 539 4)
H= - — — —R*= 4+ @&,
M g5 R R &),

where h is the adiabatic Hamiltonian operator which includes R as a
parameter and Q represents five dimensionless variables. The eigenfunctions
on (R; Q) and eigenvalues &n(R) of the operator h for agiven R is obtained by
solving the Schroedinger equation

[h—e,®)1$, (R;Q) =0. ®

' A
In hyper-spheroidal coordinates, Q is a set of variables (§, 11,)" ,X), where



(6)
E=(, + rg)/ X, n= (r,—ry) X,

and j" , the azimuthal angle for x around X axis, are the spheroidal
coordinates for x and X, the unit vector along X. In this coordinate system, h
is given explicitly by[3]
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where
= —ixX vx , (8)
p=1+ms?/ MX?, (9)
q= % x-Vx , (10)
4 1 2 a 2 3 1 & (11)
vZ=—[ (=@-1D=+—1-)—}+ 1,
" R*@E-n) % 3¢ an i’ @-1)(1-nHaf?
and V the Coulomb interaction between the three particles
(12)

V=UX - Ur, - 1r,.

The following units together with my = 5496.899 me, mq = 3670.481 me,
and my = 206.769 me (me ; electron mass) are used throughout this letter
unless otherwise stated. '

(13)

e=fh=m=1.

We have calculated en(R) and ¢n (R; Q) for the dtp system with J = 0 by
variational method. The form of the trial function adopted is

® =VpZb i (R), 14

4, ®) =5 ep(-BRYP, @), (15)
for small R and '

. L (16)

for large R. Normalization of ¢, is



7
@, @)= f-:; @t 0, *atdn dp.
Using 77 basis functions, we have obtained en(R) for the lowest three
states(n = 1,2 and 3) with sufficient accuracy in the region R > 0.3. The
results for R<0.3 are not very reliable. This inaccuracy is caused partly by
the numerical integration carried out over § and n. In theregion R = 0.3, we
have used a trial function consisting of 91 eigenfunctions of squared angular
momentum[1,5]
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(—ixX — 2 , (18)
dx

where

a=tan~"YVMX I Vmz) . (19)
With this hyper-spherical trial function, accurate results are obtained for R
< 0.01. Convergence becomes slower for R > 0.01. This is because (dtp)
system is more like a molecule rather than an atom.In the following, we use
hyper-spheroidal results for R > 0.3 and hyper-spherical results for R = 0.3.

The total wave-function y is expanded as

20
y=R%50 ®;0) Xu®. 0
Then the radial wave-function’X , satisfies a set of coupled equations
[—id—2 +V R) - E1\y R) %z[w R)+2U_(R)-= 1w (R) =0 (21)
2M dRz n " nm nm dR ) ’
where
15
V. (R) =¢ R)+ P +W_ (R, (22)
1 d
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Wn m(R) - m((pn Ezq)m)’

and E is the total energy. The coupling matrix elements Wy, is devided into
symmetric part Spm and antisymmetric part A,



(25)

P (26)

An m(R) = EE Un m(R)
In Figs. 2, 3 and 4, the potential energy curves e4(R), off diagonal non-
‘adiabatic coupling terms Upm(R), Aj12(R) and Sj2(R) are presented as
functions of the hyper-rudius R. The coupling terms Upy are calculated by
numerical differentiation of ¢, and by using the Hellmann and Feynman
theorem. Both results have agreed at least 3 digits in the calculation in the
hyper-spheroidal coordinates. Wpm are calculated by numerical
differentiation. It is confirmed that the numerical calculation well reproduces
the following correct asymptotic forms of V(6] '

V,(R) = — 2.4190/R*, 27

V,(R) = 0.0087 — 2.6454/R*, (28)
where 0.0087 is the difference in the binding energies between the dp and
tp atoms in the ls-state in our energy units. Energy is measured relative to
the ground state of tp. In the potential curve eg(R), there is a shallow
minimum of about 5eV at R = 7. This dip almost disappears when the
coupling term Wgg is added to e2(R). It should be noted that Ujg is zero in
the Born-Oppenheimer approximation because of g-u symmetry, while in the
hyper-radial adiabatic approximation this coupling term is non-zero. Ujg is
large at R = 7, where systems (tp) + d or (dp) + t begin to form (dtp)
molecule. It is known[7] that there exists non-adiabatic interaction which
- behaves as 1/R at large R. In Fig. 3, R-Ujg — -—0.385, while R-Ujg and
R-Ug3z — 0 as R goes to infinity.

We have solved eq. (19) and obtained the bound state energies of dtp
molecule with J = 0. Calculations are carried out both variationally and by
solving coupled differential equations numerically [6] for one- and two-state
cases and variationally for the three-state case. In the variational
calculation, 12 X n(n = 1,2,3, are numbers of states) basis functions are
adopted. Theresults are shown in Table 1. By the three-state calculation, we
have obtained —318.72 eV and —34.36 eV, for vibrational quantum numbers
v = 0 and 1, respectively. These values are compared with —319.14 eV and
—34.83 eV obtained by full variatioal calculations[8, 9, 10] using more than
several hundreds trial functions.




We have obtained, for the first time, the asymptotically correct hyper-radial
adiabatic potential energy curves and non-adiabatic coupling terms for the
muonic molecule dtp. A few state calculation for bound states gives
satisfactory results. The present results suggest that the hyper-spheroidal
method is particularly useful to treat molecular system such as HD+,
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Figure captions
Fig. 1. Coordinates for three-body system

Fig. 2. Adiabatic potential energy curves gy(R) for dtp system, as a
function of hyper-radius R. Energy and length are in the units
given in eq. (13)

Fig. 3. Non-adiabatic coupling terms Upm(R), labeled by (n,m).

Fig. 4. Symmetric part Sj2(R) and anti-symmetric part Aj2(R) of non-
adiabatic coupling term Wi2(R).



v=0 v=1
one-state —3117.75 —31.99
two-state —317.80 —33.46
three-state —318.72 —34.36
variation[8,9,10] —319.14 —34.83

Table 1. Bound state energies(in eV) of the dtp
molecule with J = 0.
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