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Abstract. In the general three-body problem on the plane, the
conservation of the center of mass and zero angular momentum has
a simple geometrical meaning: three tangent lines from the three
bodies meet at a point at each instant. It is called “three-tangents
theorem”. Kuwabara and Tanikawa extended this theorem to the
three-body motion in plane and in three-dimensional space with
non-zero angular momentum. In this short note, we will investi-
gate an alternative three-tangents theorem compared to Kuwabara
and Tanikawa’s in three-dimensional space.

1. Introduction

After the discovery of the figure-eight solution to the planar equal mass
three-body problem [1,2,3,4], equal mass N-body periodic solutions has
been paid match attention to. Recently new families of periodic solutions
for three equal masses moving under Newtonian gravity in a plane were
found by numerical simulation [5]. Both the figure-eight solution and new
solutions have zero total linear momentum and zero total angular momen-
tum. This fact leads to the following simple geometrical theorem [6]:

[Theorem 1] (three-tangents) If the total linear momentum and the
total angular momentum are zero, three tangent lines at bodies meet at a
point or three lines are parallel.

This theorem is proved without using the equation of motion of three
bodies. It means that the three-tangents theorem can be applied to wide
class of potential models. For example, it holds even for the three-body
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motion under the attractive logarithmic-potential accompanied by an ar-
tificial repulsive potential [6].

Kuwabara and Tanikawa [7] extended this theorem to the planar three-
body motion with non-zero total angular momentum. They showed that

[Theorem 2] (Extended three-tangents) If the total linear momentum
is zero and the total angular momentum is L in the planar three-body mo-
tion, the area St of the triangle formed with three tangent lines at the bodies
is given by

St·α =
L2

2
,

where α is the double area of the triangle formed with three momentum
vectors p1,p2,p3:

α=p1 ∧ p2 = p2 ∧ p3 = p3 ∧ p1.
The symbol ∧ is the exterior product of two vectors in two-dimensional
space.

Moreover, they applied the theorem to the three-dimensional case.
When the total angular momentum is projected to the yz-, zx-, and xy-
planes, and three tangent lines are also projected to each coordinate plane.

[Theorem 3] (three-tangents in three dimensions I ) If the total linear
momentum is zero and the total angular momentum is L in the three-
dimensional space, the area St=(St

yz, S
t
zx, S

t
xy) of the triangle formed with

projected three tangent lines to the yz-, zx-, and xy-planes is given by

St·α =
L · L

2
,

where L=(Lyz, Lzx, Lxy), and α=(αyz, αzx, αxy).

Being stimulated by Kuwabara-Tanikawa’s study, we investigated al-
ternative three-tangents theorem in three-dimensional space.

2. Alternative three-tangents theorem in three-dimensional space

We will set up a Cartesian coordinate system O-xyz. Suppose that three
bodies with masses m1,m2,m3 are acting the inertial forces between any
two bodies obeying Newton’s third law in the space. According to the
equation of motions, three bodies are configured in the space keeping the
center of mass being fixed in the Cartesian coordinate system. It is con-
venient to take the center of mass of three bodies as the origin O in the
system O-xyz.

Also each body has its own momentum vector pi (i = 1, 2, 3) so that
they satisfy

∑
i pi = 0. Three lines li (i = 1, 2, 3) are drawn along pi so that
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each line passes through each position for each body. If one of momentum
vectors is zero vector, put a point in the space instead of drawing a line.
We will call l1, l2, l3 tangent lines. Let us introduce a vector α which is the
double area of the triangle formed with three momentum vectors p1,p2,p3:

α=p1 × p2 = p2 × p3 = p3 × p1,

where the symbol × is the vector product of two three-dimensional vectors.
This relation is directly derived from

∑
i pi = 0. Since three momentum

vectors p1,p2,p3 are perpendicular to the double area α, they are always
parallel to a plane if all three momentum vectors are not zero vectors.

If α=0, either one of three momentum vectors is zero vector and others
are parallel with each other, or three momentum vectors are parallel with
one another, or all three momentum vectors are zero vectors.

On the other hand, If α6= 0, three momentum vectors form a triangle
in the three-dimensional space. In this case, the following theorem is valid:

[Theorem 4] (three-tangents in three dimensions II ) If the total linear
momentum is zero and three tangent lines are projected to a plane including
the total angular momentum in the three-dimensional space, the projected
three tangent lines meet at a point or three tangent lines are parallel.

3. Proof of Theorem 4

First, we will set up a Cartesian coordinate system O-x′y′z′. Three vectors
x̂′ = (1, 0, 0), ŷ′ = (0, 1, 0), and ẑ′ = (0, 0, 1) are taken as unit vectors along
x′-, y′-, and z′-axis, respectively. Let us choose a piece of plane τ passing
through the origin O and being parallel to the total angular momentum L.
The normal vector of τ is denoted by n. Now we set Cartesian coordinate
system O-x′y′z′ so that two orthogonal x′- and y′-axis are on τ , the rest
z′-axis is perpendicular to τ .

Second, we will project position and momentum vectors (qi and pi)
of three bodies onto τ . The projected position and momentum vectors are
denoted by q′

i and p′
i. To project position and momentum vectors in the

three-dimensional space onto τ , it is convenient to introduce the projection
matrix P in terms of n by P = I − n tn, where I is the identity matrix.
Then we obtain the relations between qi and q′

i, similarly between pi and
p′

i:

q′
i = Pqi

= qi − (qi · n)n, (1)

and

p′
i = Ppi

= pi − (pi · n)n. (2)
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Note that q′
i and p′

i are lying on the plane τ at each instant. For the
system O-x′y′z′ in which n is along z′-axis, the component representations
are written by

q′
i = (qix′ , qiy′ , 0), p′

i = (pix′ , piy′ , 0).

Since the center of mass O of three bodies is projected onto itself, the
conservation laws of the center of mass and the total linear momentum are
valid for the Cartesian coordinate system O-x′y′z′. Thus we have

∑
i q

′
i = 0

and
∑

i p
′
i = 0 at every instant. The total angular momentum is evaluated

in the system O-x′y′z′ as follows:

L =
∑

i

q′
i × p′

i +
∑

i

(qiz′pix′ − qix′piz′)ŷ′ +
∑

i

(qiy′piz′ − qiz′Piy′)x̂′

= Lz′ + Ly′ + Lx′ .

On the other hand the total angular momentum L is always on the plane
τ , so only the z′ component of L varnishes:

L′
z =

∑
i

q′
i × p′

i

=
∑

i

(qix′piy′ − qiy′pix′)ẑ′ = 0.

Now let c′t be the intersection point of two projected tangent lines l′1
and l′2. The angular momentum L′

z about the intersection point c′t is also
zero:

∑
i(q

′
i − c′t)×p′

i = 0. Also (q′
1 − c′t)×p′

1 = 0 and (q′
2 − c′t)×p′

2 = 0.
Thus we have (q′

3 − c′t) × p′
3 = 0. This means that the projected tangent

three linesl′1, l
′
2and l′3 meet at the same point c′t on τ . �

Before closing our statement, we will represent the intersection point
of three tangent lines c′t on τ by the projected position and momentum
vectors. It is simply written by

c′
t = −

[(q′
i × p′

i) · ẑ′]p′
j − [(q′

j × p′
j) · ẑ′]p′

i

(p′
i × p′

j) · ẑ′
, (3)

where (i, j) = (1, 2), (2, 3), (3, 1). Substituting (1) and (2) into (3), c′
t can

also be written by qi, pi and normal vector n in the three-dimensional
space.

Let us rotate τ in the three-dimensional space for fixed time. The
intersection point c′

t goes to infinity if the plane τ is parallel to α (n is
perpendicular to α). This is easily verified because

(p′
i × p′

j) · ẑ′ = (pi × pj) · n = α ·n = 0.
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