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Abstract. Measuring cups are everyday instruments used to measure
a required amount of liquid for many common tasks such as cooking,
. . . etc. A measuring cup usually has gradations marked on its sides. In
this paper we study measuring devices ungraded but which nevertheless
can measure any integral amount of liquid up to their full capacity. These
devices will be called universal measuring devices.

1 Introduction

A common device used to measure liquid in many Japanese stores some years
back, was a measuring box with a square base of area 6 and height 1. By tilting
the box, and using its edges and vertices as markers, it is possible to keep 6,
3, and 1 litters as shown in figure 1. The box would have no extra gradings to
measure 2, 4, and 5 liters. A store would keep a container holding large amounts
of a certain liquid.

If a customer wanted to buy a certain integral amount of liquid between 1
and 6, the store owner would proceed as follows:

Procedure SERVE

1. The store clerk would immerse his measuring box into the store’s container,
and fill it.

2. Then he would alternately empty a certain amount of liquid into the store’s
container and the customer’s.

For example to measure 5 liters, the clerk would first fill the container and
then pour into the customer’s container until 1 liter of liquid was left in the
measuring box. The remaining liquid would go back to the store’s container. To
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Fig. 1. Measuring 6, 3 and 1 liters

measure 4 liters, he would first fill our box. Next he would pour liquid into the
customer’s container until 3 liters were left into his box. Then he would pour two
liters into the store’s container, and put the remaining liter into the customer’s
container.

In this paper we are interested in studying measuring devices without gra-
dations which nevertheless can be used for measuring any integral amount of
liquid up to their full capacity by using the procedure SERVE described above.
We call such measuring boxes universal measuring device. We determine the
largest volume of a universal measuring device with triangular and rectangu-

lar bases. More precisely, we want to determine the dimensions of a universal
measuring box of maximum volume obtained by cutting a triangular cylinder
perpendicular to the x–y plane by the x–y plane (to produce the base of our
container), and another plane that cuts the cylinder above its base. In the case
of rectangular cilinders we cut by perhaps two parallel planes above its base to
obtain the container. We will assume that the lengths of the edges of our box
contained in the original triangular or rectangular cylinder are h1 < h2 < h3 or
h1 < h2 < h3 < h4 respectively. These will be called the heights of our box. We
show that the largest possible volume of such boxes are 41 and 691 respectively,
if the areas of the base of these boxes are 3 and 6, and their heights are 12, 13,
16, and 1, 32, 83, 691 respectively.

2 Universal containers with triangular base

In this and the next sections we prove that the maximum volume of a universal
measuring box with triangular base of area 3 is 41. The assumption that the area
of the containers base is 3 can be removed easily to study other triangular base
boxes. This assumption will simplify our analysis as the reader will soon realize.
Under this restriction the heights of a universal measuring box with triangular
base are 12, 13, and 16.
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Fig. 2. The volumes of the polyhedron shown here are h1 + h2 + h3, h2 and h1 + h2

respectively.

2.1 An interesting relationship

We start by determining the volumes that can be measured using corner points
of our container. We start by proving the following theorem.

Theorem 1. Let B be a box with base area 3, and heights h1 < h2 < h3. Then

we can measure the following amounts of liquid: h1, h2, h3, h1 + h2, h1 +
h3, h2 + h3, h1 + h2 + h3.

Proof: Assume that the vertices of B are labelled a1, a2, a3, a′

1, a′

2, a′

3 as
shown in figure 2. Assume that the distance between ai and a′

i is hi, i = 1, 2, 3.
It is well known that the volume of a tetrahedron with base of area A and height
h is Ah

3
. Since the area of the base of our measuring box, i.e. the area of the

triangle with vertices a1, a2, a3 is 3, it follows immediately that the volume of
the tetrahedron with vertices a1, a2, a3, a′

i is hi, i = 1, 2, 3.
We now show that the volume of the polyhedron with vertices a1, a2, a3, a′

i,
and a′

j is precisely hi + hj , i 6= j, i, j ∈ {1, 2, 3}. We make now the following
observation:

Let T be a triangular cylinder, and assume that the area of the triangle
obtained by cutting T along any plane perpendicular to its edges is 3. Then if
we choose two points p, q on one of its edges, and any two points r and s, one
in each of the remaining edges of T , then the volume of the tetrahedron with
vertices p, q, r, s is equal to the distance between p and q, see figure 3.

Suppose w.l.o.g. that i = 1, j = 2. Dissect now the polyhedron with ver-
tices a1, a2, a3, a′

1, a′

2 into two tetrahedron with vertices a1, a2, a3, a′

1 and
a2, a3, a′

1, a′

2 respectively, see figure 4. The volume of our first tetrahedron is
h1, and by our previous observation the area of the second one is the distance
from a2 to a′

2 which is h2.
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Fig. 3. Once we fix p and q, the volumes of the tetrahedron with vertices p, q, r, and
s remains constant regardless of the positions of r and s.

Using similar arguments, we can now show that the volume of our measuring
box is h1 + h2 + h3, and our result is proved. ut

3 The second reduction

Using our previous result, it follows that if h1 = 12, h2 = 13, and h3 = 16 we
can measure the following amounts, sorted in increasing order: l1 = h1 = 12,
l2 = h2 = 13, l3 = h3 = 16, l4 = h1 + h2 = 25, l5 = h1 + h3 = 28, l6 = h2 + h3 =
29, and l7 = h1 + h2 + h3 = 41.

Consider now any subsequence S = (li1 < · · · < lik
) of the sequence

(12, 13, 16, 25, 28, 29, 41).

We can now associate to it an amount of liters VS that can be measured with a
container with heights 12, 13, and 16 as follows:

VS = (lik
− lik−1

) + · · · + li1 , for k odd

or

VS = (lik
− lik−1

) + · · · + (li2 + li1), for k even.

For example if S = (16, 29, 41), VS = (41−29)+16 = 28. If S = (12, 16, 25, 28)
then VS = (28− 25) + (16− 12) = 7. From this, it is straightforward to develop
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Fig. 4. Dissecting the polyhedron with vertices {a1, a2, a3, a′

1, a′

2} into two tetrahedra
with volumes h1 and h2 respectively.

a method to measure VS liters using our container. Two examples will suffice to
illustrate this:

If S = (12, 16, 25, 28), to measure VS = 7 liters we proceed as follows: First
fill our measuring box, and pour back 41 − 28 liters into the store’s container.
Now proceed as follows: empty 3 = 28 − 25 liters into the customer’s container
until 25 liters are left in our measuring box. Then pour 9 = (25− 16) liters into
the store’s container. Next pour 4 = 16− 12 liters into the customer’s container
and finally empty the remaining 12 liters into the store’s container.

If S = (16, 29, 41), to measure VS = 28 liters, we fill our container, then
empty 12 = 41−29 liters into the customer’s container. Then pour 13 = 29−16
liters into the store’s container, and finally pour the remaining 16 liters into
the customer’s container. The reader may now easily verify that any integer i,
1 ≤ i ≤ 41 there is a subset S of (12, 13, 16, 25, 28, 29, 41) such that i = VS . In
the next section we develop an easy test to verify this fact.

Observe that since there are exactly 27 subsets of {h1, h2, h3, h1 + h2, h1 +
h3, h2+h3, h1+h2+h3} it follows that the maximum amount of liters a universal
container with triangular base can measure is 27 − 1 = 128 − 1, the empty set
corresponds to 0 liters.

In the next section we show that the largest volume a universal measuring
box with triangular base can have is 41, thus proving that 12, 13, 16 are the
heights of an optimal universal measuring box with triangular base of area 3.

3.1 Proof of optimality

We now prove that the maximum volume of a universal measuring box with
triangular base is 41. Note first that there are only two possible orderings for
the measurable quantities of such a box. These are:

0 < h1 < h2 < h3 < h1 + h2 < h1 + h3 < h2 + h3 < h1 + h2 + h3, (1)



and

0 < h1 < h2 < h1 + h2 < h3 < h1 + h3 < h2 + h3 < h1 + h2 + h3. (2)

Consider the second ordering now, and take the sequence formed by the
difference of consecutive elements for this ordering: s1 = h1 − 0, s2 = h2 − h1,
s3 = h1, s4 = h3 − (h1 + h2), s5 = h1, s6 = h2 − h1, and s7 = h1.

Observe next that for any subsequence S of

(h1, h2, h1 + h2, h3, h1 + h3, h2 + h3, h1 + h2 + h3) (3)

we can express VS as a sum of some subset of (s1, . . . , s7), e.g. if

S = (h1, h1 + h2, h1 + h3, h1 + h2 + h3)

then
VS = ((h1 + h2 + h3) − (h1 + h3)) + ((h1 + h2) − h1)

equals
s7 + s6 + s3 + s2.

It is also straightforward to see that to any subset of {si; i = 1, . . . , 7} we
can associate a unique subsequence of

(h1, h2, h1 + h2, h3, h1 + h3, h2 + h3, h1 + h2 + h3).

Thus the number of integers VS that can be formed with subsequences of

(h1, h2, h1 + h2, h3, h1 + h3, h2 + h3, h1 + h2 + h3)

equals the number of elements that can be obtained as sums of subsets of {si; i =
1, . . . , 7}.

Let us denote by a = h1, b = h2 − h1 and c = h3 − (h1 + h2). Note that any
number obtained as the sum of a subset of {si; i = 1, . . . , 7} must be of the form
ai+ bj + ck, where i ∈ {0, 1, 2, 3, 4}, j ∈ {0, 1, 2}, and k ∈ {0, 1}. This is because
h1, h2 − h1 and h3 − (h1 + h2) repeat themselves in the set of differences 4, 2
and 1 times respectively. It follows now that the maximum capacity of a box in
this case is 5 × 3 × 2 − 1 = 29.

Now we consider the sequence

h1, h2 − h1, h3 − h2, h1 + h2 − h3, h3 − h2, h2 − h1, h1,

of differences of consecutive elements for (1).
Similarly to the previous paragraph, denote by a = h1, b = h2−h1, c = h3−h2

and d = (h1 + h2) − h3. In this case we have that any number generated by (1)
is one of the form ai+ bj + ck + d`, where i, j, k ∈ {0, 1, 2} and ` ∈ {0, 1}. Again
this is because h1, h2 − h1, h3 − h2 and (h1 + h2) − h3 repeat themselves in
the sequence of differences 2, 2, 2 and 1 times respectively. Thus a first upper
bound for the number of generated numbers when using a sequence like (1) is
3 × 3 × 3 × 2 − 1 = 53.



We now prove that 12 of these quantities are repeated. To this end note that
a − c = d. Thus it is true that

ai + bj + ck + d` = a(i + 1) + bj + c(k − 1) + d(` − 1),

whenever i ∈ {0, 1}, k ∈ {1, 2}, ` = 1 and j ∈ {0, 1, 2}. Therefore the number of
repetitions is 12, and therefore using this case we can generate at most 53−12 =
41 numbers. Our result now follows since using the box with triangular base of
area 3 and heights B = (12, 13, 16) we can measure from 1 to 41 liters.

4 Generating sequences

Let Σ = (n1, . . . , nk) be a sequence of numbers such that ni < ni+1, i =
1, . . . , k − 1. For each subsequence S = (ni1 , . . . , nij

) of Σ we associate the
number VS = (nij

− nij−1
) + (nij−2

− nij−3
) + . . . + ni1 , j odd, or nS =

(nij
− nij−1

) + (nij−3
− nij−4

) + . . . + (ni2 − ni1), j even.
For example if Σ = (4, 12, 23, 24, 69, 71, 81, 213, 225, 282 ) and S =

(12, 69, 81, 282) then VS = (282 − 81) + (69 − 12)
We call Σ a generating sequence if for each integer i, 1 ≤ i ≤ nk there is a

subsequence S of Σ such that i = VS . The best known generating sequences are
the ones corresponding to powers of 2, i.e. (1, 2, 4, . . . , 2k).

In this section we develop a linear time test to decide if a sequence of numbers
is generating.

Let Σ′ = (0, n1, . . . , nk), and if s0 = 0, let Ψ = (s0, s1, . . . , sk) be the se-
quence obtained by sorting the sequence (ni − ni−1, i = 1, . . . , k), this is consid-
ering n0 = 0. For example if Σ is the sequence

(4, 12, 23, 24, 69, 71, 81, 213, 225, 282 )

we have

Ψ = (0 , 1 , 2, 4, 8, 10, 11, 12, 45, 57, 132).

We now prove:

Theorem 2. The sequence Σ is generating if and only if si−1 ≤ s0+ · · ·+si−1,

i = 1, . . . , k.

Using our previous result we can now easily verify that

Σ = (4, 12, 23, 24, 69, 71, 81, 213, 225, 282 )

is generating since

2 − 1 = 1
4 − 1 = 1 + 2



8 − 1 = 1 + 2 + 4
10− 1 < 1 + 2 + 4 + 8
11− 1 < 1 + 2 + 4 + 8 + 10
12− 1 < 1 + 2 + 4 + 8 + 10 + 11
45− 1 < 1 + 2 + 4 + 8 + 10 + 11 + 12
57− 1 < 1 + 2 + 4 + 8 + 10 + 11 + 12 + 45
132− 1 < 1 + 2 + 4 + 8 + 10 + 12 + 45 + 57

We proceed now to prove our result. Let Σ = (n1, . . . , nk). Observe that
ni−nj = (ni−ni−1)+(ni−1−ni−2)+· · ·+(nj+1−nj). Thus for any subsequence
S = (ni1 , . . . , nij

) of Σ, VS can be written as a sum of elements of Ψ , e.g. in our
previous example if

S = (23, 24, 69, 81, 282),

NS = (282 − 81) + (69 − 24) + 23,

which equals,

(282−225)+(225−213)+(213−81)+(69−24)+(23−12)+(12−4)+(4−0),

i.e.,
VS = 57 + 12 + 132 + 45 + 11 + 8 + 4.

This implies that Σ is generating if any integer from 1 to nk can be written as
the sum of some elements of Ψ .

Suppose next that si−1 ≤ s1 + · · ·+si−1, i = 1, . . . , k. We now prove that Σ

is generating. Notice that s1 = 1. By induction assume that any integer between
1 and s1+. . .+si−1 can be expressed as the sum of some subset of {s1, . . . , si−1}.
Observe now that any integer of the form m + si, 0 ≤ m ≤ s1 + · · · + si−1 can
now be generated the sum of the elements of a subset of {s1, . . . , si−1, si}. Since
by hypothesis si − 1 ≤ s1 + . . .+ si−1. It follows that any integer less than equal
to s1 + . . . + si can be expressed as the sum of the elements of some subset of
{s1, . . . , si} .

Conversely if for some i we have si − 1 > s1 + . . . + si−1 then clearly Σ′ is
not a generating sequence since s1 + . . . + si−1 + 1 can not be generated. Our
result follows.

5 Rectangular base boxes

In this section show that an optimal universal measuring box of square base of
area 6 is a box of heights 1, 32, 83, 691. Because the ideas are very similar to all
the ones used previously, we will only sketch the main arguments.

In a similar way to the case of triangular base boxes, we first find all the
amounts of liquid that can be directly measured with a box of heights h1 < h2 <

h3 < h4. Additional problems arise since there are a number of different shapes
of boxes having themselves different sets of measurable quantities. Similarly to
the triangular case, assume that the vertices of these boxes are labeled ai, a

′

i



for i = 1, 2, 3, 4, where the distance between ai and a′

i is hi. We must note
that the set of measurable quantities of a given rectangular base box depends
on the relative positions of the heights h1, h2, h3, and h4. If we start looking
at the heights at h1, then there are at most 6 different shapes that the boxes
can have, namely: (h1, h4, h3, h2), (h1, h4, h2, h3), (h1, h3, h4, h2), (h1, h3, h2, h4),
(h1, h2, h4, h3), and (h1, h2, h3, h4). Notice that first and sixth, second and fourth,
and third and fifth boxes have the same set of measurable quantities. It is easy,
but tedious work to check that the box B with heights (h1, h4, h3, h2) can measure
more quantities that any other box. For B, we find that we can measure the
following amounts: h1, 3h1, 6h1, h2, 3h2, 3(h1+h2), h3, 3h3, 3(h1+h3), 3(h2+h3),
and h4. For example, h1 can be measured by the points a2, a3 and a′

1, 3h1 by
a2, a4 and a′

1, 6h1 by the plane parallel to the base passing through a′

1, and so
on. It is possible to check, that for any of the other box, its set of measurable
quantities is a proper subset of the set of measurable quantities of the box B.
It follows that a universal measuring box of optimal dimensions cannot measure
more than 211 litters. We can summarize all previous observations in the next
theorem.

Theorem 3. A universal measuring box B of rectangular base with area 6 of

maximum capacity can measure {h1, 3h1, 6h1, h2, 3h2, 3(h1 + h2), h3, 3h3,

3(h1 + h3), 3(h2 + h3), h4} liters.

Having these results at hand, we can find a box of maximum capacity by
brute force. We did this by writing a C program that did the following: for
any set of heights for any given set of heights 1 ≤ h1 < h2 < h3 < h4 ≤ 211

we computed its set {h1, 3h1, 6h1, h2, 3h2, 3(h1 + h2), h3, 3h3, 3(h1 + h3),
3(h2 + h3), h4} of measurable quantities. We then applied to them the criterion
from theorem 2, and found two universal measuring boxes with heights 1, 32,
83, 691 and 2, 64, 166, 691, that can measure all integers quantities from 1 to
691. For any other set of heights, the obtained sets of measurable amounts were
not generating, or had smaller capacities.

Thus we have:

Theorem 4. The largest capacity of a universal measuring box with square base

is 691.
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