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Abstract

The paper consists of two topics on plane tiling, i.e., tilings with glide-reflection (pg tiling)
of polyominoes and a solid model for Penrose tiling, that were separately presented at the
conference. The former investigates some mathematical characters on pg tiling and obtains
all polyominoes, from domino (2-omino) to 11-omino, having the pg tiling by exhaustive
computer search. It is interesting to note that some polyominoes have several different types
of pg tiling.

The latter investigates the solid model obtained by recursive substitutions of star rhom-
bic dodecahedra with the size of τ−3, where τ(= 1.618034) is the golden ratio, and finds
that Penrose tiling is obtained by a single parallelepipedon, the acute rhombohedra usually
denoted by A6. The result may require some modifications of the theory previously estab-
lished, in which two kinds of parallelepipeda, the acute and obtuse rhombohedra usually
denoted by A6 and O6, must be provided.
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1 pg tiling of polyomino

Escher patterns [1], two-dimensional repeating patterns of a single motif without gaps, or
two-dimensional tiling of a single motif, have been studied by many physicists and mathe-
maticians. For example, Husimi and Nakamura proposed a simple method to produce such
patterns [2], and Nakamura [3] tabulated motifs which generate Escher patterns having ro-
tational axes. In this work, we use polyominoes [4] or n-ominoes, which are the union of n
square cells as a motif of Escher patterns, and consider only pg patterns among seventeen
two-dimensional patterns [5]. We present all possible pg patterns generated by a given n-
omino by using an algorithm suitable for computer with n ≤ 11. We also develop a computer
graphics system to generate patterns of larger polyomino.

1.1 Algorithm

A pg pattern has glide-reflection axes, that is, the pattern is invariant under operation
of reflection and simultaneous translation along the axes. The axes are all parallel and
located at equal intervals. We denote the interval of glide-reflection axes by x and length of
translation accompanied by the glide-reflection operation by p. In order to tile n-ominoes
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on a plane without gaps, these quantities have to satisfy

2px = n. (1)

Since all boundaries of n-omino are parallel or perpendicular to each other, direction of
glide-reflections have to be either parallel (case I) or 45 degrees (case II) to the boundaries
of n-omino. Considering the arrangement of cells of the n-omino in the overall pattern, x
and p are further restricted to

p =
u

2
, x =

v

2
, u, v = 1, 2, 3, . . . (2)

for case I, and

p =

√
2u

2
, x =

√
2v

2
, u, v = 1, 2, 3, . . . (3)

for case II.
The glide-reflection axes have to be on vertices of the cell or on the centers of the edges

of the cell (4). However, in case I, if u is even and part of the boundaries of the n-ominoes
align on the lines perpendicular to the direction of glide-reflection (“cut”), glide-reflection
axes can locate any position.

According to the above consideration, we can search all possibilities, which are finite, by
a computer and we can obtain all pg Escher patterns generated by a given polyomino. The
constituent polyominoes must be simply connected. The number of these n-ominoes are 5,
12, 35, 107, 363, 1248, 4460 and 16094 for n = 4, 5, 6, 7, 8, 9, 10 and 11, respectively.

Some of the polyominoes are themselves symmetric. Since a polyomino consists of square
cells, its symmetries are, in the usual notation of point symmetric groups, either C1, C2, Cs,
C2v or C4v. On the other hand, the pg group has a subgroup of higher symmetric two-
dimensional groups, i.e., pm, cm, pgg, pmg, pmm, cmm, p4g and p4m [5]. Therefore
some patterns generated by the algorithm in Section 1 may have these higher symmetries.

In Table 1, we summarize the conditions in which the symmetry of the two-dimensional
patterns generated by the algorithm increases with respect to the point symmetry of poly-
ominoes.

Table 1. Symmetry of generated patterns with respect to symmetry of polyominoes

C1 C2 C4 Cs C2v C4v

∥ ⊥ ̸ ∥ ̸

pg ∗ ∗ ∗ ∗ ∗ ∗
pm q = 0
cm q = x
pgg q = x q = x q = x
pmg q = 0 q = 0 ∗ ∗ q = 0 ∗
pmm q = 0 q = 0, p ̸= 2x
cmm q = x q = x, p ̸= x
p4g p = q = x
p4m q = x, p = x or

q = 0, p = 2x

The symbols ∥, ⊥, and ̸ imply that the angle between mirror axes of polyominoes and glide-
reflection axes of the generated pattern are 0, 90 and 45 degrees, respectively, and q/2 is
the minimum distance between the center of symmetry of the polyomino and glide-reflection
axes. If any conditions tabulated in the row do not hold, the patterns indicated by “∗” are
generated. The above-mentioned algorithm together with Table 1 enables us to generate all
Escher patterns of the pg family, i.e., the above mentioned nine groups.
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1.2 Example for pentominoes

As an example, we exhibit all Escher patterns of the pg family generated by pentominoes
(5-ominoes) along with symmetry of pentominoes and of patterns. The numbers, such as
5-2, are the n and the label to distinguish n-ominoes and an underscore means that the
pattern has a horizontal “cut”.

5- 2 C1 pg 5- 3 C1 pg 5- 4 C1 pg 5- 6 C2v cmm 5- 6 C2v pmg 5- 6 C2v pmm 5- 6 C2v cmm

5- 6 C2v pgg 5- 6 C2v pmg 5- 7 C1 pg 5- 7 C1 pg 5- 7 C1 pg 5- 9 C2 pgg 5- 10 C1 pg

5- 10 C1 pg 5- 10 C1 pg 5- 11 Cs pmg 5- 11 Cs cm 5- 12 Cs pg 5- 12 Cs cm 5- 12 Cs pmg

Figure 1: Escher patterns of the pg family generated by pentominoes.

It is interesting that the complex polyomino such as 5-12 in Fig. 3 yields the several(three)
different pg patterns. We have investigated such ‘degenerate’ patterns among all n-ominoes
with n ≤ 11. In Fig. 2, we show the polyominoes having largest ‘degeneracy’ of n-omino
generating pg patterns. Fig. 2(a) is the 10-omino which has the largest degeneracy (=8) and
Fig. 2(b) are the polyominoes which have the largest degeneracy (=5) among C1 polyominoes.

(a) 10-4460 (b.1) 4-3 (b.2) 8-3 (b.3) 8-275 (b.4) 8-325

Figure 2: n-ominoes having largest ‘degeneracy’.

The five degenerate patterns generated from the polyomino (b.3) in Fig. 2 are shown in
Fig. 3. In Table 2, we have tabulated the numbers of polyomino generating pg tiling and
the numbers of generated independent patterns against both n and symmetry.

Table 2. Number of pg tiling

n 1 2 3 4 5 6 7 8 9 10 11
Number of n-ominoes

C1 0 0 0 1 5 16 29 129 255 668 462
higher 1 1 2 4 4 14 8 36 35 79 32
total 1 1 2 5 9 30 37 165 290 747 494

Number of patterns
pg from C1 0 0 0 5 9 47 46 243 360 1019 716
pg 0 0 1 2 1 8 1 16 6 15 1
higher 3 6 8 15 11 42 17 79 64 132 53
total 3 6 9 22 21 97 64 338 430 1166 770
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In the rows labeled “C1” and “higher” the number of n-ominoes of C1 symmetry and higher
symmetry are tabulated, respectively. In the rows labeled “pg from C1” and “higher” the
number of pg patterns generated by C1 n-ominoes and the number of higher symmetric
patterns than pg are tabulated, respectively. The row labeled simply pg shows the number
of pg patterns generated by polyominoes having higher point symmetry than C1. The
patterns which can be superposed by rotation and reflection are considered to be same.

Figure 3: Five ‘degenerate’ patterns (8-omino).

1.3 Graphics system

We have developed a computer graphics system to generate more complex pg patterns on the
graphical operating system, MS-Windows 3.1TM. The shape of the elements of the picture
on the graphics display supported by MS-Windows is square, or omino. Thus, all pictures
on graphics display are polyomino but they are composed of a large number of ominoes.

Our graphics system modifies the n-omino given in previous sections. It decomposes
ominoes in n-omino to k × k smaller ominoes, regards the n-omino as k2n-omino, and then
adds the ominoes around the boundary or deletes the ominoes on the boundary. When
an omino is added, some omino on the boundary is deleted and this correspondence is
one-to-one. When an omino is deleted, some omino is added on the boundary but this
correspondence is one-to-g with 1 ≤ g ≤ 3.

After the above modification, the point symmetry of the original n-omino is lost generally
and modified patterns become purely pg. For the patterns having space symmetry pgg,
pmm, cmm and p4m we can change the direction of glide-reflection axes, and for the
patterns having “cut” as discussed in Section 1, we can change the location of glide-reflection
axes. Our system accounts for these aspects of freedom of a given pattern of n-omino and
we can do all these operations on the system graphically. Figure 4 shows an example of
modified pg pattern by our system, which consists of 42 × 8 ominoes.

Figure 4: pg pattern generated by our graphics system.
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2 A solid model for Penrose tiling

A solid model for Penrose tiling [6] is proposed, by using star rhombic dodecahedra, each
vertex of which is recursively substituted by a smaller star rhombic dodecahedron. The
proposed model happened to be obtained by one of the authors, Betumiya, in the process
of devising a 3-dimensional mathematical puzzle. The model seems to suggest that Penrose
tiling has a 5-fold rotational symmetry in the strict sense, and its structure may not be an
intermediate state between crystalline and amorphous states [7], [8].

Figure 5(a) is a famous photograph of the electron diffraction pattern of a quasi crystal
of Fl-Fe-Cu, from which a 5-fold rotational symmetry is observed [9]. Figure 5(b) is a crude
sketch of the proposed solid model, which is explained later. Comparing Fig. 5(a) with
Fig. 5(b), a remarkable resemblance can be observed.

(a) (b)

Figure 5: Electron diffraction pattern and the proposed solid model.

The left side of Fig. 6 is an icosahedron and the right side is a star rhombic dodecahedron
which is obtained from the icosahedron by attaching 20 paralellepipeda of A6 on the 20
regular triangle facets, respectively, in the usual way. It is assumed that the length of each
edge of the star rhombic dodecahedron is 1.

Figure 6: An icosahedron and a star rhombic dodecahedron.

Figure 7(a) is a precise figure of the same star rhombic dodecahedron observed in a normal
direction, where the normal direction means the figure has a 5-fold rotational symmetry.
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Provide a 62 star rhombic dodecahedra with the length of edge τ−3, where τ(= 1.618034)
is the golden ratio, and substitute them for the vertices of the original star rhombic dodec-
ahedron, respectively, as follows:

Coincide the center of each smaller star rhombic dodecahedron with one of the vertices
of the original star rhombic dodecahedron, and then, rotate it as the figure has a 5-fold
rotational symmetry in the direction of the center of the original one. The solid model
obtained is like a cactus of star rhombic dodecahedra with two different sizes. The solid
model is called a 2-fold cactus. Figure 7(b) is the precise figure of the 2-fold cactus looked at
in a normal direction, where the duplicated lines are the original edges of Fig. 7(b). Then,
Fig. 5(b) shown previously is obtained from Fig. 7(b); if all the edges are deleted, a light
circle is used for a single vertex, and a dark circle is used for overlapped vertices.

(a) (b)

Figure 7: Star rhombic dodecahedron and 2-fold cactus.

The above substitution is made recursively. Provide a 622 star rhombic dodecahedra
with the length of edge τ−6(= 0.0557), and substitute them for the vertices of the 2-fold
cactus, respectively. Then, the 3-fold cactus is obtained. In the same way, the k-fold cactus
is obtained by substituting 62k−1 star rhombic dodecahedra with the length of edge τ−3(k−1)

for the vertices of (k − 1)-fold cactus, respectively. A Penrose pattern is obtained as the
figure of the k-fold cactus looked in a normal direction, where k increases infinitely. It is
noted that the paralellepipeda of O6 occur automatically in this model as the vacancies.

There is an interesting experiment for visualizing the proposed solid model. Provide five
pieces of isosceles triangle mirrors shown in the left side of Fig. 8, and assemble them into a
pentagonal cone the inside of which is mirror faces, shown in the right side of Fig. 8.

6



Figure 8: Isosceles triangle and pentagonal cone.

Next, provide five sheets of rhombuses as shown in the left side of Fig. 9, and put them on
the mirror faces of the pentagonal cone as is shown in the right side of Fig. 9. Peeping on
the inside of the cone, a desired star rhombic dodecahedron appears. It is noted that the
shape of the rhombus in the left side of Fig. 9 completely coincides with that of a facet of
a triacontahedron. If the number of the rhombuses is increased in an ingenious way, the
proposed solid model appears. It is noted that there are several interesting properties, which
were stated in the aural presentation, as well as an exhibition of the proposed solid model.

Figure 9: Rhombus and the mirror faces.
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