論文

査読有り 国際誌
2021年4月15日

Random Transfer of Ogataea polymorpha Genes into Saccharomyces cerevisiae Reveals a Complex Background of Heat Tolerance.

Journal of fungi (Basel, Switzerland)
  • Taisuke Seike
  • ,
  • Yuki Narazaki
  • ,
  • Yoshinobu Kaneko
  • ,
  • Hiroshi Shimizu
  • ,
  • Fumio Matsuda

7
4
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.3390/jof7040302

Horizontal gene transfer, a process through which an organism acquires genes from other organisms, is a rare evolutionary event in yeasts. Artificial random gene transfer can emerge as a valuable tool in yeast bioengineering to investigate the background of complex phenotypes, such as heat tolerance. In this study, a cDNA library was constructed from the mRNA of a methylotrophic yeast, Ogataea polymorpha, and then introduced into Saccharomyces cerevisiae. Ogataea polymorpha was selected because it is one of the most heat-tolerant species among yeasts. Screening of S. cerevisiae populations expressing O. polymorpha genes at high temperatures identified 59 O. polymorpha genes that contribute to heat tolerance. Gene enrichment analysis indicated that certain S. cerevisiae functions, including protein synthesis, were highly temperature-sensitive. Additionally, the results confirmed that heat tolerance in yeast is a complex phenotype dependent on multiple quantitative loci. Random gene transfer would be a useful tool for future bioengineering studies on yeasts.

リンク情報
DOI
https://doi.org/10.3390/jof7040302
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/33921057
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071464
ID情報
  • DOI : 10.3390/jof7040302
  • PubMed ID : 33921057
  • PubMed Central 記事ID : PMC8071464

エクスポート
BibTeX RIS