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The mitochondrial permeability transition is an inner mitochondrial membrane event involving the opening of
the permeability transition pore concomitant with a sudden efflux of matrix solutes and breakdown of mem-
brane potential. The mitochondrial FoF1 ATP synthase has been proposed as themolecular identity of the perme-
ability transition pore. The likeliness of potential pore-forming sites in the mitochondrial FoF1 ATP synthase is
discussed and a new model, the death finger model, is described. In this model, movement of a p-side density
that connects the lipid-plug of the c-ringwith the distalmembrane bending Fo domain allows reversible opening
of the c-ring and structural cross-talk with OSCP and the catalytic (αβ)3 hexamer. This article is part of a Special
Issue entitled ‘EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2–6, 2016’, edited
by Prof. Paolo Bernardi.
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1. Introduction

Mitochondrial FoF1 ATP synthase is a surprising molecular machine.
Not only does it utilize electrochemical energy in the form of Mitchell's
proton motive force (pmf) to fuel its ATP forming function [1–4], but
also does the energy transformation frompmf to ATP occur viamechan-
ical rotation [5–13]. Over the course of more than 20 years andmuch to
everyone's surprise, its active role inmembrane bending and cristae for-
mation emerged [14–23] and only very recently, against all anticipation,
a horizontal arrangement of the elusive α-helical architecture of the a-
subunit was visualized [24–26].

And now labs that investigate the so-called mitochondrial perme-
ability transition pore (ptp) suggest that mitochondrial FoF1 ATP
ing protein; ptp, permeability
ion; pmf, proton motive force;
embrane; MMC, mitochondrial
mens; pS, pico Siemens; ROS,
ilized in water; pH, negative
tochondrial cyclophilin D; CsA,
translocator; VDAC, voltage-

l membrane; DAPIT, diabetes
l stalk; CS, central stalk; PD, p-
ne; n-side, negative side of the
ryogenic electron microscopy.
6: 19th European Bioenergetics
y Prof. Paolo Bernardi.

. This is an open access article under
synthase could form a large pore in the inner mitochondrial membrane
[27–34], a suggestion that is completely contrary to its energy-
converting function which requires a proton tight coupling membrane
[35,36]. After more than 50 years of active research on themitochondri-
al FoF1 ATP synthase [37], the addition of a pore-forming function is per-
haps toomuchof a surprise and, predictably, the reaction of the FoF1 ATP
synthase field has been rather muted [38,39]. In this short review I
would like to critically discuss the structural possibility of pore-
forming mitochondrial FoF1 ATP synthase, including the likeliness of
models put forward by myself and others.

2. The mitochondrial permeability transition pore

The mitochondrial permeability transition involves a sudden efflux
of matrix solutes of up to 1.5 kDa size, a breakdown of the inner mito-
chondrial membrane potential (ΔΨm) and an influx of water into the
matrix which results in mitochondrial swelling. Themitochondrial per-
meability transition was first described as a swelling of isolated mito-
chondria in the 1950s [40,41] and coined permeability transition by
Hawthorne et al. in the late 1970s [42–44]. Parallel to this, a mitochon-
drial megachannel was discovered by patch-clamp experiments on iso-
lated mitoplasts, mitochondria from which the outer membrane was
removed through osmotic shock [45,46]. Subsequently it was realized
that both the permeability transition (pt) and the mitochondrial
megachannel (MMC) have the same underlying molecular base: the
permeability transition pore (ptp) [47]. The ptp in its fully open state
is highly conductive (~1 nS), with a diameter estimated to be larger
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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than 14 Å and unspecific to solutes up to ~1.5 kDa [48,49]. For short full
openings the ptp remains reversible [50–53], whereas prolonged open-
ing is irreversible and triggers the release of pro-apoptotic factors such
as cytochrome c [54]. Electrophysiological measurements suggest
substates of openings and “flickering” at lower conductance [55].
Molecular modulators that enable or promote ptp opening include
matrix Ca2+, a diminished ΔΨm, reactive oxygen specimen (ROS),
matrix Pi, fatty acids, pH, polyphosphate and the binding of
mitochondrial cyclophilin D (CyPD), a peptidyl-prolyl cis–trans isomer-
ase. An inhibiting effect on pore opening is elicited by ADP/Mg2+ and
binding of cyclosporineA (CsA) to CyPD [56]. Among the plethora ofmo-
lecular players only CyPD is recognized as a bona fide binding partner of
theptp [57,58]. Thus the recent attention onmitochondrial FoF1 ATP syn-
thase as being the possible molecular identity of the ptp is the result of
assays screening for potential CyPD binding partners, which identified
CyPD to be co-migrating with the mitochondrial FoF1 ATP synthase in
blue native gels [27] and the subunit OSCP (oligomycin sensitivity con-
ferring protein) as a binding site [29]. However, many other molecular
candidates of the ptp that were investigated in the past were later
dismissed or become the subject of intense debate, such as ANT, VDAC,
TSPO or polyphosphate. As such, skepticism is warranted [59,60]. The
mitochondrial FoF1 ATP synthase's recycling of ATP from ADP·Mg2+

and Pi is themajor source of ATP in respiring cells [61]. Its intricate bipar-
tite structure is traditionally divided into the water soluble F1 domain,
comprising subunits α3, β3, γ, ε and δ, and the membrane bound Fo do-
main harboring the proton transporting c8-ring and subunits a, A6L, b,
d, F6, OSCP (oligomycin sensitivity conferring protein), e, g, f, DAPIT (di-
abetes-associated protein in insulin-sensitive tissue; also termed AGP)
and 6.8 kDa (also termedMLQ) for the bovine enzyme [62,63]. Following
its function as a rotational energy converter an alternative denomination
is into a rotor part (c8-ring and the central stalk (CS) subunits γ, ε and δ)
and a stator part (α3, β3, OSCP, b, d, F6, a, A6L, e, f, g, DAPIT and 6.8 kDa)
with OSCP, b, d and F6 belonging to the peripheral stalk (PS) that anchors
the catalytic (αβ)3 hexamer to the transmembrane domain of the stator.
Mitochondrial FoF1 ATP synthase from yeast has a very similar composi-
tion, with the exception that in its Fo domain the c-ring contains 10 c-
subunits and lacks DAPIT and 6.8 kDa but instead contains the additional
subunits j and k [64]. The most detailed structural insights have been
gleaned fromX-ray crystal structures ofmitochondrial FoF1 ATP synthase
subcomplexes, namely the F1, the F1–c8, the F1–c10, a peripheral stalk
fragment and the F1–PS fragment subcomplex [65–69]. However, no
atomic model of an entire mitochondrial FoF1 ATP synthase is available
and for some of the Fo subunits location and function are unknown [70,
71]. At present the best structural data on intact mitochondrial FoF1
ATP synthases is provided by cryoEM single particle studies, albeit at lim-
ited resolution or quality [24,25,72]. This lack of high resolution structur-
al information on the architecture of mitochondrial FoF1 ATP synthase
leaves a discussion of structural possibilities for pore formation unavoid-
ably speculative though not, it can certainly be argued, meaningless.

3. Potential pore sites of the mitochondrial FoF1 ATP synthase

Thus far two main sites of possible pore-formation in mitochondrial
FoF1 ATP synthase have been proposed: the monomer–monomer inter-
face of the dimer (Fig. 1A) [29,31,33] and the c-ring (also termed rotor
ring for its proton transport coupled directional rotation) by itself and
in the context of mitochondrial FoF1 ATP synthase [30,32] (Fig. 1B, D).
The dimer proposal is based on electrophysiological recordings of a
black membrane that yielded currents in agreement with the known
electrophysiological properties of the ptp after addition of mitochondri-
al FoF1 ATP synthase dimers that were excised and extracted from blue
native gels. No ptp-like currentswere observed after the addition ofmo-
nomeric FoF1 ATP synthase extracted from the same blue native gel.
Given, however, that bovine FoF1 ATP synthase comprises 17 different
subunits of which the two Fo subunits DAPIT and 6.8 kDa are easily
lost during extraction of this fragile multisubunit membrane complex
from the inner mitochondrial membrane, a straightforward alternative
explanation is the loss of ptp specific subunits during extraction from
the excised gel bands or reconstitution into the black membrane. In
this context it is worth mentioning that the bovine FoF1 subunits
DAPIT and 6.8 kDa were recognized as constituents of the full complex
only relatively recently [62,71], demonstrating how sensitive the full
FoF1 ATP synthase complex is to extraction procedures and the loss of
native lipid. However, both subunits are essential to the full complex
in vivo [73,74] andwere present in 2D crystals in which onlymonomer-
ic bovine FoF1 ATP synthasewas present [23]. The dimerization interface
was visualized for the first time at the α-helical level for the FoF1 ATP
synthase from the unicellular colorless green algae Polytomella spec
[24]. The interface does not show any obvious pore-forming site. How-
ever, the Polytomella spec. interface is unique and to date structures of
the dimerization interface of the bovine or drosophila enzyme have
not been reported and for the yeast dimer not yet published. Therefore,
a more thorough examination of themonomer–monomer interface as a
potential pore-forming site remains a task for the future.

An alternative proposal for a pore-forming entity within the compo-
nents that make up the mitochondrial FoF1 ATP synthase is its proton
transporting c-ring. This proposal is based on studies that examined
ptp formation after depletion of the c-subunit mediated by small inter-
fering RNA knock-down [30]. Fortuitously, the c-ring is structurally the
best characterized subcomplex of the FoF1 ATP synthase membrane do-
main, including numerous high resolution X-ray crystal structures
[75–81]. FoF1 ATP synthase c-rings consist of multiple copies of c-
subunits arranged as a circle with a subunit copy number and diameter
varying between species (8–15), but not between FoF1 ATP synthase
complexes of the same species [82]. The lumen of the c-ring is void of
protein and proton tightness is enabled by the presence of lipids filling
its lumen. The presence of c-ring lumenal lipids has been demonstrated
in vivo for the Escherichia coli enzyme [83] and in vitro for reconstituted
rotor rings [84]. Interestingly, the only high resolutionX-ray structure of
a rotor ring that visualized somebut not all lumenal lipids showed them
to be shifted to the p-side of the rotor ring [85]. This finding is in line
with the p-side protruding lipid plug in reconstituted c-rings, as detect-
ed by atomic forcemicroscopy [84,86], molecular dynamics simulations
ofmembrane embedded c-rings [87] and the density protruding from c-
rings in cryoEM single particle reconstructions of intact FoF1 ATP
synthases [24,25]. The pore like shape of the rotor ring with a diameter
roughly matching the predicted pore diameter of the ptp makes the c-
ring an obvious candidate for a potential pore-forming site. In this con-
text it is noteworthy that in an evolutionary scenario proposed by
Mulkidjanian and colleagues the rotor ring was proposed to have
evolved from a polymer conducting pore as part of a RNA translocase,
over the pore of a protein translocase to a cation transporting c-ring
[88]. This homology pattern based evolutionary scenario has subse-
quently been bolstered by structural studies on the flagellar motor
and the Thermus thermophilus V-ATPase [89,90]. However, even though
it has been reported that the reconstituted c-ring can form a voltage de-
pendent channel [91], it seems unlikely that the c-ring in itself constitutes
the ptp. Anyproposal for the c-ring as the ptp itself has to explain how the
manymodulatingmolecular players interact with it and importantly how
either the lipid plug is removed or the diameter of the c-ring substantially
widened; and how all of this occurs in a reversible manner and while
exhibiting several substates of conductance. Since CyPD as the only
bona fide binding partner of the ptp was not shown to interact with the
c-ring, but rather binds to theOSCP, the c-ring by itself appears too simple
to allow for regulation and modulation. Therefore, the c-ring in the con-
text of either monomeric or dimeric FoF1 ATP synthase is a more likely
candidate for a physiological relevant site of pore formation. In the intact
mitochondrial FoF1 ATP synthase the central stalk (CS) makes tight con-
tact with the c-ring at multiple sites, but it does not seal it off from bulk
solution and keeps the c-ring's lumen connected to the matrix [65–67].
That leaves the lipid plug as the only barrier to pore formation. Conforma-
tional rearrangement of c-subunits accompaniedbydiameterwideningof



Fig. 1. Potential pore-forming sites of themitochondrial FoF1 ATP synthase. (A) The dimerization interface of the FoF1 ATP synthase dimer. (B) The lumen of the lipid plug sealed c-ring by
itself. (C) The interface between the c-ring and the aqueous half-channel harboring a-subunit. (D) The lumen of the c-ring in the context of the FoF1 ATP synthase.
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the c-ring has been suggested as a way to c-ring pore-formation [32]. In
linewith the idea of a diameter change in the c-ring, large scale rearrange-
ments have beenproposed as away to switch gears for the T. thermophilus
V-ATPase [92] and normal mode analysis suggests that c-rings are able to
deformsubstantially [79]. Direct structural evidence for both types offlex-
ibility, however, has not been reported yet. On the contrary, X-ray crystal-
lography performed on numerous c-rings in detergent rather suggests c-
rings to be rigid in their architecture which does not seem to allow for
larger movements of individual subunits or alpha helices. If the crystal
structure based perceived rigidity is perhaps at least partially the result
of the embedding detergent micelles' high dielectric environment re-
mains to be seen [93].

A further potential site for pore formation is the interface between
the a-subunit and the c-ring (Fig. 1C). In the cryoEM structure of the
Polytomella FoF1 ATP synthase dimer deep invagination of the mem-
brane at the interface of the c-ring and the a-subunit have been visual-
ized [94] rendering this ideamore appealing. However,mitochondria of
ρ0 cells lacking mitochondrial DNA which encodes the a- and A6L sub-
units are able to form the ptp [95] and hence it is generally thought
that the a- and A6L subunits are not part of the ptp.

4. The death finger model

What could possibly allow the reversible removal of lipids from the
lumen of the c-ring at different degrees of completeness while allowing
modulation by all known molecular players? Recently, a novel density
on the p-side of the bovine FoF1 ATP synthase was visualized by single
particle cryoEM and proposed to possibly stem from subunit e [25].
This novel p-side density (PD) had not been seen in previous cryoEM
single particle reconstructions of the same bovine complex [22,96],
but it is reminiscent of a feature observed in EMprojectionmaps of neg-
atively stained bovine FoF1 ATP synthase dimers [97]. A simple
explanation of why this p-side density had not been visualized in for-
merly published cryoEM maps of the same enzyme is that it stems
from subunits of the complex that are easily lost during detergent ex-
traction and purification from innermitochondrialmembrane or during
cryoEM specimen preparation. Indeed, the map in the region of the p-
side density is not well defined, suggesting that the occupancy of the
subunits underlying the PD in the data set is incomplete. Density in
the same region was also visualized, though not described, in an inde-
pendent recent single particle cryoEM reconstruction of a bovine FoF1
ATP synthase preparation that included the subunit DAPIT and 6.8 kDa
[72]. Themammalian subunits DAPIT and 6.8 kDa,which escaped inves-
tigators' attention for several decades as a consequence of their tenden-
cy to easily detach from the complex, are therefore good candidates for
being the subunits that form the PD. The PD extends from the rotor ring
distal part of the transmembrane Fo domain to the p-side of the rotor
ring and appears to be in contact with the lipid headgroups of the
lipid plug that is protruding from the p-side of the rotor ring. If anchored
to the lipid headgroups of the lipid plug,movement of the PD could then
exertmechanical pull on lipids from the c-ring, resulting in partial or full
removal from the c-ring and opening of the pore (Fig. 2). The natural
propensity of the hydrophobic acyl chains to avoid exposure to bulk
water and thus to re-insert into the c-ring lumen would allow revers-
ibility of the process, especially if the lipids are not completely removed.
This may also cause the “flickering” of open states modulated by tem-
perature. Itmight be asked if a contact to lipidsfilling the c-ring impedes
or even stops rotational catalysis. Brownian rotational motion of the c-
ring, either idling or biased by gradients of chemical or electrochemical
energy, is the result of thermal impact from its surrounding lipid and
water molecules [98]. Since the Brownianmotion of lipids is several or-
ders of magnitude faster (10−7–10−9 s timescale) [99,100] than that of
c-ring rotation (10−1–10−3 s timescale) [101,102], binding of c-ring lu-
menal lipids is “invisible” to the c-ring itself. Consequently, binding of



Fig. 2. The death finger model of mitochondrial FoF1 ATP synthase pore-formation.
Movement of a p-side density (PD) that connects the lipid plug of the c-ring with the c-
ring distal membrane bending Fo domain allows reversible opening of a c-ring pore.
Structural contact of the transmembrane PD with the peripheral stalk (PS) enables
cross-talk with the CyPD binding OSCP and the Ca2+ sensing catalytic (αβ)3 hexamer.

1194 C. Gerle / Biochimica et Biophysica Acta 1857 (2016) 1191–1196
the PD to the lipid plug does not impede rotational catalysis. Another
important issue to resolve is how binding of CyPD to the OSCP could
possibly influence the opening probability of the ptp in the more than
200 Å distant lipid plug of the c-ring. Contact between the transmem-
brane domains of the PD and the peripheral stalk (PS) could explain
how CyPD binding to the OSCP can influence the opening probability
of the ptp through conformational changes that are communicated
from the top of the catalytic (αβ)3 hexamer to the p-side of the c-ring.
In addition, contacts between the peripheral stalk and the c-terminal re-
gion of the α subunit and the central region of the β subunit have been
visualized and described for the bovine enzyme [25,72]. Possibly these
contacts allow structural cross-talk between catalytic (αβ)3 hexamer
and the central region of the peripheral stalk. This could convey confor-
mational changes induced by the binding of ATP/Ca2+ instead of ATP/
Mg2+ [103,104] and thus act as a sensor of Ca2+ concentration. CryoEM
studies on monomeric bovine FoF1 ATP synthase as a detergent solubi-
lized complex [22,25] and in 2D crystals of the membrane embedded,
complete, fully active and coupled enzyme [23] have suggested and
demonstrated that the monomer by itself can bend lipid bilayers. Also,
on the basis of molecular dynamic simulations it has been proposed
that the formation of rows of dimeric FoF1 ATP synthase could be driven
by the easing of tension imposed on themembrane in the oligomer rel-
ative to an ensemble of isolated FoF1 ATP synthase dimers [19]. That is,
dimer row formation is envisioned to be driven by an overall lower en-
ergetic state of the system instead of specific dimer to dimer contacts. If
so, then the strain imposed on a single dimeric or monomeric FoF1 ATP
synthase will be greater than in the assemblage of a row of dimers.
Since it is the rotor distal membrane bending Fo domain which makes
the connection to the p-side lipid plug of the c-ring, higher membrane
tensionmay increase the opening probability of the pore by exerting ad-
ditional pull in a spring-like fashion. In other words, the ratio of oligo-
meric to non-oligomeric FoF1 ATP synthase in the mitochondria as a
whole could be a major determinant of mitochondrial permeability
transition probability; and thus the oligomerization state of mitochon-
drial FoF1 ATP synthase represents an efficientmeans of regulatingmito-
chondrial permeability transition. A consequence of this on the cellular
level would be a stronger propensity to die for senescent cells, which
have been shown to have a high non-oligomer to oligomer ratio in
their mitochondria [105,106]. PTP opening and conductance is distinc-
tive in different species ranging from none (brine shrimp Artemia
franciscana [108]), over relatively low conductance with ~50 pS and
no sucrose permeability inDrosophila melanogaster [33] to high conduc-
tance with 300 pS in yeast [31] and 500 pS in mammals [29]. Structural
divergence in the PD itself and the architecture of the peripheral stalk or
differences in the degree of membrane bending by FoF1 ATP synthase
between species [20] could account for these species dependent proper-
ties of theptp. An attractive test of the death fingermodelwould thus be
to examine if the FoF1 ATP synthase of the brine shrimp A. franciscana
possesses a PD or not. In summary, on the basis of recent structuralfind-
ings, the death finger model reconciles seemingly conflicting data on
mitochondrial FoF1 ATP synthase as the molecular identity of the ptp,
while avoiding violation of what is already known from solid crystal
structures.

5. Conclusion

In the absence of an atomic model of a FoF1 ATP synthase from ptp
forming mitochondria, all the above described possibilities remain
hard to examine or to test experimentally and are therefore speculative.
And despite great advances in cryoEM and X-ray crystallography of in-
tact FoF1 ATP synthases in the last year [24–26,72], a high resolution
structure that includes water, lipids and ligands does not seem to be
around the corner. Studies performed on FoF1 ATP synthase in mito-
chondria will always leave doubt due to its primary function of energy
conversion and the concomitant entanglement with the overall mito-
chondrial state. However, critical assessment at the molecular level is
imperative. Therefore, a feasible and important way to test if mitochon-
drial FoF1 ATP synthase is indeed the long sought after molecular iden-
tity of the ptp, is in vitro electrophysiology. This would be preferably
carried out by patch-clamp of complete, intact, active and fully coupled
FoF1 ATP synthase complexes reconstituted into artificial lipid bilayers.
Single-particle cryoEM is amore andmore powerful tool to visualize dy-
namics of cellular machines, which has been impressively demonstrat-
ed for the ribosome [107]. Even though mitochondrial FoF1 ATP
synthase is a much less suitable specimen for this technique, perhaps
it might be possible to use single-particle cryoEM to visualize an open
state of the ptp.

It may well turn out that the FoF1 ATP synthase will be another case
of a potentialmolecular identity of themitochondrial permeability tran-
sition pore that eventually will be dismissed. But still, as long as there is
so much that is unknown about this surprising molecular machine,
discounting the idea outright would be ill-considered.
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