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The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner
mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel,
the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer
mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However,
transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial
bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming
structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers,
monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives
who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms
underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a
degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.
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FACTS

● The mPTP is a non-selective channel, permeable to solutes of
<1.5 kDa that forms in the inner mitochondrial membrane
under conditions of elevated matrix [Ca2+] and oxidative stress.

● Opening of mPTP may be prolonged or transient and there may
be substates with different conductance levels.

● The precise molecular identity of the mPTP remains uncertain
but strong evidence implicates both the mitochondrial F1FO
(F)-ATP synthase and the adenine nucleotide translocase (ANT),
with matrix cyclophilin D (CypD) facilitating the transition to the
pore-forming conformation.

● Prolonged mPTP opening is pathological leading to cell death
such as occurs in ischemia/reperfusion injury while transient
pore opening may occur physiologically and regulate mito-
chondrial bioenergetics, cellular metabolism, Ca2+ homeostasis
and ROS production.

OPEN QUESTIONS

● What conformational changes occur in the F-ATP synthase or
ANT to cause the mPTP channel(s) to form? Do both the F-ATP

synthase and the ANT form distinct channels with different
conductances or is the mPTP formed through an interaction of
both within the proposed ATP synthasome? What are their
separate and/or overlapping roles in mPTP formation? Are
there additional mPTP channels beside F-ATP synthase
and ANT?

● What is the binding site for matrix Ca2+ that triggers pore
opening and how do known modulators of mPTP formation,
such as oxidative stress, adenine nucleotides, phosphate and
CypD, exert their effects?

● How to connect the in vitro molecular and structural studies to
the in vivo functional studies under physiological and
pathological conditions?

● What events determine the transition of a very small fraction
of ANT and F-ATP synthase to act as mPTP instead of
performing their canonical role in ATP generation and
transport? Does this minute fraction that acts as mPTP
randomly occur or is it specifically regulated by signaling
mechanisms in microdomains?

● How does mPTP change mitochondrial structure and func-
tion? Conversely, how do changes in mitochondrial structure
lead to activation or inactivation of mPTP?
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● What is the role of mPTP in development, metabolism, aging,
and degenerative diseases?

INTRODUCTION
The mitochondrial permeability transition (mPT) describes a
highly-reproducible, Ca2+-dependent increase of inner mitochon-
drial membrane permeability to ions and solutes [1–5]. It is
mediated by a putative channel, the mitochondrial permeability
transition pore (mPTP), which has also been recorded electro-
physiologically and called the mitochondrial mega-channel or
multi-conductance channel [6, 7]. Depending on the specific
conductance state, mPTP properties may vary from a small non-
selective ion channel to a large pore that allows diffusion of
molecules up to 1.5 kDa in size. Sustained mPTP opening causes
disruption of mitochondrial energy metabolism and necrotic cell
death [8]. Furthermore, mPTP activation can lead to osmotic
dysregulation of mitochondria leading to mitochondrial swelling
[1–4]. This may rupture the outer mitochondrial membrane
causing release of cytochrome c from the intermembrane space
into the cytosol which will initiate apoptotic cell death if cellular
ATP levels can be maintained [9]. These mPTP-mediated cell death
mechanisms play a key role in the pathogenesis of numerous,
aging-associated human diseases including, but not limited to,
ischemic heart and brain disease, liver and kidney failure, cancer,
and degenerative diseases [10–13]. However, transient mPTP
opening, perhaps involving different sub-conductance states,
may exert several physiological roles such as transient rapid
alterations in mitochondrial bioenergetics, reactive oxygen species
(ROS) production, Ca2+ efflux and metabolic regulation [14–18].
High levels of matrix Ca2+, inorganic phosphate, cyclophilin D
(CypD) and oxidative stress activate mPTP opening, while divalent
and trivalent cations such as Mg2+, Ba2+, Gd3+, in addition to
H+, adenine nucleotides and cyclosporine A (CsA), inhibit the
opening [19–21].
The exact pore-forming structure of the mPT remains con-

troversial. The voltage-dependent anion channel (VDAC) [22],
proapoptotic Bcl-2 family members (Bax and Bak) [9, 23–25], the
phosphate carrier (PiC) [26] and the translocator protein (TSPO)
[27] had been proposed to contribute to the channel of the mPT.
However, subsequent studies have shown that PiC more likely
regulates the probability of mPTP opening, rather than constitut-
ing the CsA-sensitive pore of mPT, [28–33] while VDAC together
with pro-apoptotic Bcl-2 molecules likely facilitate permeation
across the outer membrane or modulate interactions between the
inner and outer mitochondrial membranes that can influence mPT
activity. None of these proteins serves as the pore (channel) of
mPT, and the effect of ligands of TSPO can probably be explained
by their binding to subunit OSCP of ATP synthase [34]. The
adenine nucleotide translocator (ANT) [35] may contribute a
smaller conductance activity than that of the largest amplitude
conductance of mPTP and may also play a role in the opening of
mPTP [36]. Thus, ANT genetic deletion alone greatly impairs but
does not completely eliminate CypD-sensitive mPTP. Most
recently, mitochondrial F1FO (F)-ATP synthase dimers [37–41],
monomers [42] or c-subunit ring [33, 42–47] have been suggested
to be the main CypD-regulated mPT channel. However, it is likely
that not all contributing channel-forming complexes have yet
been identified. Nevertheless, the recognition of key roles for both
the ANT and F-ATP synthase is intriguing considering that both
are critical for the synthesis of ATP in the final step of oxidative
phosphorylation and thus are essential for efficient cell metabo-
lism and survival.
The heated debate surrounding the identity, structure, and two

opposite functional roles (life versus death) of the mPTP have
been ongoing for many years. In recent years the debate has
intensified as a result of the reported cryoEM-based atomic

models of mitochondrial and other F-ATP synthases
[33–35, 38–43, 45]. In addition, there is now a better appreciation
of the potential pitfalls in protein purification or mitoplast
preparation for recording single channel activities of the mPTP
in vitro. Thus, it is timely that the different perspectives of several
key investigators who have pioneered mPT research are brought
together in a critical assessment of proposed models for the
molecular identity of the mPTP and the mechanisms underlying its
opposing roles in the life and death of cells. The pathophysiolo-
gical significance of mPTP will be exemplified by the well-
established ischemia-reperfusion injury model in heart and the
newly studied aging process. The overall aim is to provide in-
depth insights into current controversies on the nature and role of
the mPTP with the hope of achieving a certain degree of
consensus based on currently available data that will stimulate
future innovative research.

THE MPTP STRUCTURE
Challenges of studying mPTP in vitro
One of the approaches used to demonstrate the existence of an
ion channel is to record its biophysical characteristics, such as
single channel conductance, with electrophysiological techniques.
This has been reported for the ion channels that are involved in
causing mPT [6, 7]. Despite high fidelity characterization of mPT
channel activity by mitoplast patch-clamp, investigations have
been severely impacted by the experimental difficulties of probing
the molecular identity underlying the measured currents. In
particular, standard practices of injecting cDNA of plasmalemmal
channel forming proteins into Xenopus oocytes or transfecting
model cultured cells for patch-clamp measurements do not work
for multi-subunit mitochondrial membrane proteins such as the
F-ATP synthase. Likewise, the technical difficulties of isolating and
reconstituting multi-subunit mitochondrial membrane complexes
into lipid bilayers for electrophysiological measurements have
hindered our ability to unequivocally pin down the molecular
identity or single molecule properties of the mPTP. Furthermore,
as discussed further below, for mPTP opening it is likely that only a
very small fraction of the relevant protein is present in the distinct
pore-forming conformation [48, 49]. Consequently, the mPTP field
suffers from the lack of advanced in vitro structure-function
investigations common to other membrane proteins such as K+

channels or G-protein coupled receptors (GPCRs). High-level
in vitro structure-function studies are an essential basis for the
development of effective small molecule drug compounds in the
treatment of mPTP related pathologies [50].
Mitochondrial F-ATP synthase has been proposed as an

important molecular entity underlying mPTP currents detected
by patch clamped mitoplasts [37]. Mitochondrial F-ATP synthase is
an integral membrane supercomplex central to cellular bioener-
getics that forms dynamic rows of F-ATP synthase dimers (MW of
>1.2 mDa, ~56 subunits for each dimer) which shape the inner
mitochondrial membrane by inducing strong positive membrane
curvature [51]. The mammalian F-ATP synthase dimer is highly
fragile and the successful preparation of the intact dimer or
tetramer supercomplex has thus far only been possible by using
the very mild detergent digitonin [52] or the second generation
non-ionic detergents glyco-diosgenin (GDN) [53] and lauryl
maltose neopentyl glycol (LMNG) [41, 54] that were both originally
developed for GPCR studies [55] (Fig. 1). In contrast, liposome
reconstitution of the mammalian F-ATP synthase using conven-
tional detergents such as decylmaltoside or dodecylmaltoside
(DDM) has been reported only for its monomeric form [42, 56]
(Fig. 1). Structural studies of intact F-ATP synthase by X-ray
crystallography, have never succeeded because the F-ATP
synthase is resistant to 3D crystal formation, irrespective of its
biological source. The recent “resolution revolution” [57] in cryo-
EM enabled the structure determination of F-ATP synthases thus
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allowing, for the first time, the building of atomic models at the
amino acid side chain level. Such structural investigations of
mammalian and yeast mitochondrial F-ATP synthases still lag
behind those of chloroplast or bacterial F-ATP synthases [58, 59].
However, recent studies show an amazing structural diversity for
the oligomeric mitochondrial F-ATP synthase from various
organisms [60–64] that stands in stark contrast to the relative
uniformity of strictly monomeric chloroplast and bacterial F-ATP
synthases.
The fragility of mammalian dimeric/oligomeric mitochondrial

F-ATP synthase during purification procedures has also imposed
significant challenges in studying single channel activities by
reconstituting the protein complex in lipid bilayer systems or
patch clamping of giant unilamellar vesicles (GUVs). This problem
is now resolved by the discovery that oligomeric mitochondrial
F-ATP synthase can be auto inserted into pre-formed lipid bilayers
if prepared at low concentration (~0.002%) of the high affinity
detergent LMNG [41, 65, 66]. The use of LMNG or GDN has allowed
the purification of relatively large amounts of a highly pure and
stable mix of monomeric and oligomeric complexes of F-ATP
synthase [41, 53, 67] (Fig. 1). Nevertheless, preparation of damage-
free, pure, monomeric, dimeric, tetrameric and higher oligomeric
mitochondrial F-ATP synthase still remains challenging.
The ANT is an additional candidate for the molecular entity

underlying mPTP currents. Though considerably smaller in size as
well as being structurally less diverse between species, the
problems related to its in vitro investigation are similar to those of
the F-ATP synthase; namely, the difficulties of isolating membrane
proteins from the inner mitochondrial membrane while avoiding
purification artifacts. This is illustrated for instance by the ongoing
debate as to whether the physiologically relevant form of ANT is
monomeric or dimeric [68–70].
When successful, in vitro structural studies of the candidate

proteins such as F-ATP synthase should, hopefully, permit i)
reliable atomic models of the mPTP; ii) visualization of the mPTP
in an open state; iii) visualization of agonists, antagonists and
inhibitors bound to the mPTP. However, these structural goals
face the following challenge: the resolution of current cryo-EM
density maps is still relatively far from the desired resolution of
better than 2.0 Å for the transmembrane regions, leaving
numerous ambiguities and impacting the description of bound
small molecule effectors. The recent introduction of cold field

emission guns and monochromator technology to cryo-EM
[71, 72] and improved cryo-grid preparation might enhance
cryo-EM density maps considerably in the near future. Another
problem is that open state visualization could require the
presence of a lipid bilayer and perhaps a transmembrane electric
potential. Therefore, single particle approaches for proteolipo-
somes [42, 73] instead of detergent stabilized complexes might
be necessary for open state visualization. Moreover, the
seemingly low percentage of channel-active F-ATP synthase
among the total of all mitochondrial F-ATP synthases in a given
mitochondrion [49] is not compatible with single particle cryo-
EM based structure determination because this approach
requires the presence of many thousands of protein complexes
in identical conformational states. This necessitates the identi-
fication of factors that allow channel activation for close to 100%
of the membrane reconstituted F-ATP synthase complexes. In
situ cryo-electron tomography of mitochondria after induction
of mPTP opening [74] might represent one possible solution for
many of the challenges described above, especially when
combined with modern cryo focused-ion-beam milling [75].
However, the contrast diminishing exerted by the high density
of matrix content poses a formidable challenge for in situ
studies, effectively making efforts directed at in vitro studies of
membrane reconstituted systems more readily tractable.
Among the many current problems of in vitro structure-function

studies involving the F-ATP synthase perhaps the most pressing
appears to be the lack of structures for yeast and human F-ATP
synthase mutants that were already examined by in situ studies
using electrophysiology or swelling assays. Establishment of
purification procedures for the in vitro study of yeast and human
F-ATP synthase mutants with altered mPTP behavior should
therefore have a high priority. The now published structure of
monomeric human F-ATP synthase isolated from HEK cells is a big
step forward towards structural analysis of human F-ATP synthase
mutants, which hopefully will become available soon [76].
However, a word of caution is required on the power of structural
studies alone to resolve the molecular mechanism of channel
gating. Despite the reporting of numerous high resolution
structures of gap junction channels with similar conductance to
full mPTP opening, the gating mechanism of these channels is still
not understood and it appears that lipids of the embedding
membrane are involved [77, 78].
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Fig. 1 State-of-the-art in mammalian F-ATP synthase purification. Isolation of mammalian F-ATP synthase from mitochondria is the basis of
any in vitro experiment that examines its role as the mPTP. Though difficulties remain, new purification strategies and use of novel detergents
have allowed significant progress. Roman numerals I to V indicate selected published examples from refs. [41, 52, 53, 67] and [42], respectively.
Micrographs are shown at comparable magnification. SDG sucrose density gradient, SEC size exclusion chromatography.
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Clearly, the problem of the molecular identity of the mPTP
and the proper handling of mPTP forming protein complexes is
still in the process of being solved. Nevertheless, it is worthwhile
considering what kind of developments might be able to bridge
the wide gap between in vitro experiments using highly
reductionist molecular set-ups and what is known from studies
of isolated mitochondria, cells and animal models of mPT
functioning. Both electrophysiological recordings as well as
visualization of purified F-ATP synthase complexes by cryo-EM
are done under conditions that are far removed from those of
mitochondria in vivo. Therefore, the future establishment of a
“Synthetic Mitoplast” using perhaps GUVs reconstituted with a
multitude of mitochondrial proteins, including oligomeric F-ATP
synthase, and related molecular factors might be able to build a
bridge between in vitro and in vivo studies. A “Synthetic
Mitoplast”, if built from GUVs, would be in the sweet spot of
being big enough to be used for electrophysiological measure-
ments by patch clamp recordings and still small enough for
structural investigation by cryo electron tomography (cryo-ET) or
even in silico simulations. Similar to cryo-EM, computational
biology has seen great progress in recent years and if supplied
with sufficiently accurate experimental data could lead to in
silico models that are able to simulate what molecular events are
taking place during mPT, enabling insights that are currently out
of experimental reach. Thus far the involvement of computa-
tional approaches in mPT research is rather limited [79] and
consequently the potential for important contributions is large.
Likewise, though some cryo-ET studies have been reported
using correlated light microscopy [74] in situ cryo-ET on both
isolated mitoplasts as well as a “Synthetic Mitoplast” are still in
their infancy or even absent and thus very promising
approaches for further development. For effectively connecting
in vitro molecular approaches and in vivo studies ideally a
research collaboration should be established that enables labs
working on all levels including a dedicated effort to establish the
“Synthetic Mitoplast” for addressing the many remaining riddles
of mPT research.
In conclusion, further resolution of the molecular mechanisms

of mPT will require solutions for the above-mentioned technical
hurdles for the isolation of F-ATP synthase and other candidate
proteins for mPTP, the efficient membrane reconstitution of mPTP
candidates ideally into a “Synthetic Mitoplast”, and their
characterization by electrophysiology and cryo-EM in combination
with pharmacological manipulation.

Multiple mechanisms of pore formation
A consensus is developing that the pore of mPT may be mediated
by at least two molecular species. The first is the ANT, which can
undergo a Ca2+-dependent transition to a channel [80] favored by
atractyloside and inhibited by bongkrekate [3, 33, 81]. The second
is the F-ATP synthase, which forms channels that display the key
features of the mPTP after reconstitution in lipid bilayers and giant
liposomes [41, 42]. The mechanisms through which a high-
conductance channel originates from ANT and F-ATP synthase is
under active investigation.

F-ATP synthase dimer. In the case of the F-ATP synthase, two non-
mutually exclusive hypotheses have been proposed. In the first,
channel formation would require enzyme dimers [37], which in
higher eukaryotes are the building blocks of oligomers aligned in
the inner membrane cristae ridges [82]. In the second, the channel
would form within the c-ring of monomers after displacement of
the lipid plug [47]. There is agreement that channel opening
requires long-range conformational effects originating at the
catalytic sites in the F1 sector after Ca2+ binding; and that these
are transmitted to the inner membrane by peripheral stalk
subunits OSCP, b, g, and e [81, 83–85]. There is an apparent
discrepancy on whether a high-conductance channel can form

within the ATP synthase enzyme monomers, which has been seen
in highly purified F-ATP synthase preparations extracted with
DDM [42] but not with LMNG [41]. It is possible that channel
activity observed in monomers extracted with DDM may reveal a
bona fide mPTP that has, however, lost the requirement for
activation by Ca2+ because of partial removal of subunits e and g
[42], which are preserved by LMNG [41]. In the intact system, Ca2+-
dependent displacement of subunit e may be essential for
channel activation, and this may require the cooperation of two
monomers. It cannot be excluded that a channel may also form at
the monomer-monomer interface. This might explain the exis-
tence of multiple conductance levels within the channel that are
observed both in the native membrane [7] and in the
reconstituted systems [41, 42]. Channel formation by F-ATP
synthase is supported by a recent high-resolution structure of
F-ATP synthase [67], which is consistent with the effects of a
number of point mutations affecting specific channel features
(Fig. 2). Additional discussion of possible mechanisms for channel
formation can be found in ref. [50].

F-ATP synthase c-subunit. As mentioned earlier, LMNG-purified F-
ATP synthase tetramers and dimers but not monomers were
reported to form mPT-like channels, suggesting that the pore is
located between subunits e and g of each F-ATP synthase
monomer [41] (Fig. 3A). In contrast, recent studies have shown
that the F-ATP synthase monomer forms a large multi-
conductance channel with the biophysical characteristics of mPTP,
suggesting that F-ATP synthase monomers form channels, and
that dimer formation is not required for channel activity but may
also form channels in that a dimer contains two monomers [42,
47] (Fig. 3B).
If the channel resides within the F-ATP synthase monomer, the

likely location is the membrane-embedded c-subunit ring,
considering its transmembrane, large, pore-like cavity (Fig. 3B).
Studies of chloroform-extracted c-subunit from rat liver mitochon-
dria, as well as human c-subunit highly purified by affinity
chromatography demonstrate a large conductance, voltage-
sensitive channel in patch-clamp recordings [33, 42–47] that has
been termed ACLC (ATP synthase c-subunit leak channel). It has

ββ T165S
Giorgio et al (2017)
EMBO Rep 18, 1065-1076

Antoniel et al (2018) 
EMBO Rep 19, 257-268

OSCP H112Q/Y

g R107A

Guo et al (2018)
J Biol Chem 293, 14632-14645

c G81V, G83V, G85V, G87V 
Alavian et al (2014) Proc Natl
Acad Sci USA 111, 10580-10585

Carraro et al (2020) 
Cell Rep 32, 108095
OSCP C118S

Guo et al (2019) J Biol Chem
294, 10987-10997 

e R8A/E
g E83A/K

Fig. 2 Point mutations of F-ATP synthase affecting its channel
properties. The figure reports mutations of F-ATP synthase that
affect specific features of the mPTP, i.e., conductance [47, 58], Ca2+-
dependence [98], inhibition by H+ [279], sensitivity to glyoxals [280],
and oxidants [281]. For details the reader is referred to the original
publications indicated on the picture. Approximate positions of the
mutations are indicated by red dots. The structure of F-ATP synthase
used in the background is taken from ref. [67].
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also been reported that c-subunit phosphorylation affects channel
open probability [46] and that genetic manipulation of c-subunit
expression regulates mPTP-driven mitochondrial fragmentation
and cell death [44, 47].
The c-subunit ring has been reported to undergo measurable

expansion upon mPTP activation by Ca2+ in cells [47]. Mutations
that loosen the packing of the c-ring increase the internal
diameter and channel conductance compared to wild-type c-ring
and sensitize neurons [47] and cardiac tissue [86] to death.
CypD/Ca2+-induced and CsA/ADP-inhibited dissociation of F-ATP
synthase F1 subunits from FO is associated with mPT, suggesting
that unmasking of the c-subunit ring is required for initiation of
ACLC conductance [47, 87]. CsA-inhibited dissociation of ATP
synthase F1 subcomplex from FO has been reported recently in
primary hippocampal neurons under glutamate excitotoxicity [87].
Significant reduction in ATP synthase F1 subunit levels was
observed in glutamate-treated neurons, while the level of
c-subunit did not change, suggesting that non-reversible dissocia-
tion of F1 from FO occurs under severe pathological conditions,
which predisposes neurons to cell death [87]. This study also
reported that application of purified F1 subcomplex consisting of
α3β3γδε subunits inhibits channel activity during patch-clamp
recordings of reconstituted c-subunit. Application of α3β3 com-
plex, which lacks subunits γ, δ, and ε did not inhibit channel
activity suggesting that specific interactions between F1 subunits
and c-ring are required for channel inhibition and that F1
constitutes an inactivation gate of ACLC under physiological
conditions [87].
The role of ACLC in mPTP has been questioned [79, 88, 89]

because of the hydrophobic nature of c-subunit pore-lining
residues and the finding that lipids at least partially occupy the
c-subunit cavity in structures of F-ATP synthases from bacteria to
eukaryotes [90–93]. However, the removal of lipids from the c-ring
lumen might be mediated by an interaction of the intracristal
space facing lipid with subunit e if combined with appropriate
conformational changes as suggested previously for the “Death
Finger” model [67, 94]. Nevertheless, removal of the lipids from
the c-ring lumen into a hydrophilic environment of the
intermembrane space is energetically unfavorable and is unlikely
to happen. Instead, lipids could be displaced within the c-ring
cavity upon the expansion of the ring that occurs during channel
activation (Fig. 3B).

Taking all recent findings together, it may be envisioned that
in vivo gating of ACLC requires conformational changes of F-ATP
synthase in several phases including 1) the binding of channel
activators directly to OSCP subunit [95–97] and/or to β subunit
[98, 99] (Fig. 3B); 2) the induction of conformational changes in
the F-ATP synthase peripheral stator subunits; 3) movement of
central stalk subunits of F1 away from the c-subunit on the matrix
side and 4) movement of other FO subunits, including expansion
of the c-ring. It is possible that lipids are displaced within the
c-ring cavity or removed to open ACLC during these events as
suggested recently [42, 50, 67, 84, 94] (Fig. 3B), although there is
currently no high-resolution structure of the open channel
conformation of the ACLC to support this proposal. The model
illustrates reversible brief openings of ACLC that occur under
physiological and sub-lethal pathological conditions. In addition,
non-reversible dissociation of F1 from FO may occur under severe
pathological conditions and initiate mitochondrial swelling and
cell death [84, 87].

ANT. Over thirty years ago, the pore-forming component of the
mPT was hypothesized to be the ANT. This was due to several
independent observations that ANT inhibitors and substrates
greatly affect mitochondrial Ca2+ retention capacity (CRC) and
mPTP sensitivity [35, 100–102]. In addition, the ANT directly
interacts with CypD, the well-established sensitizer for the mPTP,
and reconstitution experiments revealed that the ANT is able to
form high conductance channels [80, 103–106]. Furthermore,
oxidative stress and its mimic, phenylarsine oxide, that are potent
sensitizers of pore opening, specifically cross-link two cysteines on
the ANT and greatly reduce the ability of ADP to inhibit pore
opening [35]. Interestingly, however, genetic deletion of both of
the predominant isoforms of the ANTs (Ant1 and Ant2) in the
mouse liver revealed that these mitochondria were still sensitive
to Ca2+-induced mitochondrial swelling and responsive to CypD
inhibition by treatment with CsA [28]. These ANT1 and ANT2-null
mitochondria did, however, have significantly increased mito-
chondrial CRC and a desensitized mPTP compared to wild type
control mitochondria [28]. In fact, mitochondria lacking CypD or
treated with CsA have similar levels of desensitization to the
ANT1 and ANT2-null mitochondria, and CsA treatment further
desensitizes the mPTP in the ANT1 and ANT2-null mitochondria
[28, 107, 108]. Taken together, these data suggest that the ANTs
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diagram was drawn according to recent reports [37, 40, 67, 87, 94]. A Formation of the pore at the F-ATP synthase monomer interface within
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and CypD both contribute to mPTP opening and may act
independently of one another.
The role of the ANTs as the mPTP was reexamined recently by

genetically removing all murine isoforms of the ANT family (Ant1,
Ant2, and Ant4) in the mouse liver to rule out any compensation
by ANT4. The results confirmed that mitochondria lacking the
ANTs are highly resistant to Ca2+-induced mPTP opening.
However, in response to extremely high levels of Ca2+, the mPTP
does engage and mitochondria undergo swelling [32]. Surpris-
ingly, treatment of these mitochondria with CsA completely
inhibits mPTP opening, as confirmed by the absence of
mitochondrial swelling, while Ca2+ uptake reaches maximum
capacity [32]. There are two potential explanations for these data.
The first is that CypD or the ANTs independently regulate a
common pore-forming component of the mPTP. The second is
that the mPTP is comprised of two distinct pores, one formed by
the ANT family, which may or may not be influenced by CypD, and
another pore, which requires CypD to engage and may involve the
F-ATP synthase as described earlier. However, the controversy
remains due to the studies from the Walker laboratory reporting
that genetic removal of critical components of the F-ATP synthase
does not appear to affect mitochondrial CRC or Ca2+/CypD-
dependent swelling [88, 89, 109], which could be due to the
remaining contribution of the ANT family. In support of this,
channel activity sensitive to the known ANT inhibitor, bongkrekic
acid (BA), is present in mitoplasts isolated from c-subunit lacking
cells [33]. Mitoplasts isolated from cells lacking subunit c or
subunit g have currents that are of smaller conductance and more
difficult to elicit with Ca2+[81, 87], but still manifest BA-sensitive,
ANT-like currents.
There remain several unanswered questions regarding the

relationship between the ANT family and the mPTP. For instance,
which pore-forming component of the mPTP is the most relevant
to pathologies involving necrotic cell death? Deletion or inhibition
of CypD is protective against a wide variety of these diseases
[107, 108, 110–112], suggesting that the CypD-dependent pore
may be the most advantageous for therapeutic targeting. It should
be noted, however, that while the ANT-pore may not require CypD
to engage, CypD might sensitize the opening of this channel.
Thus, determining if, and how, CypD alters the ANT-pore remains
an important question to be addressed. Finally, and possibly most
importantly, what is the molecular identity of the CypD-
dependent pore that leads to permeability transition? This is
critical knowledge and should be interrogated in the absence of
the ANTs such as in [47] or following their inhibition. Overall, it is
evident that the ANT family does play a critical role in mPTP
formation. However, the existence of additional CypD-dependent
pore-forming components such as the F-ATP synthase has likely
obscured the contribution of the ANT family. Addressing these
lingering questions is critical to the goal of identifying novel
therapeutic approaches that lead to the complete inhibition of the
mPTP, which could be beneficial for numerous diseases involving
necrotic cell death.

ENIGMATIC DUAL ROLES OF F-ATP SYNTHASE AND ANT IN
BOTH ATP GENERATION AND FORMATION OF THE MPT PORE
Identification of specific proteins (e.g., F-ATP synthase and ANT)
responsible for mPTP formation in addition to their normal
physiological roles provides the opportunity to generate detailed
models at the atomic level of how large pores open within these
usually tightly coupled structures. It is the general assumption that
mPTP is a Ca2+-activated, large conductance, non-selective ion
channel. For mPTP to fit into this “generic” model, it would be
expected that the candidate channel forming protein or its
regulatory proteins would have a specific site that can bind Ca2+

and induce the conformational changes that cause channel
opening [36, 83]. In agreement with this prediction, patch-clamp

assays show that the addition of Ca2+ activates mPTP-like
channels in the inner membrane associated with both F-ATP
synthase and ANT [33, 47, 113]. Similarly, purified ANT and F-ATP
synthase proteins reconstituted into model lipid membranes form
large conductance pores following the addition of high concen-
trations of Ca2+ [41, 42, 80]. This suggests that it might be possible
to use published structures of the intact ANT and F-ATP synthase
complexes to explain how mPTP activation occurs. However, there
are two key features of the properties of the mPTP in intact
mitochondria that are different from those of the purified channel
proteins. Firstly, concentrations of Ca2+ required to activate mPTP
in patch-clamp experiments are two to three orders of magnitude
higher than the concentrations of free Ca2+ that induce mPTP in
intact mitochondria [114]. Secondly, a single mitochondrion has
fewer than ten mPTP channels activated during the mPT
[48, 49, 115]. Considering that each organelle has several
thousand copies of the ANT and F-ATP synthase in the native
conformations, this suggests either that the probability of these
proteins taking on an open channel conformation is extremely
low, or that there may be other, as yet unidentified, proteins
expressed at low frequency that comprise the mPTP [48, 49]. If the
former is the case, it will be important to uncover the mechanisms
underlying how such a small subpopulation of the ANT and F-ATP
synthase proteins can be responsible for mPTP formation. This
may act as a limitation when trying to use the known “normal”
structures of the ANT and F-ATP as a foundation for finding the
structure of the active channel of the mPTP.
The discrepancy between the Ca2+ concentrations required for

mPTP activation in intact mitochondria and those required by
reconstituted channel proteins could also be explained if Ca2+

activation in intact mitochondria does not occur directly through
the putative ANT or F-ATP synthase binding site but at a distal
location within the mPTP regulatory protein complex. In this case,
the channel activation mechanism would require Ca2+-induced
structural changes. Indeed, studies indicate that during Ca2+

uptake, free mitochondrial Ca2+ reaches a plateau and becomes
efficiently buffered by phosphate species long before mPT is
activated [114, 116]. This may indicate that in intact mitochondria,
mPT is not activated directly by free Ca2+ binding but through
more complicated interactions, perhaps involving the formation of
complexes between Ca2+ and other molecules [117]. One such
molecule is cardiolipin, the binding of which to both the ANT and
the F-ATP synthase is essential for their activity. Interestingly, unlike
most Ca2+-binding proteins, cardiolipin binds Ca2+ differently from
Sr2+ perhaps explaining why the latter does not activate but rather
inhibits the mPT [118]. Another mechanism might involve the
hypothetical existence of Ca2+ and/or Ca2+-mediated ROS “hot-
spots” inside mitochondria where local Ca2+ reaches concentrations
that are much higher than average concentrations measured
experimentally. In this respect, it will be interesting to investigate
the association between the mPTP and the high capacity Ca2+

uptake channel mitochondrial Ca2+ uniporter (MCU). If the mPTP
and MCU protein complexes are in close proximity, Ca2+ influx
through the MCU could create microdomains of elevated Ca2+

concentrations sufficient to induce mPTP formation. Interestingly, in
adult cardiomyocytes, MCU is discretely localized in the IMM that is
in proximity to the junctional sarcoplasmic reticulum, which releases
Ca2+ via ryanodine receptors during excitation-contraction coupling
cycles [119].
The presence of a very small number of mPTP channels in intact

mitochondria might also be explained by the specific morpholo-
gical features of the mitochondrion. It is possible that in intact
mitochondria, formation of the mPTP requires the presence of not
only the core components (either ANT or F-ATP synthase) but also
of other proteins, most notably VDAC—an outer membrane
channel that is believed to be associated with the mPTP complex.
It should also be noted that mPTP is a voltage sensitive channel.
As such, it is conceivable that its open probability might be quite
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low at the polarized mitochondrial membrane potential. It has
been proposed that such a “supercomplex” could be present
preferentially at contact sites between the outer and inner
membrane [23, 120, 121]. The importance of interactions between
various components of mPTP complex is further supported by a
recent finding that in intact cells mPTP is not activated if either
ANT or assembled ATP synthase is not present [122]. Interestingly,
these cells still undergo Ca2+ induced, CsA dependent depolariza-
tion but lack high-conductance permeability. Furthermore, mPTP
may have the highest probability of being activated only at these
specific sites. As a result, the number of pores is orders of
magnitude smaller than the number of ANT and F-ATP synthase
copies. Alternatively, if mPTP activation requires close proximity to
the MCU, this will decrease the number of pores dramatically due
to a smaller number of functional MCU complexes and their
discrete distribution. Another possibility, supported by inhibitor
binding studies [48] is that only a small subpopulation of the
proteins enter specific conformations that are different from their
native conformation, and that would allow them to transform into
mPTP. For example, mPTP could be activated only in complexes
that are not fully assembled or that are partially misfolded,
perhaps due to oxidative stress that may alter protein conforma-
tions. If this is the case, the knowledge of the atomic structures of
native proteins might not be sufficient to completely resolve the
mPTP structure.
Notably, all current models are based on the structures of the

intact proteins found in the mitochondria under normal condi-
tions. One of the exciting perspectives will be to obtain high-
resolution structures of these proteins under stress conditions.
A first attempt to work in this direction is the recent cryo-EM
structure of the F-ATP synthase in the presence of very high
(5 mM) Ca2+ [67]. Importantly, one of the key features seen in
these cryo-EM images is the possible displacement of the F1 ATP
synthase during mPTP activation, which confirms functional data
that demonstrate inhibition of the FO channel by purified F1
complex [87]. Interestingly F-ATP synthase under these conditions
generates multiple structures including native, unaltered struc-
tures and highly distorted protein structures. However, this study
did not demonstrate well-defined pores in these distorted
structures which suggests that even at very high concentrations
of Ca2+, there is no clear transformation pathway of the native
F-ATP synthase into a large mPTP channel. This is also consistent
with the presence of mPTP-like channels of various conductances
observed in patch-clamp experiments ranging from large pores
(reviewed in ref. [123]) to small conductance leak [124].
It is also worth noting that recent studies demonstrated that the

c-subunit of the ATP synthase is an amyloidogenic peptide
capable of forming oligomeric β-barrel large pores and this
process is CypD dependent [125, 126]. It is tantalizing to
hypothesize that stress conditions might lead to the formation
of misfolded c-subunits, which would induce the mitochondrial
toxicity pathway similar to mechanisms established in experi-
ments with other known pore-forming amyloid proteins [127].

THE ROLES OF MPTP IN HEALTH AND DISEASE
The recognition that the candidate proteins responsible for
mPTP are also responsible for ATP generation suggests that
these proteins are walking a fine line between cell life and death.
Here we will briefly highlight a few key paradigms in
physiological and pathological settings that appear in the
current literature.

The physiological roles of mPTP
The physiological roles of the mPTP have been appreciated
recently [14, 24, 86, 128]. The general consensus is that transient
opening of the mPTP (t-mPT) can regulate mitochondrial Ca2+

efflux [129, 130], ROS signaling [131, 132], life span [133, 134],

cellular metabolism [135] and differentiation of neuronal, cardiac
muscle and stem cells [136–138]. It is well recognized that
frequency modulation rather than amplitude modulation com-
prises an important physiological mechanism for encoding cellular
signals. Therefore, oscillatory brief openings of the mPTP would be
appropriate for carrying out several physiological functions as
mentioned above. However, what mechanisms govern the
stochastic nature of t-mPTP in the domain of space and time is
still a mystery. For instance, in adult murine cardiomycytes, the
t-mPTP mediated mitoflash occurs approximately four times/
1000 μm2/100 s [131]. Therefore, t-mPTP could generate certain
localized molecules that initiate a signal cascade leading to a
longer and broader cell regulation such as post translational
modification of a specific set of proteins. These unique
characteristics in the physiological role of mPTP are
elaborated below.

MPTP as a Ca2+ release channel and beyond. In respiring
mitochondria, Ca2+ influx is primarily mediated by the MCU while
Ca2+ efflux is largely carried out by Na+/Ca2+/Li+ exchange
(NCLX). Collectively, through sophisticated coordination, these
pathways maintain steady state mitochondrial free Ca2+ concen-
trations ([Ca2+]m) in the physiological range of 0.1–1 µM. This is
despite the ΔΨm being about −180 mV, which is a huge driving
force that unopposed would cause massive accumulation of Ca2+

within the matrix. The rate of Ca2+ uptake increases very steeply
with extramitochondrial [Ca2+], reaching a Vmax as high as
1400 nmol Ca2+ ×mg protein−1 x min−1; while the maximal rate of
operation of the antiporter is not faster than about 20 nmol
Ca2+ ×mg protein−1 ×min−1. This difference could expose
mitochondria to the risk of Ca2+ overload. However, under
physiological conditions, mitochondrial Ca2+ uptake is relatively
small during the rapid oscillatory Ca2+ transients that occur, for
example, in beating heart. In non-excitable cells or when
frequencies of Ca2+ transients through GPCR mediated Ca2+

release from IP3 receptors are low, NCLX along with high matrix
Ca2+ buffering capacities can maintain cytosolic and mitochon-
drial Ca2+ homeostasis globally. Meanwhile, the existence of
stochastic, infrequent, and localized transient mitochondrial
membrane depolarization with matching transient mitochondrial
Ca2+ release due to flickering of mPTP under physiological
conditions has been widely recognized [139–141]. In neurons
these events occur constantly during normal physiological
activities such as accompanying action potential-induced plasma
membrane depolarization and during synaptic transmission.
Therefore neuronal mPT is likely to be well-adapted for Ca2+

release [142, 143]. These localized events appear to provide a
convenient mechanism for t-mPT to serve as a safety valve to
rapidly discharge excessive Ca2+ accumulation in a small subset of
mitochondria [130]. An interesting question is why nature would
design a non-selective ion channel for mitochondrial Ca2+ release.
The answer is probably that the very low permeability of the inner
membrane, which is a requisite for energy conservation, would
prevent rapid Ca2+ release even after a full depolarization of ΔΨm

[130]. Furthermore, since the mPTP is a multi-conductance
channel, the low frequency of t-mPT may be associated with a
low-conductance mode and thus might allow for maximal Ca2+

flux without the need for persistent membrane depolarization.
This arrangement in turn permits fast Ca2+ release even for very
small [Ca2+] gradients, and is consistent with the protective effect
of pore flickering in several disease paradigms [144–146].
Another important role for the “physiological mPTP” may be to

alter cell metabolism in favor of aerobic glycolysis over oxidative
phosphorylation. The metabolic shift away from aerobic glycolysis
occurs in a time-dependent manner at various key points in
development [147]. One example is in neuronal synapse devel-
opment, where the ATP synthase c-subunit leak channel (ACLC)
becomes relatively more closed in a synaptic stimulus-dependent
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manner during synapse maturation. The mechanism is related to
rapid movement of the anti-apoptotic protein Bcl-xL to mitochon-
dria [148] followed by assembly of newly synthesized F-ATP
synthase F1 components with free c-subunit rings, the latter of
which are already present in the mitochondrial inner membrane
[128]. This new synthesis adds newly assembled ATP synthase to
that already existing. If this increased ATP synthase assembly fails
to occur at a critical time point, synapses do not develop normally.
The function of the free c-subunits earlier in development may be
to provide a persistent inner membrane leak [149] that supports
an aerobic glycolytic metabolic phenotype [128]. Aerobic glyco-
lytic metabolism allows for a high rate of protein synthesis [128]
and perhaps lipid biosynthesis during the developmental period.
The study suggests that the high rate of protein synthesis
associated with the glycolytic metabolism normally decreases at
the time of synapse maturation, regulated by relative ACLC
closure.
As mentioned earlier, Ca2+ release is only one of numerous

signals that may be associated with t-mPT. These include transient
bursting of ROS and ATP generation, alkalinization of matrix pH,
and occurrence of fluxes of other ions like Na+. These t-mPT
mediated localized signals could have profound effects on cell
regulation including development, differentiation, maturation and
aging, and localized organelle-organelle crosstalk signaling. The
t-mPTP openings in intact cells have been detected through small
molecule or protein-based fluorescence probes and mitochondrial
ion channel recordings. Although living cell ion channel record-
ings are ideal to detect rapid response kinetics, they fail when
attempting to visualize pan-cellular mitochondrial events, and
imaging techniques are not yet sensitive enough to record rapid
and smaller mPTP flickers. Future development of new probes
coupled with advanced imaging techniques may be able to
address the question of whether t-mPT occurs only in a very small
subset of mitochondria or if it is a more universal event for the
mitochondria.

The pathological roles of the mPTP
Contribution of the mPTP to necrotic and apoptotic death
pathways. The mPTP plays key roles in cell death pathways,
especially in necrotic cell death, but its role in canonical apoptosis
is still controversial. Classically Bcl-2 mediated death does not
require CypD dependent mPTP activation, although disruption of
inner membrane activities including impairment of electron
transport, occurs during apoptotic events. Rita Levi-Montalcini
and colleagues were among the first to recognize programmed
cell death in neurons in developing chick embryos. She discovered
that nerve growth factor was required to prevent death of
sympathetic and sensory neurons in the peripheral nervous
system [150]. Later work by many groups led to the discovery of
apoptosis [151], and the recognition that growth-factor with-
drawal dependent cell death was related to proapoptotic Bcl-2
family proteins such as Bax [152–154]. These proteins may also
modulate mPTP formation through interactions at contact sites
between the inner and outer mitochondrial membrane and
changes in mitochondrial morphology [155]. While mPTP opening
itself may play a role in apoptosis as discussed further below, there
exist many other recognized forms of cell death, in addition to
canonical apoptosis and necrotic death [156]. Since the role of the
mPTP in several additional cell death mechanisms is unclear, they
will not all be discussed further here.
Apoptosis is characterized by cell shrinkage, membrane

blebbing, condensation of the chromatin (pyknosis) [151], and
activation of caspase proteases [157, 158]. Intrinsic apoptotic cell
death is caused by stress experienced autonomously by a cell such
as mediated by oncogenes, direct DNA damage, hypoxia, and
survival factor deprivation. [159–162].
Mitochondria regulate caspase dependent cell death through

pro-apoptotic Bcl-2 family members such as Bax/Bak which

mediate mitochondrial outer membrane permeabilization
(MOMP), leading to formation of the apoptosome and release of
cytochrome c which activates the caspase-cascade [163]. MOMP is
preventable by high levels of anti-apoptotic proteins such as Bcl-
xL [164, 165] and the balance between pro-and anti-apoptotic
members of the family contributes to the commitment point on
the road to apoptotic cell death [166]. However, it has also been
shown that in intact cells cytochrome c release may also occur
after acute or prolonged increases in intracellular Ca2+ and
mitochondrial Ca2+ overload in a Bax/Bak independent manner
[167]. Swelling of mitochondria in response to mPTP opening may
lead to cytochrome c release by outer membrane rupture, but also
by increasing cytochrome c availability through the Bax/Bak
pathway after cristae remodeling [168]. This may stimulate
apoptosis in the presence of preserved ATP levels. In severely
damaged cells necrotic cell death is unavoidable and is
characterized by cell swelling, plasma membrane rupture, and
loss of organellar structure without chromatin condensation
[158, 169] . This is exemplified by ischemia reperfusion injury
where a key role for mPTP opening has been most firmly
established [158, 169] and is discussed further below.
Although necrotic death is not genetically regulated during

severe injury, in many cells that survive the initial insult, a
programmed set of pathways is activated that is quite different
from apoptotic death. This death, called necroptosis, is highly
regulated, caspase independent, and resembles only morpholo-
gically some aspects of necrosis. The main molecular player for
necroptosis is protein RIP kinase 3 and its substrate the Mixed
Lineage Kinase Domain-like Protein (MLKL), the latter of which
forms the executioner by permeabilizing the plasma membrane.
Necroptosis is usually initiated extrinsically to the cell by high
levels of death signals in the extracellular space, such as TNF,
which are typically found in certain severe acute, degenerative or
inflammatory states. The complex necroptotic pathway, including
activation of RIP kinases, has many decision-making forks down-
stream of TNF receptor activation that can lead, variously, to
survival, apoptosis (which is immune silent) or activation of cell
lysis and pro-inflammatory programs. Although the link between
apoptotic signaling and mPTP activation may at times be direct as
outlined in the preceding section, the mechanism of activation of
mPTP during necroptotic cell death is not yet clear, but a
convincing case has been made for ischemia- and oxidative stress-
induced myocardial necroptosis via CaMKII [170]. It should be
noted that this CamKII mediated cell death is independent of
MLKL, thus may not be defined as necroptosis according to
consensus in the cell death field [167]. The MLKL protein is an
executioner of necroptosis and its N-terminal helix bundle can
bind the mitochondria-specific phospholipid, cardiolipin
[171, 172]. This effect causes permeabilization of the mitochon-
drial inner membrane resembling mPT, accompanied by cell and
organelle swelling. Indeed, cells lacking CypD and therefore
resistant to mPT are resistant to necroptotic cell death induced by
TNFα and caspase inhibition [173]. However, in genetic model
systems, It was shown that CypD is dispensable for necroptosis
[174]. Moreover, other studies showed that activated MLKL
translocates uniquely to the plasma membrane, where it interacts
with PIP phospholipids during the process of cell death [175, 176].
MLKL lacks a mitochondrial targeting sequence, and forcibly
targeting MLKL to mitochondria with the use of selective tags
does not induce cell death [177]. Necroptotic signaling factors can
also interact with metabolic enzymes, hampering ATP production
[178], cause loss of NAD through DNA damage pathways, activate
ROS production and precipitate loss of mitochondrial and plasma
membrane potential, all of which may activate mPT. The late
events in necroptosis also involve rapid activation of calpains, Bax
and release of pro-apoptotic factors into the cytosol [179].
However, unlike apoptosis, mitochondrial depletion does not
compromise the ability of a cell to undergo necroptosis,
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suggesting that mitochondria play a regulatory role in this cell
death pathway [174].

The role of mPTP in innate immunity. Another important role for
inner membrane permeabilization by mPTP is related to
mitochondrial DNA release during innate immunity. Certain
extracellular signals known as pathogen or danger associated
molecular patterns interact with toll-like receptors (TLRs) on
macrophages [180–182] . Signaling downstream of TLRs helps to
inactivate extracellular pathogens by formation of an intracellular
complex called the inflammasome [183]. The inflammasome is
often further activated by newly synthesized mitochondrial DNA
[184–186], some of which is exposed to oxidative stress. Oxidized
mitochondrial DNA is released through mPTP into the cytosol
[183, 184] and can further propagate the inflammatory signal to
neighboring cells through mitochondrial DNA exocytosis
[187, 188]. However, mitochondrial DNA release may not be
entirely dependent on mPTP since other studies have shown that
activation of Bax/Bak can lead to mitochondrial herniation and
DNA release [189, 190]. Notably, this method of mitochonrial DNA
release was indepdent of CypD as cells lacking CypD still
underwent Bax/Bak-dependent mitochondrial DNA release [190].
Given these data, it is clear there is a relationship between MOMP,
mPTP sensitization, and inner membrane integrity that remains to
be explored [191, 192].

The role of the mPTP in ischemia/reperfusion injury. Reperfusion of
the heart (and other tissues) following an extended period of
ischemia can exacerbate the damage caused by ischemia itself
and is known as ischemia reperfusion injury (IRI) [118, 193]. It has
long been known that ischemia is associated with elevated
intracellular [Ca2+] and phosphate and that reperfusion causes the
production of ROS. These are exactly the conditions that would be
expected to cause mPTP opening and this was subsequently
shown to be the case in both isolated heart cells [194] and the
perfused heart [187]. Furthermore both pharmacological [188] and
genetic [107] attenuation of CypD activity was shown to protect
from IRI, and it is now widely accepted that opening of the mPTP
during reperfusion plays a key role in IRI in a range of tissues.
Indeed, inhibition of mPTP opening can be induced by a variety of
pharmacological, preconditioning and post-conditioning proto-
cols that lead to cardioprotection in models of IRI
[10, 118, 193, 195]. However, CsA itself has not proved to be an
effective cardioprotective agent in some animal models of IRI or in
large scale clinical trials [193]. This probably reflects the ability of
the mPTP to open independently of CypD if the trigger is
sufficiently large [118, 196]. Furthermore, if F1 is lost during
prolonged cellular toxicity, as was shown recently, CsA and other
reagents that bind within the F1 might no longer inhibit the
channel [87]. There exist areas of uncertainty in our understanding
of how the mPTP mediates IRI. First, what is the primary trigger of
mPTP opening in reperfusion; is it increased [Ca2+], ROS or some
other factor? Second, how do cardioprotective strategies such as
ischemic preconditioning (IP) inhibit mPTP opening?
It seems highly probable that the observed rise in intracellular

[Ca2+] during ischemia plays a key role in priming mitochondria
for mPTP opening during reperfusion when re-energisation leads
to uptake of the accumulated Ca2+ into the mitochondria [197]. In
support of this view, pharmacological or genetic inhibition of
mitochondrial uniporter activity does reduce IRI [197–199] as does
over expression of the Na+/Ca2+ exchanger that mediates Ca2+

efflux from the mitochondria [200]. The other widely accepted
trigger for mPTP opening during reperfusion is increased ROS
production. This has long been recognized to accompany
reperfusion, although targeting ROS as a cardioprotective strategy
has proved disappointing [10, 195]. Recently, Murphy and
colleagues have presented evidence that succinate, which
accumulates greatly during ischemia, is rapidly oxidized by

reverse electron flow leading to superoxide production at
Complex I [201]. However, using surface fluorescence of the
Langendorff perfused heart others found no evidence for
increased ROS production in the first 2 minutes of reperfusion,
when mPTP opening is triggered. Rather, ROS production
occurred later in reperfusion as a consequence of mPTP opening
and was largely prevented by inhibiting mPTP opening with CsA
or IP [202]. Furthermore, measurements of mitochondrial NADH
and flavoprotein fluorescence show that a highly reduced state of
Complex I and energisation of mitochondria are not maintained in
the early phase of reperfusion, yet this is required for ROS
production during reverse electron flow at Complex I [202, 203]. In
addition, the rapid decrease in tissue succinate levels during the
first few minutes of reperfusion can largely be explained by
succinate efflux from the heart on the monocarboxylate
transporter MCT1 [203, 204]. However, it remains possible that
mitochondrial ROS is a trigger for the initial mPTP opening, but
that the levels are below the limit of detection by the ROS probes
used. Nevertheless, studies on the mechanism of IP suggest that
other factors are more important in sensitizing the mPTP to [Ca2+]
and causing its opening in the first minutes of reperfusion as
outlined below.
IP involves exposing the heart or other organs to brief periods

of ischemia, with intervening reperfusion, prior to prolonged
ischemia [119, 205]. It leads to potent ischemic protection that is
associated with inhibition of initial mPTP opening and enhanced
subsequent mPTP closure during reperfusion [206]. However, the
mechanisms responsible and signaling pathways involved remain
a matter of considerable debate [10, 119, 193]. They cannot be
explained simply by decreased mitochondrial Ca2+ accumulation
during reperfusion or by lower ROS production during early
reperfusion [202]. Protein kinases including PKCe, PKA and
reperfusion injury signaling kinase have all been implicated
[119, 193]. However, there is no consensus as to how these might
regulate the mPTP. Mitochondria isolated from preconditioned
hearts after ischemia exhibit a marked decrease in sensitivity to
Ca2+ induced mPTP opening when compared to ischemic
mitochondria from non-preconditioned hearts, but no significant
changes in the phosphorylation state of any of the proposed
components of the mPTP were observed that correlated with
cardioprotection [207]. More recently it was shown that CypD may
be regulated by phosphorylation or a range of other modifications
[208], but data correlating the extent of these modifications with
cardioprotection is lacking. By contrast, a strong correlation has
been observed between the extents of hexokinase 2 (HK2)
dissociation from mitochondria at the end of ischemia with the
extent of mPTP opening on reperfusion [209]. HK2 is usually
tightly bound to the outer membrane of heart mitochondria
through a short conserved hydrophobic α‐helical domain in the N‐
terminus, but the decrease in pH and increase in glucose-6-
phosphate that occur in ischemia can cause its dissociation and
both these parameters are attenuated by IP [155, 210]. The
mechanism by which bound HK2 protects mitochondria from
mPTP opening remains uncertain but may involve decreased
binding of the fission factor Drp1 to the outer membrane during
ischemia [211] and preventing Ca2+ discharge into mitochondria
from mitochondria-associated membranes of the endoplasmic
reticulum [212]. Indeed pharmacological and genetic attenuation
of Drp1 binding to mitochondria is cardioprotective and several
known phosphorylation sites on Drp1 may provide additional
regulatory mechanisms linking the protein kinase signaling
pathways in preconditioning to mPTP inhibition [155, 213]. It
has been proposed that the effects of Drp1 on mitochondrial
cristae morphology disrupt contact sites between the inner and
outer mitochondrial membranes leading to sensitization of the
mPTP to [Ca2+] [209, 211]. Prevention of HK2 dissociation and thus
Drp1 binding by IP could explain the observed attenuation of
mPTP opening early in reperfusion. This, in turn, will prevent
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subsequent rises in ROS and [Ca2+] that, in unprotected hearts,
will cause an increasing cascade of further mPTP opening, ROS
production and [Ca2+] dysregulation leading to necrotic cell death
(infarct). This is illustrated schematically in Fig. 4.
Interestingly, at the periphery of the infarct there may be an

area of complex cell death and survival as cells deal with Ca2+

overload, oxidative and ER stress and inflammation [214]. This
might reflect mPTP opening that is sufficient to cause matrix
swelling, outer membrane rupture and cytochrome c release from
some mitochondria that initiates the apoptotic cascade but
without the overall bioenergetic compromise that leads to
necrosis [215].
In ischemic cell Ca2+ overload, the mitochondrial inner

membrane is the first location of death channel (mPTP) activation
before the outer membrane Bcl-2 machinery [216, 217] which
activates mPTP. The dysregulated Ca2+ accumulation that occurs
in the necrotic core leads to opening of mPTP [218], but mPTP can
also be activated in the surround of the core or penumbra. mPTP
opening leads to mitochondrial depolarization, inhibition of ATP

synthesis and finally Bax activation, as the outer membrane gets
involved. This then results in the release of pro-death factors into
the cytosol including cytochrome c [219–221]. During ischemic or
toxic cell death, anti-apoptotic proteins such as Bcl-2 and Bcl-xL
can be proteolytically cleaved by caspases and calpain to form
pro-death molecules. The N-terminal cleaved version of Bcl-xL has
been implicated in neuronal ischemic cell death and in activation
of Bax [222]. The effect of cleaved Bcl-xL on inner mitochondrial
membrane depolarization is inhibited by Bcl-xL inhibitors and by
CsA, suggesting its direct action on mPTP. ATP synthase c-subunit
knock down also protects against mitochondrial inner membrane
depolarization during glutamate toxicity, suggesting that the
mechanism involves initial activation of an mPTP-associated
channel [24, 44].

The role of ATP synthase c-subunit leak channel (ACLC) in
neurodegenerative disease. ACLC has recently been shown to
play a role in human health and disease and has therefore become
an important target to prevent brain and cardiac ischemia and
neurodegeneration. Decreases in F1 content compared to FO have
been reported in rat brain and heart mitochondria during aging
[223, 224]. The α subunit of the mitochondrial F-ATP synthase is
the most common lipoxidation protein in human Alzheimer
Disease (AD) brains at early Braak stages [225], leading to
stoichiometric changes in F-ATP synthase in degenerating
neurons [226]. In the brains of AD individuals and in an AD
mouse model, a decrease in F-ATP synthase OSCP subunit level
[227] is related to F1 dissociation from FO in neuronal mitochon-
dria [227]. Similarly, loss of the F-ATP synthase F1 β subunit and
reduction in F1/FO ratio occur in a DJ-1 deficient, Parkinson’s
disease (PD) mouse model [228, 229]. DJ-1 binds directly to the
F-ATP synthase β subunit and this interaction decreases mito-
chondrial uncoupling and enhances ATP production efficiency
[228]. In contrast, DJ-1 deficient mitochondria demonstrate low
F-ATP synthase β subunit levels, reduction in F1/FO ratio and
increased open probability of ACLC. These changes correlate with
decreased ATP synthesis efficiency [228, 230], low cytosolic ATP
levels and reduced neuronal growth.

The role of the mPTP in muscle diseases. The hypothesis that Ca2+-
dependent mitochondrial dysfunction plays a role in muscle
diseases was suggested 47 years ago [231], and thereafter
supported by studies in a variety of disease models (reviewed in
[232]). Important developments have been the demonstration
that the mPTP plays a pathogenic role in muscular dystrophy
caused by collagen VI [233], dystrophin, δ-sarcoglycan and laminin
deficiency [234] as well as in muscle atrophy of aging [235] and
denervation [236]. The involvement of the mPTP in pathogenesis
has provided novel pharmacological strategies based on pore
inhibition [237].

The role of mPTP in aging. Triggers for the mPT in cells in culture
in vitro or ex vivo, which include oxidative stress, energy
depletion, and high cytoplasmic Ca2+ concentrations [2, 3, 238]
are well described. However, these triggers are largely unachie-
vable in vivo except in extreme circumstances such as ischemia or
reperfusion injury [239]. Thus, major contributors to the mPT
in vivo in aging remain less clear and have been extrapolated by
logical extension, for example, by common inhibition of both the
decline in mitochondrial membrane potential in aging tissues and
of the mPT in cells in vitro by the CypD inhibitor CsA [240].
A growing series of compelling data indicate that the mPTP has

a greater propensity to open in aging [241]. Firstly, mitochondrial
membrane potential and efficiency of oxidative phosphorylation
decline with age, across multiple tissues and in many model
organisms [240, 242–245]. While this could implicate factors such
as accumulated damage to the respiratory chain, evidence
indicates that increased mPT may play a causal role in the decline
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in mitochondrial membrane potential and decline in ATP
generation with age [240, 246]. Secondly, a major stimulus for
the mPT, increases in oxidative stress and associated damage of
cellular structures, is a central hallmark of the aging process [247].
Evidence in model organisms indicates that primary exposure to
mitochondrial ROS may prompt a hormetic response, priming
stress-defense pathways to protect against further oxidative
insults [248, 249]. As organisms age, however, oxidative insults
prompt cellular damage that declining defense mechanisms
cannot ward off, driving mitochondrial and organismal decline
[250]. Thirdly, and perhaps most compellingly, indirect measure-
ments of mPTP opening in isolated mitochondria or permeabilized
cells indicate that a signature common to multiple tissues in aging
is enhanced mPTP activation [240, 251–253].
It should be stressed that these measurements were made by

exposing cells or mitochondria to non-physiologic stimuli known
to induce the mPT such as high concentrations of Ca2+ and
inorganic phosphate [238, 254]. Less perturbational methods for
assessing mPT in aging require exposing cells or mitochondria to
Ca2+ sensitive fluorophores, non-endogenous metabolites, or
examination of structural changes in mitochondria such as
swelling [187, 255–257]. However, even the latter has been
examined to a greater extent upon stimulation with non-
physiologic levels of Ca2+ [258]. It should also be noted that
changes in mitochondrial architecture and swelling are likely to
have multiple causal factors during aging, with mPT representing
but one. Finally, highly sophisticated microscopic techniques
using genetically encoded sensors now permit the direct, real-
time visualization of bursts of mitochondrial superoxide, so called
“mitoflashes” [131, 140]. Mitoflash frequency is highly correlated
with the rate of aging and organismal decline in C. elegans [133].
However, in spite of the idea that mitoflash is strongly correlated
with mPTP opening [259], imaging techniques demonstrate
changes suggestive of increased mPTP activity rather than provide
a direct measurement of mPT, and the relevance of mitoflash in
aging has been called into question [260, 261].
Cellular consequences of the mPT differ depending upon the

strength and context in which mPTP opening occurs. As noted
above, short-term mPTP opening may play a role in mitochondrial
Ca2+ or metabolite homeostasis and more complex cellular
events, for example in facilitating cellular pluripotency
[16, 262–264]. Non-sustained mPTP opening has been further
shown to play a role in mitochondrial quality control and
degradation by autophagy [265–271]. Alternatively, sustained,
widespread mPTP opening leads to ATP depletion, induction of
autophagy, and necrotic or apoptotic cell death [271–273]. While
it is clear that opening of the mPTP is linked to cellular apoptotic
and necrotic cell death, whether it is the summation of cellular-
level effects on cell death or some other behavior of the mPTP
that contributes to aging-related decline and ultimately organis-
mal death remains unknown. In this case we draw sharp
distinction between obvious acute insults that trigger mPT such
as ischemia-reperfusion injury [107, 274] versus stimuli that serve
to prompt mPT across the lifespan.
Recent work from the Soukas and Lithgow laboratories suggest

that genetic stimulation of mPTP opening is sufficient to shorten
lifespan in an mPTP-, autophagy- and mitochondrial unfolded
protein response-dependent manner [11, 134]. These data permit
several important conclusions to be drawn. Firstly, although the
role of VDAC1 in mPT in cells in culture has been called into
question in loss of function experiments [29], in support of prior
data, enhanced expression of VDAC1 protein (either by over-
expression or by loss of function of the kinase Sgk1 that leads to
an accumulation of VDAC1 protein) both facilitate mPTP opening
in cells in culture in vitro and shorten lifespan in C. elegans
in vivo [11]. Secondly, and importantly, the inhibition of
autophagy alone when mPTP opening is stimulated is sufficient
to reverse shortened lifespan, indicating that it is not enhanced

mPT alone that executes the detrimental effects of mPTP opening
on aging, but rather the cellular context in which mPT occurs.
Thirdly, genetically triggered mPT via loss of OSCP similarly turns
the mitochondrial unfolded protein response from a classically
positive force in longevity to lifespan shortening [134]. These
observations suggest that mPT may both directly and indirectly
modulate aging by governing whether stress defenses such as
autophagy or the unfolded protein response promote longevity or
shorten lifespan. To our knowledge these are among the first data
to implicate a potential causal role for the mPT in normal aging,
rather than associations of enhanced mPT with aging and
degenerative and aging-associated diseases [110, 111, 275–278].
However, investigation of the role of the mPTP in aging is far

from complete. Challenges arise not only surrounding the
uncertain protein identification of the mPTP and its regulatory
components, but also from the difficulty of directly observing
mitochondrial permeability in vivo during aging. Age-dependent
physiological triggers of the mPT must be identified and
investigated in order to drive the field forward. Further, it will
be important to establish how these triggers signal through
various mPTP regulatory components to modulate mitochondrial
membrane integrity. To enable these advances, will not only
require the tools to modulate functionality of mPTP regulatory
components in vivo across the lifespan, but also more sophisti-
cated means of visualizing mPT in situ in aging in response to
physiologically relevant stimuli and during the normal aging
process.

CONCLUSION
The mitochondrial permeability transition was first observed in the
mid twentieth century, but identification of its core molecular
components and their regulatory partners continues to prove
elusive. Nevertheless, genetic knockout experiments provide good
evidence for regulatory and/or structural roles of the ANT, F-ATP
synthase and CypD. Furthermore, progress has been made in
recording channel activity from purified versions of several
putative pore-containing candidates. The recordings of reconsti-
tuted candidate complexes including F-ATP synthase monomers
and dimers and ANT have demonstrated sensitivity to reagents
that regulate mPT, suggesting that they contain authentic pore
proteins. In addition, reconstituted purified F-ATP synthase
c-subunit ring has been demonstrated to form a channel.
Problems that have arisen in determining an atomic structure
for the actual pore within the F-ATP synthasome protein complex
include difficulty in demonstrating the intactness of the protein
complex after detergent solubilization and difficulty in correlating
the in vitro structure that lacks a physiological cell and membrane
regulatory milieu with the in vivo structure. Remaining issues in
the field include defining whether there is more than one protein
type of mPT pore and if so, determining how different pores work
together or possibly interact directly. There may well be other
protein and lipid regulators yet to be identified in addition to less
highly expressed pore-forming proteins than have been described
thus far. The fickle nature of mPT regulation is intriguing in that
sensitivity to Ca2+ and other putative ligands appears to be
variable and of low potency, suggesting that mPT regulatory sites
may be on proteins or phospholipids peripherally bound to the
pore but not contained directly within the pore itself. The complex
multi-protein structure surrounding the pore may act as an
inhibiting barrier to mPT, requiring large conformational changes
of the actual pore protein, associated regulatory proteins or
mitochondrial morphology (e.g., contact sites between the inner
and out membrane) to initiate channel activation. Questions
remain regarding localization of putative pore proteins near MCU,
VDAC and other ion channels and transporters as well as
interactions with the mitochondrial fission/fusion machinery, the
Bcl-2-family members, hexokinase and cristae morphology.
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Furthermore, there continue to be uncertainties as to the timing
and regulation of the mPTP in ischemia reperfusion-induced injury
and in normal aging that are still being actively investigated.
Physiological functions for a large conductance inner mitochon-
drial membrane channel such as the mPTP are clearly relevant to
cell Ca2+ signaling and in the regulation of cell metabolism.
Despite advances, the field of pharmacological regulation of mPTP
remains in its infancy. There is much more to be discovered about
this fascinating mPTP complex that comprises a potential nexus
between cell life and death.
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