論文

査読有り
2020年7月

Ferroelectric control of magnetic skyrmions in multiferroic heterostructures

PHYSICAL REVIEW B
  • Yu Wang
  • ,
  • Jiajun Sung
  • ,
  • Takahiro Shimada
  • ,
  • Hiroyuki Hirakata
  • ,
  • Takayuki Kitamura
  • ,
  • Jie Wang

102
1
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1103/PhysRevB.102.014440
出版者・発行元
AMER PHYSICAL SOC

Magnetic skyrmions with a topological particle nature are considered as potential information carriers for future spintronics memory and logic devices. The stabilization of magnetic skyrmions at zero magnetic field in nanostructured components is a prerequisite for incorporating them into advanced nonvolatile memory devices. Here, using a real-space phase field model based on Ginzburg-Landau theory, we demonstrate that ferroelectric polarization can stabilize magnetic skyrmions at zero magnetic field in multiferroic heterostructures composed of MnSi, PbTiO3, and SrTiO3. The stabilization of magnetic skyrmions in multiferroic heterostructures essentially depends on the directions of spontaneous polarizations and the size ratios of different constituents, in which polarization-induced inhomogeneous strain plays an important role. By applying an electric field, the polarization switching takes place in the ferroelectric constituent and the polarization-induced strain changes in the multiferroic heterostructures, resulting in a transition from skyrmion to helical phase in the ferromagnetic constituent. In addition, the skyrmion and helical phases can coexist in the absence of an external field and be switched reversibly by a local magnetic field with a small magnitude. Stabilization and control of magnetic skyrmions by spontaneous polarization at zero magnetic field may create additional opportunities for nonvolatile skyrmion memory devices.

リンク情報
DOI
https://doi.org/10.1103/PhysRevB.102.014440
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000550577700009&DestApp=WOS_CPL
ID情報
  • DOI : 10.1103/PhysRevB.102.014440
  • ISSN : 2469-9950
  • eISSN : 2469-9969
  • Web of Science ID : WOS:000550577700009

エクスポート
BibTeX RIS