alpha-CIR モデルと beta-Fleming-Viot 過程のエルゴード性* ^{半田賢司}(佐賀大学)

Based on a beautiful structure :

 $\mathcal{L}_{\alpha}\Psi(\eta) = \text{const. } \eta(E)^{-\alpha}\mathcal{A}_{\alpha}\Phi(\eta(E)^{-1}\eta),$

where $0 < \alpha < 1$, $\Psi(\eta) := \Phi(\eta(E)^{-1}\eta)$,

• $\mathcal{L}_{\alpha} \leftrightarrow$ a measure-valued branching process with immigration (MBI-process)

• $\mathcal{A}_{\alpha} \leftrightarrow$ a jump-type version of Fleming-Viot (FV) process with 'parent-indep.' mutation *ArXiv:1307.2407 (submitted)

Plan of talk 1. The models and their relations

- **2.** Spectral gap for α -CIR models
- **3.** Ergodic properties of beta-FV processes

A useful book on MBI-processes

[Measure-valued branching Markov processes, Li, Z. 2011, Springer]

Selected works on generalized FV processes

• Pioneer works are [Donnelly, Kurtz 1999], [Hiraba 2000],

[Bertoin, Le Gall 2003, 2005, 2006].

Closely related models to ours were discussed in
 [Alpha-stable branching and beta-coalescents, Birkner, Blath, Capaldo, Etheridge, Möhle, Schweinsberg, Wakolbinger 2005],
 [Foucart 2011], [Foucart, Hénard 2013]

α -CIR model (on $[0,\infty)$)

<u>Generator</u> $[0 < \alpha < 1, a > 0, b \in \mathbb{R}, c \ge 0 : given]$

$$L_{\alpha}f(z) = az \int \left[f(z+y) - f(z) - yf'(z)\right] n_B(dy)$$
$$-\frac{b}{\alpha}zf'(z) + c \int \left[f(z+y) - f(z)\right] n_I(dy)$$

with
$$n_B(dy) = \frac{\alpha+1}{\Gamma(1-\alpha)y^{\alpha+2}}dy$$
, $n_I(dy) = \frac{\alpha}{\Gamma(1-\alpha)y^{\alpha+1}}dy$.
 \uparrow branching \uparrow immigration

• $L_{\alpha}f(z) \rightarrow Lf(z) \ (\alpha \uparrow 1)$ generator of CIR model: Lf(z) := azf''(z) + (-bz + c)f'(z).

• It belongs to the class of CBI-processes (continuousstate branching processes with immigration). [Kawazu, Watanabe 1971]

Measure-valued α -CIR model

E: a compact metric space $\mathcal{M}(E) = \{\text{finite Borel measures on } E\}$ $a \in C_{++}(E), b \in C(E), m \in \mathcal{M}(E): \text{ given}$ $\boxed{\text{Generator}} \qquad [\langle \eta, f \rangle := \int_E f d\eta]$ $\mathcal{L}_{\alpha}\Psi(\eta) = \int n_B(dz) \int_E a(r)\eta(dr) \left[\Psi(\eta + z\delta_r) - \Psi(\eta) - z\frac{\delta\Psi}{\delta\eta}(r)\right]$ $-\frac{1}{\alpha} \langle b\eta, \frac{\delta\Psi}{\delta\eta} \rangle + \int n_I(dz) \int_E m(dr) [\Psi(\eta + z\delta_r) - \Psi(\eta)]$

It is a MBI-process with <u>branching mechanism</u> $\alpha^{-1}(a(r)f(r)^{\alpha+1}+b(r)f(r))$ <u>immigration mechanism</u> $\langle m, f^{\alpha} \rangle$.

'Beta-Fleming-Viot' process

Assume that $\sharp E \ge 2$. $B_{a,b}(du)$: beta law Our <u>beta-FV process</u> on $\mathcal{M}_1(E) := \{$ Borel probab. measures on $E\}$ has generator $\mathcal{A}_{\alpha} \Phi(\mu) = \int_0^1 \frac{B_{1-\alpha,1+\alpha}(du)}{u^2} \int_E \mu(dr) \left[\Phi((1-u)\mu + u\delta_r) - \Phi(\mu) \right] + \int_0^1 \frac{B_{1-\alpha,\alpha}(du)}{(\alpha+1)\mu} \int_E m(dr) \left[\Phi((1-u)\mu + u\delta_r) - \Phi(\mu) \right].$

(simultaneous reproduction) + (simultaneous mutation) [Birkner et al 2005] m = 0, [Foucart, Hénard 2013] degenerate m[Remark] $\mathcal{A}_{\alpha} \Phi(\mu) \to \mathcal{A} \Phi(\mu)$ ($\alpha \uparrow 1$), generator of FV-process $\mathcal{A} \Phi(\mu) = \frac{1}{2} \langle \mu(dr) \delta_r(ds) - \mu(dr) \mu(ds), \frac{\delta^2 \Phi}{\delta \mu^2} \rangle + \frac{1}{2} \langle m - m(E) \mu, \frac{\delta \Phi}{\delta \mu} \rangle.$

Key identity (KI)

Proposition Assume that $a \equiv 1 \equiv b$. Then $\mathcal{L}_{\alpha}\Psi(\eta) = \Gamma(\alpha + 2) \ \eta(E)^{-\alpha} \mathcal{A}_{\alpha} \Phi(\eta(E)^{-1}\eta),$ where $\eta \in \mathcal{M}(E)$ with $\eta(E) > 0$, $\Psi(\eta) := \Phi(\eta(E)^{-1}\eta).$

Remarks (i) Only A_{α} 's enjoy this kind of relation to MBIproc's. (cf. [Birkner et al 2005], [Foucart, Hénard 2013]) (ii) (KI) for FV-processes (' $\alpha = 1$ ') is found in [Shiga 1990].

cf.
$$\lim_{\alpha \uparrow 1} \mathcal{L}_{\alpha} \Psi(\eta) = \langle \eta, a \frac{\delta^2 \Psi}{\delta \eta^2} \rangle - \langle \eta, b \frac{\delta \Psi}{\delta \eta} \rangle + \langle m, \frac{\delta \Psi}{\delta \eta} \rangle =: \mathcal{L} \Psi(\eta)$$

Stationary distribution ; α -CIR case

(*T*(*t*)): semigroup generated by \mathcal{L}_{α} [$\Psi_f(\eta) := e^{-\langle \eta, f \rangle}$] Theorem 1 (1) For $t \ge 0$

$$T(t)\Psi_f(\eta) = \exp\left[-\langle \eta, V_t f \rangle - \int_0^t \langle m, (V_s f)^{lpha} \rangle ds\right], \quad f \ge 0,$$

where $V_t f(r) = \frac{e^{-b(r)t/\alpha} f(r)}{\left[1 + a(r)f(r)^{\alpha} \int_0^t e^{-b(r)s} ds\right]^{1/\alpha}}$.

(2) If $b \in C_{++}(E)$, a unique stationary distribution Q_{α} satisfies

$$\int_{\mathcal{M}(E)} e^{-\langle \eta, f \rangle} \mathcal{Q}_{\alpha}(d\eta) = e^{-\langle m, a^{-1} \log(1 + ab^{-1} f^{\alpha}) \rangle}, \ f \ge 0.$$

Proof. Apply [Kawazu, Watanabe 1971]'s theory.

Stationary distribution ; β -FV case

Theorem 2 If m(E) > 0, then a unique stationary distribution of the process associated with A_{α} is

$$\mathcal{P}_{\alpha}(\bullet) := \Gamma(\alpha+1) \int_{\mathcal{M}_{1}(E)} \mathcal{D}_{m}(d\mu) E^{\mathcal{S}_{\alpha,\mu}} \left[\eta(E)^{-\alpha}; \eta(E)^{-1} \eta \in \bullet \right],$$

where \mathcal{D}_m is the law of a Dirichlet random measure with parameter m and $\int_{\mathcal{M}(E)} e^{-\langle \eta, f \rangle} \mathcal{S}_{\alpha,\mu}(d\eta) = e^{-\langle \mu, f^{\alpha} \rangle}, \quad f \ge 0.$

<u>**Proof.</u>** By (KI) A_{α} -process has a stationary distribution</u>

$$\tilde{\mathcal{P}}_{\alpha}(\bullet) := E^{\mathcal{Q}_{\alpha}} \left[\eta(E)^{-\alpha}; \eta(E)^{-1} \eta \in \bullet \right] / E^{\mathcal{Q}_{\alpha}} \left[\eta(E)^{-\alpha} \right]$$

if $E^{\mathcal{Q}_{\alpha}}\left[\eta(E)^{-\alpha}\right] < \infty$. $\tilde{\mathcal{P}}_{\alpha} = \mathcal{P}_{\alpha}$ can be shown if m(E) > 1.

Ergodic property ; α -CIR case

Theorem 3 If $b \in C_{++}(E)$ and m(E) > 0, then

(SG) $\operatorname{var}_{\mathcal{Q}_{\alpha}}(\Psi) \leq 2 \operatorname{ess\,sup}(b^{-1}) E^{\mathcal{Q}_{\alpha}}[(-\mathcal{L}_{\alpha})\Psi \cdot \Psi].$ (*E*,*m*)

Moreover, the constant is optimal.

Remarks (i) In case of ' $\alpha = 1$ ', the optimal constant is ess $\sup_{(E,m)}(b^{-1})$. [Stannat 2003] (ii) Non-symmetric Dirichlet form: $\frac{E^{Q\alpha}\left[(-\mathcal{L}_{\alpha})\Psi_{f}\cdot\Psi_{g}\right]}{E^{Q\alpha}\left[\Psi_{f+g}\right]} = \langle m, f^{\alpha} - \frac{(f+g)^{\alpha-1}(af^{\alpha+1}+bf)}{b+a(f+g)^{\alpha}} \rangle$

Proof of Theorem 3 (1/3)

Mimicking [Stannat 2005]'s argument:

• Since \mathcal{L}_{α} is regarded as a 'direct sum' of the one-dimensional version (generating an α -CIR model)

$$L_{\alpha}f(z) = az \int \left[f(z+y) - f(z) - yf'(z)\right] n_B(dy)$$
$$-\frac{b}{\alpha}zf'(z) + c \int \left[f(z+y) - f(z)\right] n_I(dy)$$

with a, b, c > 0, (SG) for \mathcal{L}_{α} is reduced to (SG) for L_{α} .

• Thanks to infinite divisibility of the stationary distribution Q_{α} for L_{α} , (SG) is reduced to its 'Lévy measure version' (given below).

Proof of Theorem 3 (2/3)

Λ_α: Lévy measure of Q_{α} with a = b = c = 1, i.e., $\int (1 - e^{-\lambda z}) ∧_{\alpha} (dz) = \log(1 + \lambda^{\alpha}), \quad \lambda > 0$ Showing (SG) for L_{α} can be reduced to

$$\begin{split} &\int (F(z) - F(0))^2 \Lambda_{\alpha}(dz) \\ &\leq \int \Lambda_{\alpha}(dz) z \int n_B(dy) (F(z+y) - F(z))^2 \\ &\quad + \int n_I(dy) (F(y) - F(0))^2, \qquad F \in D \end{split}$$

where $D := L.S.\{c \ e^{-\lambda z} : c \in \mathbb{R}, \lambda > 0\}$.

Showing this is based on explicit representations for $F(z) = \sum c_i e^{-\lambda_i z}$. (rather difficult !)

Proof of Theorem 3 (3/3)

To prove optimality of (SG) we only have to show that there exists a Ψ such that

$$\lim_{t\to\infty}\frac{1}{t}\log\operatorname{var}_{\mathcal{Q}_{\alpha}}(T(t)\Psi) = -\frac{1}{2}\operatorname{ess\,inf}_{(E,m)}b.$$

This can be shown for $\Psi(\eta) = \Psi_1(\eta) = e^{-\eta(E)}$, for which an explicit form of $T(t)\Psi(\eta)$ is available. Remark For ' $\alpha = 1$ ', the corresponding limit is evaluated as $- \underset{(E,m)}{\text{ess inf } b}$.

Ergodic property ; β -FV case

(*S*(*t*)): semigroup on $L^2(\mathcal{P}_{\alpha})$ generated by \mathcal{A}_{α} Theorem 4 Assume that $\theta := m(E) > 1$. Then $\exists C = C(\alpha, \theta) < \infty$ such that for $\forall \Phi \in L^2(\mathcal{P}_{\alpha})$

$$\limsup_{t\to\infty} \operatorname{var}_{\mathcal{P}_{\alpha}}(S(t)\Phi) \frac{t^{\theta-1}}{\log t} \leq C \operatorname{osc}^2(\Phi),$$

where $\operatorname{osc}^2(\Phi)$ is the ess. sup. of $|\Phi(\mu_1) - \Phi(\mu_2)|^2$ with respect to $\mathcal{P}_{\alpha} \otimes \mathcal{P}_{\alpha}$.

Remarks (i) We have NOT seen that exponential convergence does NOT hold.

(ii) Nothing has been shown for the case $\theta \leq 1$.

Proof of Theorem 4 (1/2)

(a) (KI) implies

 $E^{\mathcal{Q}_{\alpha}}\left[(-\mathcal{L}_{\alpha})\Psi\cdot\Psi\right] = C_{\alpha,\theta} \ E^{\mathcal{P}_{\alpha}}\left[(-\mathcal{A}_{\alpha})\Phi\cdot\Phi\right],$ where $\Psi(\eta) := \Phi(\eta(E)^{-1}\eta).$

(b) (SG) for \mathcal{L}_{α} with $b \equiv 1$:

 $\operatorname{var}_{\mathcal{Q}_{\alpha}}(\Psi) \leq 2E^{\mathcal{Q}_{\alpha}}\left[(-\mathcal{L}_{\alpha})\Psi \cdot \Psi\right]$ (Theorem 3)

(c) By Hölder's inequality

 $\operatorname{var}_{\mathcal{P}_{\alpha}}(\Phi) \leq \tilde{C}_{\alpha,\theta} \left(E^{\mathcal{Q}_{\alpha}} \left[\eta(E)^{-\alpha q} \right] \operatorname{osc}^{2}(\Phi) \right)^{\frac{1}{q}} \left(\operatorname{var}_{\mathcal{Q}_{\alpha}}(\Psi) \right)^{\frac{1}{p}},$

where $q \in (1, \theta)$ is arbitrary and 1/p + 1/q = 1.

Proof of Theorem 4 (2/2)

(1) **By** (a)-(c)

 $\operatorname{var}_{\mathcal{P}_{\alpha}}(\Phi) \leq C_{\alpha,\theta,q} \operatorname{osc}^{2}(\Phi)^{\frac{1}{q}} \left(E^{\mathcal{P}_{\alpha}} \left[(-\mathcal{A}_{\alpha}) \Phi \cdot \Phi \right] \right)^{\frac{1}{p}}.$

- In addition, $\operatorname{osc}^2(S(t)\Phi) \leq \operatorname{osc}^2(\Phi)(t > 0)$.
- (2) [Liggett 1991] 's theorem yields

$$\operatorname{var}_{\mathcal{P}_{\alpha}}(S(t)\Phi) \leq \tilde{C}_{\alpha,\theta,q}\operatorname{osc}^{2}(\Phi)t^{1-q}, \qquad t > 0.$$

(3) Optimizing the value of $q \in (1, \theta)$ for each $t \gg 1$ gives the result; $\log t$ appears as a 'trade-off'.

[Liggett 1991]'s theorem

P : a stationary distribution of a Markov process (*S*(*t*)): strongly continuous semigroup on $L^2(P)$ *A* : generator of (*S*(*t*)) $\mathcal{V}: L^2(P) \rightarrow [0, \infty]$ satisfies $\mathcal{V}(cf + d) = c^2 \mathcal{V}(f) \ (\forall c, d \in \mathbb{R})$ & $\mathcal{V}(S(t)f) \leq \mathcal{V}(f) \ (\forall t > 0). \ p, q > 1$ satisfy 1/p + 1/q = 1. Then

 $\operatorname{var}_{P}(f) \leq C\left(E^{P}\left[(-Af)f\right]\right)^{1/p} \mathcal{V}(f)^{1/q}, \ \forall f \in D(A)$

implies

$$\operatorname{var}_{P}(S(t)f) \leq \mathcal{V}(f)C^{q}\left(\frac{q-1}{2t}\right)^{q-1}, \ \forall f \in L^{2}(P), t > 0.$$

Characterization of the A_{α} -process

Proposition The closure of \mathcal{A}_{α} defined on

 $\left\{\Phi_f(\mu) = \langle f, \mu^{\otimes n} \rangle : f \in C(E^n), n \in \mathbf{N}\right\}$

generates a Feller semigroup on $C(\mathcal{M}_1(E))$. <u>Proof</u> uses a concrete form of $\mathcal{A}_{\alpha} \Phi_f(\mu)$ and Hille-Yosida's theorem.

Remark The same result holds for ' $\alpha = 1$ ' as proved in [Ethier, Kurtz 1993].