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Based on a beautiful structure :

LαΨ(η) = const. η(E)−αAαΦ(η(E)−1η),

where 0 < α < 1, Ψ(η) := Φ(η(E)−1η),

• Lα ←→ a measure-valued branching process

with immigration (MBI-process)

• Aα ←→ a jump-type version of Fleming-Viot

(FV) process with ‘parent-indep.’ mutation
∗ArXiv:1307.2407 (submitted)
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Plan of talk 1. The models and their relations

2. Spectral gap for α-CIR models

3. Ergodic properties of beta-FV processes

A useful book on MBI-processes

[Measure-valued branching Markov processes, Li, Z. 2011, Springer]

Selected works on generalized FV processes

• Pioneer works are [Donnelly, Kurtz 1999], [Hiraba 2000],

[Bertoin, Le Gall 2003, 2005, 2006].

• Closely related models to ours were discussed in

[Alpha-stable branching and beta-coalescents, Birkner, Blath, Ca-

paldo, Etheridge, Möhle, Schweinsberg, Wakolbinger 2005],

[Foucart 2011], [Foucart, Hénard 2013]
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α-CIR model (on [0,∞))

Generator [0 < α < 1, a > 0, b ∈ R, c ≥ 0 :given]

Lαf(z) = az
∫ [

f(z + y)− f(z)− yf ′(z)
]
nB(dy)

−
b

α
zf ′(z) + c

∫
[f(z + y)− f(z)]nI(dy)

with nB(dy) = α+1
Γ(1−α)yα+2dy, nI(dy) = α

Γ(1−α)yα+1dy.

↑ branching ↑ immigration

• Lαf(z)→ Lf(z) (α ↑ 1) generator of CIR model:

Lf(z) := azf ′′(z) + (−bz + c)f ′(z).
• It belongs to the class of CBI-processes (continuous-

state branching processes with immigration). [Kawazu,

Watanabe 1971]
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Measure-valued α-CIR model

E : a compact metric space

M(E) = {finite Borel measures on E}
a ∈ C++(E), b ∈ C(E),m ∈M(E): given

Generator [⟨η, f⟩ :=
∫
E
fdη]

LαΨ(η) =
∫
nB(dz)

∫
E
a(r)η(dr)

Ψ(η + zδr)−Ψ(η)− z
δΨ

δη
(r)


−
1

α
⟨bη,

δΨ

δη
⟩+

∫
nI(dz)

∫
E
m(dr)[Ψ(η + zδr)−Ψ(η)]

It is a MBI-process with

branching mechanism α−1(a(r)f(r)α+1+b(r)f(r))

immigration mechanism ⟨m, fα⟩.
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‘Beta-Fleming-Viot’ process

Assume that ♯E ≥ 2. Ba,b(du): beta law

Our beta-FV process
onM1(E) := {Borel probab. measures on E} has generator

AαΦ(µ) =
∫ 1

0

B1−α,1+α(du)

u2

∫
E
µ(dr) [Φ((1− u)µ+ uδr)−Φ(µ)]

+
∫ 1

0

B1−α,α(du)

(α+1)u

∫
E
m(dr) [Φ((1− u)µ+ uδr)−Φ(µ)].

(simultaneous reproduction) + (simultaneous mutation)

[Birkner et al 2005] m = 0, [Foucart, Hénard 2013] degenerate m

Remark AαΦ(µ)→ AΦ(µ) (α ↑ 1), generator of FV-process

AΦ(µ) =
1

2
⟨µ(dr)δr(ds)− µ(dr)µ(ds),

δ2Φ

δµ2
⟩+

1

2
⟨m−m(E)µ,

δΦ

δµ
⟩.
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Key identity (KI)

Proposition Assume that a ≡ 1 ≡ b. Then

LαΨ(η) = Γ(α+2) η(E)−αAαΦ(η(E)−1η),

where η ∈M(E) with η(E) > 0, Ψ(η) := Φ(η(E)−1η).

Remarks (i) Only Aα’s enjoy this kind of relation to MBI-

proc’s. (cf. [Birkner et al 2005], [Foucart, Hénard 2013])

(ii) (KI) for FV-processes (‘α = 1’) is found in [Shiga 1990].

cf. lim
α↑1
LαΨ(η) = ⟨η, a

δ2Ψ

δη2
⟩ − ⟨η, b

δΨ

δη
⟩+ ⟨m,

δΨ

δη
⟩ =: LΨ(η)
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Stationary distribution ; α-CIR case

(T (t)): semigroup generated by Lα [Ψf(η) := e−⟨η,f⟩]

Theorem 1 (1) For t ≥ 0

T (t)Ψf(η) = exp
[
−⟨η, Vtf⟩ −

∫ t

0
⟨m, (Vsf)

α⟩ds
]
, f ≥ 0,

where Vtf(r) = e−b(r)t/αf(r)[
1+a(r)f(r)α

∫ t
0 e
−b(r)sds

]1/α.
(2) If b ∈ C++(E), a unique stationary distribu-

tion Qα satisfies
∫
M(E)

e−⟨η,f⟩Qα(dη) = e−⟨m,a−1 log(1+ab−1fα)⟩, f ≥ 0.

Proof. Apply [Kawazu, Watanabe 1971]’s theory.
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Stationary distribution ; β-FV case

Theorem 2 If m(E) > 0, then a unique stationary

distribution of the process associated with Aα is

Pα(•) := Γ(α+1)
∫
M1(E)

Dm(dµ)ESα,µ
[
η(E)−α; η(E)−1η ∈ •

]
,

where Dm is the law of a Dirichlet random measure with

parameter m and
∫
M(E)

e−⟨η,f⟩Sα,µ(dη) = e−⟨µ,f
α⟩, f ≥ 0.

Proof. By (KI) Aα-process has a stationary distribution

P̃α(•) := EQα
[
η(E)−α; η(E)−1η ∈ •

]
/EQα

[
η(E)−α

]

if EQα
[
η(E)−α

]
<∞. P̃α = Pα can be shown if m(E) > 1.
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Ergodic property ; α-CIR case

Theorem 3 If b ∈ C++(E) and m(E) > 0, then

(SG) varQα(Ψ) ≤ 2ess sup
(E,m)

(b−1) EQα [(−Lα)Ψ ·Ψ].

Moreover, the constant is optimal.

Remarks (i) In case of ‘α = 1’, the optimal con-

stant is ess sup(E,m)(b
−1). [Stannat 2003]

(ii) Non-symmetric Dirichlet form:
EQα

[
(−Lα)Ψf ·Ψg

]
EQα

[
Ψf+g

] = ⟨m, fα −
(f + g)α−1(afα+1 + bf)

b+ a(f + g)α
⟩
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Proof of Theorem 3 (1/3)

Mimicking [Stannat 2005]’s argument:

• Since Lα is regarded as a ‘direct sum’ of the

one-dimensional version (generating an α-CIR model)

Lαf(z) = az
∫ [

f(z + y)− f(z)− yf ′(z)
]
nB(dy)

−
b

α
zf ′(z) + c

∫
[f(z + y)− f(z)]nI(dy)

with a, b, c > 0, (SG) for Lα is reduced to (SG) for Lα.

• Thanks to infinite divisibility of the stationary distribu-

tion Qα for Lα, (SG) is reduced to its ‘Lévy measure ver-

sion’ (given below).
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Proof of Theorem 3 (2/3)

Λα: Lévy measure of Qα with a = b = c = 1, i.e.,∫
(1− e−λz)Λα(dz) = log(1 + λα), λ > 0

Showing (SG) for Lα can be reduced to

∫
(F (z)− F (0))2Λα(dz)

≤
∫
Λα(dz)z

∫
nB(dy)(F (z + y)− F (z))2

+
∫
nI(dy)(F (y)− F (0))2, F ∈ D,

where D := L.S.{c e−λz : c ∈ R, λ > 0}.
Showing this is based on explicit representations

for F (z) =
∑
cie
−λiz. (rather difficult !)



12

Proof of Theorem 3 (3/3)

To prove optimality of (SG) we only have to show

that there exists a Ψ such that

lim
t→∞

1

t
log varQα(T (t)Ψ) = −

1

2
ess inf
(E,m)

b.

This can be shown for Ψ(η) = Ψ1(η) = e−η(E), for

which an explicit form of T (t)Ψ(η) is available.

Remark For ‘α = 1’, the corresponding limit is

evaluated as − ess inf
(E,m)

b.
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Ergodic property ; β-FV case

(S(t)): semigroup on L2(Pα) generated by Aα

Theorem 4 Assume that θ := m(E) > 1.

Then ∃ C = C(α, θ) <∞ such that for ∀ Φ ∈ L2(Pα)

lim sup
t→∞

varPα(S(t)Φ)
tθ−1

log t
≤ C osc2(Φ),

where osc2(Φ) is the ess. sup. of |Φ(µ1)−Φ(µ2)|2

with respect to Pα ⊗Pα.
Remarks (i) We have NOT seen that exponential con-

vergence does NOT hold.

(ii) Nothing has been shown for the case θ ≤ 1.
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Proof of Theorem 4 (1/2)

(a) (KI) implies

EQα [(−Lα)Ψ ·Ψ] = Cα,θ EPα [(−Aα)Φ ·Φ],

where Ψ(η) := Φ(η(E)−1η).

(b) (SG) for Lα with b ≡ 1 :

varQα(Ψ) ≤ 2EQα [(−Lα)Ψ ·Ψ] (Theorem 3)

(c) By Hölder’s inequality

varPα(Φ) ≤ C̃α,θ

(
EQα

[
η(E)−αq

]
osc2(Φ)

)1
q

(
varQα(Ψ)

)1
p ,

where q ∈ (1, θ) is arbitrary and 1/p+1/q = 1.
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Proof of Theorem 4 (2/2)

(1) By (a)-(c)

varPα(Φ) ≤ Cα,θ,qosc
2(Φ)

1
q

(
EPα [(−Aα)Φ ·Φ]

)1
p .

In addition, osc2(S(t)Φ) ≤ osc2(Φ)(t > 0).

(2) [Liggett 1991] ’s theorem yields

varPα(S(t)Φ) ≤ C̃α,θ,qosc
2(Φ)t1−q, t > 0.

(3) Optimizing the value of q ∈ (1, θ) for each t≫ 1

gives the result; log t appears as a ‘trade-off’.
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[Liggett 1991]’s theorem

P : a stationary distribution of a Markov process

(S(t)): strongly continuous semigroup on L2(P )

A : generator of (S(t))

V : L2(P )→ [0,∞] satisfies V(cf + d) = c2V(f) (∀c, d ∈ R)

& V(S(t)f) ≤ V(f) (∀t > 0). p, q > 1 satisfy 1/p+1/q = 1.

Then
varP(f) ≤ C

(
EP [(−Af)f ]

)1/pV(f)1/q, ∀f ∈ D(A)

implies

varP(S(t)f) ≤ V(f)Cq
q − 1

2t

q−1, ∀f ∈ L2(P ), t > 0.
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Characterization of the Aα-process

Proposition The closure of Aα defined on

{
Φf(µ) = ⟨f, µ⊗n⟩ : f ∈ C(En), n ∈ N

}

generates a Feller semigroup on C(M1(E)).

Proof uses a concrete form of AαΦf(µ) and Hille-Yosida’s

theorem.

Remark The same result holds for ‘α = 1’ as proved in

[Ethier, Kurtz 1993].


