Papers

Peer-reviewed
Oct, 2012

Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model

NEURAL REGENERATION RESEARCH
  • Andrea Gaertner
  • Tiago Pereira
  • Maria Joao Simoes
  • Paulo A. S. Armada-da-Silva
  • Miguel L. Franca
  • Rosa Sousa
  • Simone Bompasso
  • Stefania Raimondo
  • Yuki Shirosaki
  • Yuri Nakamura
  • Satoshi Hayakawa
  • Akiyoshi Osakah
  • Beatriz Porto
  • Ana Lucia Luis
  • Artur S. P. Varejao
  • Ana Colette Mauricio
  • Display all

Volume
7
Number
29
First page
2247
Last page
2258
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.3969/j.issn.1673-5374.2012.29.002
Publisher
SHENYANG EDITORIAL DEPT NEURAL REGENERATION RES

Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Wharton's jelly of umbilical cord, in peripheral nerve reconstruction after crush injury. Chromosome analysis on human mesenchymal stem cell line from Wharton's jelly was carried out and no structural alterations were found in metaphase. Chitosan membranes were previously tested in vitro, to assess their ability in supporting human mesenchymal stem cell survival, expansion, and differentiation. For the in vivo testing, Sasco Sprague adult rats were divided in 4 groups of 6 or 7 animals each: Group 1, sciatic axonotmesis injury without any other intervention (Group 1-Crush); Group 2, the axonotmesis lesion of 3 mm was infiltrated with a suspension of 1 250-1 500 human mesenchymal stem cells (total volume of 50 mu L) (Group 2-CrushCell); Group 3, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane covered with a monolayer of non-differentiated human mesenchymal stem cells (Group 3-CrushChitIIICell) and Group 4, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane (Group 4-CrushChitIII). Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index, static sciatic index, extensor postural thrust, and withdrawal reflex latency. Stereological analysis was carried out on regenerated nerve fibers. Results showed that infiltration of human mesenchymal stem cells, or the combination of chitosan membrane enwrapment and human mesenchymal stem cell enrichment after nerve crush injury provide a slight advantage to post-traumatic nerve regeneration. Results obtained with chitosan type III membrane alone confirmed that they significantly improve post-traumatic axonal regrowth and may represent a very promising clinical tool in peripheral nerve reconstructive surgery. Yet, umbilical cord human mesenchymal stem cells, that can be expanded in culture and induced to form several different types of cells, may prove, in future experiments, to be a new source of cells for cell therapy, including targets such as peripheral nerve and muscle.

Link information
DOI
https://doi.org/10.3969/j.issn.1673-5374.2012.29.002
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000310827900002&DestApp=WOS_CPL
URL
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84883079881&origin=inward
ID information
  • DOI : 10.3969/j.issn.1673-5374.2012.29.002
  • ISSN : 1673-5374
  • SCOPUS ID : 84883079881
  • Web of Science ID : WOS:000310827900002

Export
BibTeX RIS