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Abstract. In vehicle routing, estimating route lengths using continuous approx-
imation models can be valuable for delivery planning, especially for tour cost 
estimation and territory design because it avoids the computational cost associ-
ated with solving TSP and VRP directly. In this study, we propose a route 
length estimation formula based on rectilinear distances by considering the 
shape of the area. We calibrated the parameters through numerical experiments. 
Thus, our proposed formula can estimate the average tour length in rectilinear 
distance with high accuracy; and as the number of points increases, the influ-
ence of the shape decreases. 

Keywords: Traveling salesman problem, Continuous approximation models, 
Rectilinear metric. 

1 Introduction 

In logistics, Japanese suppliers often designate separate of pickup and delivery territo-
ries for each driver. A reason to set territories is that customers request the same driv-
ers to delivery their shipments. Another reason is that drivers travel more efficiently 
and safely because they are familiar with the characteristics of their routes and cus-
tomers. 

Therefore, the manager periodically reviews their territories to minimize the total 
working time for all drivers. For example, in Japan, an average customer replaces 
their gas cylinder 10 times a year. Then, for a driver, the customers to deliver cylin-
ders to in each trip are different, i.e., the customers are stochastic. A typical driver 
changes 30–40 cylinders per trip. 

To design the territories, we estimated the average tour length in the rectangle for a 
small number of customers (less than 100 customers) by continuous approximation 
approach and the rectilinear metric, where the origin is located at the corner of the 
rectangle. 

Finding the shortest travel distance is well-known as the traveling salesman prob-
lem (TSP) [1] and vehicle routing problem (VRP). With the improvement in computer 
performance and algorithms to solve the problems, the size of problems that can be 
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optimally solved have increased. However, it still requires multiple calculations in 
cases when the number of demand points is too large, when the exact locations of the 
demand points are unknown, or when the locations of demand points change every 
day. In such cases, a continuous approximation model can estimate the mean distance 
with high accuracy. Many previous studies have approximated tour distances using 
the Euclidian distance metric [2]. However, we focus on using the rectilinear distance 
metric that considers horizontal and vertical differences as distances. 

The reason we apply the rectilinear metric is because it is easy to use in practice. 
Fig. 1 is an example of a territory design. If we assume the Euclidean metric among 
customers and depot, we need to estimate the line-haul distance, which is the distance 
from the depot to the nearest customer in the rectangle. However, the accuracy of the 
tour length estimation will sometimes be worse. Therefore, in this study, we use recti-
linear distance estimation. This distance metric imitates movement on a real city street 
network (e.g., NYC, Kyoto, Barcelona) and does not require distance estimation for 
line-haul distances. After calculating the distance from the depot to the origin, the 
nearest corner of the rectangle, we add the calculated distance and the estimated tour 
length for visiting all customers and returning to the origin in the rectangle. 

The rest of this paper is organized as follows. In Section 2, a literature review of 
TSP length using the continuous approximation approach is provided. We have ex-
plained the estimation procedure in Section 3. In Section 4, we describe the experi-
mental design and validation results. Finally, in Section 5, we conclude the paper. 

 

 
 

Euclidean metric Rectilinear metric 

Fig. 1. Tour from depots to stochastic customers. 

2 Literature review 

We assume that 𝑛 points are uniformly and independently distributed on the planar 
area of size 𝐴 throughout the study. Then, models to find the optimal length are gen-
erally referred to the continuous approximation models. The need to approximate the 
optimal length has been studied since the 1940s. Franceschetti et al. [3] reviewed the 
approximation models in freight transportation management. They also suggested that 
most applications of continuous approximation models are categorized by districting, 
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location, fleet composition, and vehicle routing. Districting and territory design for 
our objective are used with the same meanings. 

There are many previous studies that assume the area to be the unit square [0,1] ×
[0,1]. Let 𝑇!"(𝑛) denote the approximate TSP tour length, the approximate length of 
the shortest tour covering all points, in the Euclidean distance. After Bearwood et al. 
[4] showed that 

 

lim
#→%

𝑇!"(𝑛)
√𝑛

= 𝛽!", (1) 

 
with probability one for a constant 𝛽!", many researchers gave different estimates of 
𝛽!" using various methodologies [5]. Some researchers also estimated 𝛽!&, the con-
stant in the rectilinear metric. Johnson et al. [6] estimated 𝛽!& to be 0.8943 ± 0.0007 
while 𝛽!" was 0.7124 ± 0.0002. However, they do not show the details to compute 
𝛽!&. Vig and Paleker [5] showed that 

𝑇!&(𝑛) = 0.765 + 0.892√𝑛, (2) 

and 

𝑇!"(𝑛) = 0.662 + 0.710√𝑛 (3) 

using ordinary least squares (OLS) regression for 11 to 2000 points and proposed 
𝛽!& = 0.892 and 𝛽!" = 0.710. 

Some studies also focused on the difference in distance between two points, e.g., 
Euclidean, rectilinear, and Karlsruhe distances [7]. Consider 𝑈&, 𝑈" and 𝑅 be the rec-
tilinear, Euclidean, and Karlsruhe distance between two points, respectively. Koba-
yashi and Koshizuka [8] showed that the ratio of the expected value of the Euclidean 
distance 𝐸(𝑈") to the value of the rectilinear distance 𝐸(𝑈&) in the rectangle region is 
approximated by  

𝐸(𝑈&) 𝐸(𝑈")	⁄ ~1.280, (4) 

if the length–width ratio of the region is 2 or less. Note that length and width are de-
fined such that the ratio is always greater than or equal to 1. Additionally, Kurita [9] 
showed that the ratio in the circle region is expressed as: 

𝐸(𝑈&) 𝐸(𝑈")	⁄ ≅ 1.273 (5) 

and  

𝐸(𝑅) 𝐸(𝑈")	⁄ ≅ 1.097. (6) 

Çavdar and Sokol [10] proposed the tour length formula for the dispersion of any 
points in the Euclidean metric. Points are scattered in a rectangle with central horizon-
tal and vertical axes. Using regression by the tour length for 3000–8000 points in the 
27 rectangles, they proposed the tour length formula 𝑇′!"(𝑛)	as: 
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𝑇′!"(𝑛) = 2.791E𝑛(𝜎'(𝜎')) + 0.267G
#*(,!,")
.!̅."̅

, (7) 

where 𝑐(̅ and 𝑐)̅ are average distance of points to the central horizontal and vertical 
axes, 𝜎( and 𝜎) are the standard deviation of the horizontal and vertical coordinates of 
the points, 𝜎'(	and 𝜎')  are the standard deviation of the absolute distances of the 
points from the central horizontal and vertical axes, and 𝐴 is the area of a rectangle.  

Meanwhile, some researchers suggest that 𝑛 is small in actual delivery. Vig and 
Paleker [5] showed that repair persons travel between 15 and 20 stops on a single trip. 
Holguín-Veras and Patil [11] suggested that 35% of all trip chains have only two 
stops and the maximum number of stops in a trip chain is 23 for commercial vehicles 
in Denver. In Japan, the person for periodic inspection for gas appliances travels at 
most 10 stops. The home delivery driver for an online supermarket travels at most 20 
stops. Choi and Schonfeld [12] present a comprehensive review for approximating the 
TSP tour length for low 𝑛.  

With regard to the approximation of the TSP tour length for small 𝑛 in the rectan-
gle, there are two well-known previous studies. Chein [13] estimated the TSP tour 
length using the Euclidean metric in eight rectangles whose length–width ratio 𝜆 is 1 
to 8 and has eight sectorial-shaped regions. They produced 4160 instances in which 
5–30 customers were randomly distributed, and the origin was one of the corners of 
the region. After seven tour length estimators are considered and evaluated, the tour 
length 𝑡!"∗ (𝜆, 𝑛) is proposed as: 

𝑡!"∗ (𝜆, 𝑛) = 	2.10�̅� + 0.67E(𝑛 − 1)𝑅, (8) 

where �̅� is the average Euclidean distance from the customers to the depot and 𝑅 is 
the area of the smallest rectangle that covers only the customers. 𝑡!"∗ (𝜆, 𝑛) was ob-
tained with high accuracy (Adjusted	𝑅" = 0.99). Additionally, they presented 

𝑡!"∗ (𝜆, 𝑛) = 	𝑎&�̅� + 𝑎"E(𝑛 − 1)𝑅, (9) 

in the rectangle corresponding to 𝜆, as shown in Table 1. 
 

Table 1. Results of 𝑡!"∗ (𝜆, 𝑛). 

Coefficient 𝑡!"∗ (1, 𝑛) 𝑡!"∗ (2, 𝑛) 𝑡!"∗ (3, 𝑛) 𝑡!"∗ (4, 𝑛) 
𝑎& 2.39 2.26 2.25 2.41 
𝑎" 0.57 0.59 0.58 0.54 

 
Coefficient 𝑡!"∗ (5, 𝑛) 𝑡!"∗ (6, 𝑛) 𝑡!"∗ (7, 𝑛) 𝑡!"∗ (8, 𝑛) 
𝑎& 2.45 2.38 2.53 2.57 
𝑎" 0.54 0.57 0.54 0.54 

 



Kwon et al. [2] also estimated the tour length in the rectangle whose length–width 
ratio 𝜆 is 1 to 8 and whose customers are randomly distributed from 10 to 89. Then, 
the TSP tour length 𝑡!"∗ (𝜆, 𝑛) of the rectangle was proposed as 

𝑡!"∗ (𝜆, 𝑛) = V0.833	 − 	0.001𝑛	 +
1.115𝜆
𝑛 W√𝑛𝐴, (10) 

or 

𝑡!"∗ (𝜆, 𝑛) = 0.414�̅� + V0.775	 − 	0.0008𝑛	 +
0.903𝜆
𝑛 W√𝑛𝐴, (11) 

where 𝐴 is the area of the rectangle with high accuracy (𝑅" = 0.998). In this study, 
our analysis is similar to that of Kwon et al. [2], but we assume the rectilinear metric 
during the tour. 

3 Our approach 

3.1 Experimental Procedures 

There are many procedures to approximate the TSP tour length. In particular, there 
are two main methods. One method is to perform OLS regression on all the data, 
whereas the other method is to summarize the data, e.g., by averaging and then per-
forming OLS regression. Considering of our objective, we should seek the average 
TSP tour length in the rectangle. Our procedure is based on that of Choi and Schon-
feld [12].  

Let 𝑁 be the set of number of demand points (customers) and the origin. First, 
|𝑁| − 1 demand points are generated according to a given distribution in a rectangle 
whose area is one. Let Λ be the set of length–width ratio. For 𝜆 ∈ Λ, by generating 
two random numbers uniformly distributed in the interval !0, √𝜆& and \0,1/√𝜆^, re-
spectively, the numbers are regarded as 𝑥- and 𝑦- coordinates of a demand point in 
the rectangle. Each demand point in the rectangle \0, √𝜆^ × \0,1/√𝜆^ is equally likely 
to be selected. Additionally, one point is generated in the origin, the corner of the 
rectangle.  

Second, we select a solution method to compute the rectilinear TSP tour length for 
𝑛 ∈ 𝑁 points. In this study, we compute the rectilinear tour length using Helsgaun’s 
implementation of the Lin–Kernighan heuristic algorithm [14]. Vig and Palekar [5] 
also applied this algorithm because Johnon and McGeoch [15] showed that the solu-
tions from this algorithm were typically very close to the optimal solution. 

Third, instances on a given 𝑛 points were produced. Let 𝐼 be the set of instances. 
After |𝐼| iterations for each 𝑛, the rectilinear tour lengths for each 𝑛 points were aver-
aged. Thereafter, the repeated runs move other 𝑛1 ∈ 𝑁. Finally, the averaged rectilin-
ear tour length was fitted with OLS regression. 
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3.2 Features of the tour length 

In this study, we assume that 

• 𝑁 = {11, 21,… , 91, 101}, 
• Λ = {1, 2, 3, 4, 5}, 
• 𝐼 = {1, 2, … , 499, 500}, 

i.e., the maximum length–width ratio  (area aspect ratio)  is five and we have 500 
iterations for each 𝑛 ∈ 𝑁 and 𝜆 ∈ Λ. 

Let 𝑡2,#,4 be the rectilinear tour length for 𝑖 ∈ 𝐼, 𝑛 ∈ 𝑁, and 𝜆 ∈ Λ. Then, the aver-
age tour length 𝑡2̅,# for 𝑛 ∈ 𝑁 and 𝜆 ∈ Λ is computed as: 

𝑡2̅,# =
1
|𝐼|f𝑡2,#,4

4∈6

. (12) 

Fig. 2 shows the result of 𝑡2̅,#. The result indicates that the average length is pro-
portional to a concave function of 𝑛. Previous studies used the factor √𝑛 and we con-
sider applying √𝑛 in the TSP tour approximation. Additionally, as the number of 
demand point increases, the effect of length–width ratio on the average length de-
creases. In fact, 𝑡7̅,&8& − 𝑡&̅,&8& = 0.3 while 𝑡7̅,&& − 𝑡&̅,&& = 1.1. Then, we have to con-
sider the factor proportional to the length–width ratio and inversely proportional to 
the demand points. 
 
 

 
Fig. 2. The average tour length. 

𝜆  

n 
  

𝑡2̅,# 	

0 



4 Regression based approximations 

4.1 Formula in the unit rectangle 

 
In this study, we investigated a simple approximation formula with high accuracy. As 
our objective is territory design, the tour length formula should be simple. Then, after 
running the OLS regression by the parameters used in Chien [13] and Kwong et al. 
[2] and our parameters, we have discovered the following TSP tour length approxima-
tion formula (Model. 1) as:  

𝑡!&∗ (𝜆, 𝑛) = 𝑎&√𝑛	+
𝑎"𝜆
√𝑛

+ 𝑏, (13) 

where the area of the rectangle is one, the estimated parameters 𝑎& , 𝑎"  are 0.880, 
0.872, and constraint 𝑏 is 0.875, with Adjusted	𝑅" = 0.999. Compared to Eqs. (10) 
and (13), Eq. (10) contains a term of 𝑛√𝑛, while Eq. (13) contains a constant term. In 
this study, we apply three measures for the quality of estimation in addition to 𝑅". 
The mean percentage error (MPE) is defined as: 

MPE =
1

|𝑁||𝛬| f
𝑡2̅,# − 𝑡!&∗ (𝜆, 𝑛)

𝑡2̅,#2∈9,#∈:

× 100%, (14) 

the mean absolute percentage error (MAPE) as: 

MAPE =
1

|𝑁||𝛬| f
m𝑡2̅,# − 𝑡!&∗ (𝜆, 𝑛)m

𝑡2̅,#2∈9,#∈:

× 100%, (15) 

and the maximum absolute percentage error (MaxAPE) as: 

MaxAPE = max
2∈9,#∈:

m𝑡2̅,# − 𝑡!&∗ (𝜆, 𝑛)m
𝑡2̅,#

× 100%. (16) 

Additionally, we consider another formula (Model. 2), the simplified form of Mod-
el. 1, as: 

𝑡!&∗ (𝜆, 𝑛) = 𝑎& V√𝑛 	+
𝜆
√𝑛

+ 1W. (17) 

The statistics for Model. 1 are shown in Table 2 and three measures for Models. 1 
and 2 are shown in Table 3. Table 2 shows the standard errors are small for all coeffi-
cients. In addition, the MPE, MAPE, and MaxAPE are small for both equations. 
Moreover, Model. 1 are with low measures. Particularly, MaxAPE is the important 
factor considering the territory design, the values for both formulas are 2.0% or less. 
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Table 2. Statistics of Model. 1 

Parameter Coefficient Standard error 𝑡 value Pr (>|𝑡|) 
𝑎& 0.880 0.0353 24.8 <0.001 
𝑎" 0.872 0.0036 240.0 <0.001 
𝑏 0.875 0.0259 33.7 <0.001 

Table 3. Fit comparison for two equations 

Formula MPE MAPE MaxAPE 
Model. 1 0.006% 0.5% 1.8% 
Model. 2 0.1% 0.5% 2.0% 

 
Furthermore, for evaluation, we generate other 𝑡2̅,#  from 200 instances each and 

compute three measures, as shown in Table 4. MPE for both formulas become worse, 
but the value is small. Therefore, these results indicate that our formulas perform 
appropriately. 

 

Table 4. Measures for other instances. 

Formula MPE MAPE MaxAPE 
Model. 1 0.05% 0.6% 1.9% 
Model. 2 0.7% 0.6% 1.8% 

 

4.2 Formula in the rectangle and applications 

Finally, our experiment assumes that the area of the rectangle is one in this study. If 
the area of the rectangle is 𝐴, our approximation models become:  

𝑡!&∗ (𝜆, 𝑛) = V𝑎&√𝑛	+
𝑎"𝜆
√𝑛

+ 𝑏W√𝐴, (18) 

𝑡!&∗ (𝜆, 𝑛) = 𝑎& V√𝑛 	+
𝜆
√𝑛

+ 1W√𝐴, (19) 

respectively. 
As mentioned in the first section, our objective is to model an equation for territory 

design. For example, in Fig. 1, we consider a territory divided into 𝑚 rectangles of 
equal size. As 𝑛 and 𝐴 become constant, we only calculate the distance from the depot 
to the origin for each rectangle and 0.872𝜆/√𝑛 in Eq. (18). Therefore, our approxi-
mation equation is easy to use in territory design. However, our equation assumes that 
𝜆 ranges from 1–5. 

5 Conclusion 

In this study, we proposed a continuous approximation model for touring distance 



based on rectilinear distance metric, which has the advantage of reduced computa-
tional cost. To evaluate the accuracy of our model, we varied the number of tour 
points and aspect ratio of the region, and then conducted numerical experiments by 
simulation. Our results indicate that our model can accurately estimate tour distances. 
Additionally, we observed that the influence of the aspect ratio decreases as the num-
ber of tour points increase. Our results are not only relevant to cities with gridded 
streets, but also prove to be effective for developing delivery plans in various urban 
environments. In future works, we will extend our model to address multi-vehicle 
delivery (VRP) and explore area partitioning methods for practical delivery planning 
applications. 
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