論文

査読有り 国際誌
2017年2月10日

Analyzing Synaptic Modulation of Drosophila melanogaster Photoreceptors after Exposure to Prolonged Light.

Journal of visualized experiments : JoVE
  • Atsushi Sugie
  • ,
  • Christoph Möhl
  • ,
  • Satoko Hakeda-Suzuki
  • ,
  • Hideaki Matsui
  • ,
  • Takashi Suzuki
  • ,
  • Gaia Tavosanis

120
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.3791/55176
出版者・発行元
JOURNAL OF VISUALIZED EXPERIMENTS

The nervous system has the remarkable ability to adapt and respond to various stimuli. This neural adjustment is largely achieved through plasticity at the synaptic level. The Active Zone (AZ) is the region at the presynaptic membrane that mediates neurotransmitter release and is composed of a dense collection of scaffold proteins. AZs of Drosophila melanogaster (Drosophila) photoreceptors undergo molecular remodeling after prolonged exposure to natural ambient light. Thus the level of neuronal activity can rearrange the molecular composition of the AZ and contribute to the regulation of the functional output. Starting from the light exposure set-up preparation to the immunohistochemistry, this protocol details how to quantify the number, the spatial distribution, and the delocalization level of synaptic molecules at AZs in Drosophila photoreceptors. Using image analysis software, clusters of the GFP-fused AZ component Bruchpilot were identified for each R8 photoreceptor (R8) axon terminal. Detected Bruchpilot spots were automatically assigned to individual R8 axons. To calculate the distribution of spot frequency along the axon, we implemented a customized software plugin. Each axon's start-point and end-point were manually defined and the position of each Bruchpilot spot was projected onto the connecting line between start and end-point. Besides the number of Bruchpilot clusters, we also quantified the delocalization level of Bruchpilot-GFP within the clusters. These measurements reflect in detail the spatially resolved synaptic dynamics in a single neuron under different environmental conditions to stimuli.

リンク情報
DOI
https://doi.org/10.3791/55176
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/28287587
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408834
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000397847700063&DestApp=WOS_CPL
ID情報
  • DOI : 10.3791/55176
  • ISSN : 1940-087X
  • PubMed ID : 28287587
  • PubMed Central 記事ID : PMC5408834
  • Web of Science ID : WOS:000397847700063

エクスポート
BibTeX RIS