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Abstract: Airway inflammation in chronic obstructive pulmonary disease (COPD) is typically thought
to be driven by Type1 immune responses, while Type2 inflammation appears to be present in definite
proportions in the stable state and during exacerbations. In fact, some COPD patients showed
gene expression of Type2 inflammation in the airway, and this subset was associated with the
inhaled corticosteroid (ICS) response. Interestingly enough, the relationship between COPD and
diseases associated with Type2 inflammation from the perspective of impaired lung development is
increasingly highlighted by recent epidemiologic studies on the origin of COPD. Therefore, many
researchers have shown an interest in the prevalence and the role of existent Type2 biomarkers such
as sputum and blood eosinophils, exhaled nitric oxide fraction, and atopy, not only in asthma but
also in COPD. Although the evidence about Type2 biomarkers in COPD is inconsistent and less
robust, Type2 biomarkers have shown some potential when analyzing various clinical outcomes or
therapeutic response to ICS. In this article, we review the existent and emerging Type2 biomarkers
with clinically higher applicability in the management of COPD.

Keywords: airway inflammation; asthma-chronic obstructive pulmonary disease overlap; atopy;
chitinase-3-like protein 1; eosinophil-derived neurotoxin; eosinophils; fractional exhaled nitric oxide;
inhaled corticosteroid response; periostin

1. Introduction

Chronic obstructive pulmonary disease (COPD) is heterogeneous in the underlying
pathophysiology of airway inflammation and its response to anti-inflammatory agents, despite
being characterized by persistent respiratory symptoms and airflow limitation [1]. Although
airway inflammation in COPD is typically thought to be driven by Type1 immune responses, Type2
airway inflammation appears to underlie the disease in some patients in a stable state and during
exacerbations [2]. A previous study demonstrated that some COPD patients showed the gene expression
of Type2 inflammation in the airway and this subset was associated with inhaled corticosteroid (ICS)
response [3].
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Interestingly, the relationship between COPD and diseases associated with Type2 inflammation
from the perspective of impaired lung development is increasingly highlighted by recent epidemiologic
studies on the origin of COPD [4–12]. Given such a background, biomarkers reflecting Type2 airway
inflammation may play an essential role in predicting the disease activity (i.e., predicting future
exacerbations or the rate of lung function decline) and achieving medicinal precision for COPD. In fact,
there has been a large number of studies about the possible role of Type2 biomarkers in COPD in the last
few years, so that the prevalence and meaning of existent Type2 biomarkers such as sputum and blood
eosinophils, exhaled nitric oxide fraction (FeNO), immunoglobulin E (IgE), and atopy have attracted
attention in patients with COPD. Additionally, not only are Type2 biomarkers used in daily clinical
practice, but emerging type2 biomarkers are also being searched for. In this article, we discuss existent
and emerging Type2 biomarkers with clinically higher applicability in the management of COPD.

2. Type2 Airway Inflammation in COPD

The pathogenesis of COPD is closely associated with cigarette smoking [13]. As a result, it is
characterized by increased numbers of macrophages in the peripheral airway, lung parenchyma, and
pulmonary vessels, together with increased activated neutrophils and increased lymphocytes that
include Type 1 CD8+ T (Tc1) cells, Type 1 T helper (Th1) cells, Type 17 T helper (Th17) cells, and Group
3 innate lymphoid cells (ILC3) [14]. However, in some patients, there may also be an increase in
eosinophils, Type 2 T helper (Th2) cells, or Group 2 innate lymphoid cells (ILC2). Around 10–40% of
COPD patients demonstrate increased eosinophilic inflammation in the sputum and or blood [15–17]
with increased Type2-transcriptome signatures [3].

Eosinophilic airway inflammation derived from innate and adaptive immune responses is well
described for asthma. Th2 lymphocytes have crucial roles in orchestrating adaptive immune responses.
Allergens, presented to naïve CD4+ T cells by dendritic cells, induce differentiation toward Th2 cells,
which produce interleukin (IL)-4, IL-5, and IL-13 cytokines, leading to IgE class switch in B cells,
airway eosinophilia, and mucous hypersecretion [18]. On the other hand, in innate immune responses,
epithelium-derived cytokines (IL-25, IL-33, thymic stromal lymphopoietin [TSLP]) are released in
response to air pollutants, microbes, or glycolipids. These bind to receptors on ILC2s, activating
them to produce the Th2-associated cytokines IL-5 and IL-13, which lead to eosinophilia, mucous
hypersecretion, and airway hyperresponsiveness [18].

Although the mechanism of Type2 airway inflammation in COPD remains to be determined,
as with Th1-mediated COPD, Type2 inflammation in COPD is likely to be a combination of innate and
adaptive immunity. In particular, the role of ILC2s, which might be necessary for intrinsic asthma,
but also exists in COPD, has recently been attracting attention [19,20]. ILC2s can be regulated by
epithelial mediators released as a result of epithelial cell injury resulting from cigarette smoke and
viral infection. In a mouse model of cigarette smoke-induced COPD, the expression of both IL-33 and
TSLP was increased in lungs [21–24]. The upstream cytokines of TSLP are secreted from epithelial cells
of COPD patients [25] and increased TSLP expression has been shown in the airway smooth muscle
cells of patients with COPD [26]. IL-33 expression is also increased in epithelial progenitor cells of
COPD patients and is associated with increased expression of IL-13 and the mucin 5AC gene [21].
Moreover, IL-33 in serum as well as in exhaled breath condensate was increased and correlated with
the disease severity and increased blood eosinophil count in patients with COPD [27–30]. Although
whether innate Type2 immune responses are involved in the pathogenesis of COPD, or whether other
mechanisms are driving type2 inflammation in COPD remains unclear, these findings suggest such
involvement, especially in patients with Type2-high COPD.

As well as in the stable state, a diversity of airway inflammation is also observed in COPD
exacerbations. Papi et al. evaluated the relationship among pathogens identified in COPD exacerbations
and specific airway inflammation patterns [31]. They found that viral and/or bacterial infection was
detected in 78% of exacerbations: viruses in 48% and bacteria in 55%. Moreover, airway eosinophilia
was related to exacerbations of viral infections. Other studies reported that eosinophilic airway
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inflammation was observed in 28% of exacerbations [32], and the degree of eosinophilia shown during
exacerbations was higher than that seen in a stable state [33,34]. On the other hand, a recent study
found that the blood eosinophil levels during exacerbations were lower than during a stable state [35].
This result may be explained by a report describing that the blood eosinophil counts decreased due to
the influence of the bacterial load at the time of exacerbation compared with the stable state [36]. These
inconsistent results may be due to the heterogeneity of airway inflammation in the COPD exacerbations.

3. Relationship between COPD and Type2 Inflammation from the Perspective of Impaired Lung
Development

The controversy that asthma and COPD are not always separate diseases began with the Dutch
Hypothesis in 1961 [37], and there has been a growing appreciation over the years. Nowadays,
Asthma-COPD overlap (ACO) has been identified in clinical practice by the features that it shares with
both asthma and COPD. Of note, the relationship between COPD and diseases associated with Type2
inflammation is highlighted by recent epidemiologic studies on the origin of COPD [4–12]. In the
Tasmanian Longitudinal Health Study, 8583 participants were followed from 7 to 53 years of age with
spirometry at 7, 13, 18, 45, 50, and 53 years [12]. This study found that not only personal smoking but
also childhood asthma, allergic rhinitis, eczema, bronchitis, pneumonia, and maternal smoking were
significant risk factors for reduced pulmonary function. Moreover, if the forced expiratory volume in
1 s (FEV1) was lower than average early in life, the decline accelerated. The group had a high rate of
childhood asthma (37%), and 46% of the subjects in the group developed COPD at 53 years of age.
Because childhood asthma, allergic rhinitis, and eczema are well associated with Type2 inflammation,
this study clearly suggests the involvement of Type2 inflammation in the pathogenesis of COPD. In this
context, the importance of Type2 biomarkers in COPD may increase.

4. Existent Type2 Biomarkers in COPD

4.1. Sputum Eosinophils

Sputum eosinophilia in asthmatics is strongly associated with a good response to corticosteroid
therapy, and tailored strategies aimed to normalize sputum eosinophils reduce the exacerbation
frequency and severity [17]. Sputum eosinophilia is occasionally seen in COPD patients in a stable state
and during exacerbations [16,38–40]. Studies have used a threshold of 2% or 3% in sputum for defining
eosinophilic airway inflammation in COPD [16,32,39,41]. Sputum eosinophilia in COPD patients in a
clinically stable state predicts a risk of future exacerbations and is associated with a favorable response
to ICS [16,39,41–43]. Moreover, a study from the SPIROMICS cohort (n = 2737) found that elevated
sputum eosinophils had significant associations with multiple measures of COPD severity, including
exacerbations, airflow limitation, and worse quality of life [44]. Although induced sputum is less
invasive than tissue biopsy, it is somewhat difficult to perform and not available in every clinical setting.
Furthermore, sputum induction can sometimes cause airway constriction. Due to these drawbacks, the
induction of sputum eosinophils, although highly useful, is not widely used in clinical practice.

4.2. Blood Eosinophils

4.2.1. Blood Eosinophil Levels in COPD and Modifying Factors

The blood eosinophils levels have been proposed as a surrogate marker of sputum eosinophils,
which has the weaknesses referred to in the previous section but is widely used for both asthma and
in COPD. The blood eosinophil level in asthmatics has a well-established correlation with sputum
eosinophils, and serves as a biomarker for future exacerbations, a decline in lung functions, and the
response to ICS and biologics [45–50]. On the other hand, in COPD patients, the correlation between
contemporaneous blood eosinophils and sputum eosinophils has been discussed, and discordances
have been noticed between sputum, tissue, and blood eosinophil counts [44,51–54]. In a recent study,
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blood and sputum eosinophils in COPD patients did not correlate as well as in patients with asthma [49].
Interestingly, in elderly subjects and patients with comorbidities such as hypertension, ischemic heart
disease, and atrial fibrillation, no correlation between blood and sputum eosinophils was found. Since
most COPD patients have those characteristics and comorbidities, this finding is very important when
considering blood eosinophils as a biomarker in clinical practice.

Although there are challenges to using blood eosinophils as a surrogate marker of sputum
eosinophils, many studies have investigated the blood eosinophil levels in COPD patients because
of their simplicity. The prevalence of blood eosinophilia in patients with COPD varies depending
on the study population and threshold used for evaluation. In the Copenhagen General Population
Study (n = 7225), 23% of patients had blood eosinophil counts ≥ 280 cells/µL [55]. In a post-hoc
analysis of the WISDOM trial (n = 2420), 53% of patients had ≥ 150 eosinophil cells/µL, 20% had ≥300
eosinophil cells/µL, and 11% had ≥ 400 eosinophil cells/µL [56]. In the Hokkaido COPD cohort study,
excluding asthma carefully by respiratory specialists, 19% of the patients had blood eosinophil counts
≥300 cells/µL [57].

Another critical point is that the stability and reproducibility of blood eosinophil measurements
have also been debated [16,35,58,59]. Data on two large cohorts of COPD patients revealed that, in three
measurements of blood eosinophils measured over two years, there was considerable variability in
blood eosinophils, with only 15% of patients showing a persistently high blood eosinophil count
(>300 cells/µL) [59]. This is because, regardless of the airway inflammation, the blood eosinophils are
affected by various factors such as drugs, malignant tumors, and parasitic infections [60], so a single
measurement of blood eosinophils may not be reliable. For example, a previous study using a single
measurement found that, in stable COPD patients, the optimal cut-off value for blood eosinophils,
which reflects sputum eosinophils ≥3%, was 215 cells/µL (area under the curve [AUC] 0.76, sensitivity
60% and specificity 93%) [61]. However, in another study, only half of the patients with blood
eosinophils of 215 or greater had sputum eosinophils ≥3% [49]. From the aspect of influential factors,
stability, and reproducibility, more systematic studies of blood eosinophils in COPD patients are needed
to establish surrogate markers that reliably reflect the airway inflammation.

4.2.2. Blood Eosinophils as a Predictor for COPD Exacerbations

It is clear that elevated blood eosinophil counts are a risk factor for future exacerbations in patients
with asthma [62]. In the field of COPD, several studies have investigated whether the blood eosinophils
can be used to predict future exacerbations. The results have varied, with both negative and positive
findings reported [15,44,54,55,57,59,63–67]. In a prospective analysis from the Copenhagen General
Population Study, higher blood eosinophil levels during stable phase (>340 cells/µL) were associated
with a 1.76-fold increased risk of severe exacerbations [55]. A historical population study suggested
that patients with elevated blood eosinophil levels (>450 cells/µL) had a 13% higher exacerbation
rate during the following year than those with lower levels, with the findings being most clearly
demonstrated in patients who were ex-smokers [66]. A recent publication showing both cross-sectional
and prospective data from COPDGene and ECLIPSE described that higher blood eosinophil levels
(>300 cells/µL) were associated with increased exacerbation risk, the incidence rate ratios of which
were 1.32 and 1.22, respectively [15]. Especially, the findings were most clearly found in patients
with a history of frequent exacerbations. These studies, which showed an association between blood
eosinophils and frequency of exacerbations, should take into account the large proportion of patients
with a history of frequent exacerbations.

On the other hand, several studies showed that the exacerbation rate of COPD patients was not
related to blood eosinophil levels [44,54,57,59,64,65,67]. In these studies, there was no association even
when examined with different cut-off values at a cut-off of ≥200 or ≥300 cells/µL, or ≥2%, ≥3%, or ≥4%.
Of note, Casanova et al. investigated the prevalence and stability of a high level of blood eosinophils
(≥300 cells/µL) and its relationship to future exacerbations by using the data from two large cohorts
of COPD patients [59]. They found that, in three measurements of blood eosinophils measured over
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two years, there was notable variability in the levels of blood eosinophils. Blood eosinophil levels
≥300 cells/µL persisting over two years were not a predictor for COPD exacerbations. Also, data from
the SPIROMICS cohort demonstrated that the blood eosinophil level as a single biomarker did not
accurately predict sputum eosinophils, and did not show an association with exacerbations unless
observed in the background of increased sputum eosinophils [44]. Thus, much remains to be done to
utilize the blood eosinophils as a predictor of exacerbations in COPD patients.

4.2.3. Relationship between Lung Function and Blood Eosinophils in COPD

It is well known that the blood eosinophils are strictly related to the lung function in adult
asthma, and blood eosinophils are associated with airflow obstruction and enhanced decline in lung
function [68]. However, only a small number of studies have investigated the influence of blood
eosinophils on the decline in lung function. The Hokkaido COPD Cohort Study Group investigators
reported that patients with a rapid decline in FEV1 displayed lower levels of blood eosinophils [69,70].
Moreover, they suggested that patients with elevated blood eosinophils (≥300 cells/µL) had significantly
slower annual FEV1 decline [57]. In contrast, the ECLIPSE investigators found no significant differences
in the rate of decline in FEV1 according to the blood eosinophil pattern using a cut-off value of 2% [16].
This finding was similar to that in another study using a cut-off value of 300 cells/µL [67]. Although
further large cohort longitudinal studies are needed, the effect of blood eosinophils on respiratory
function in COPD patients may not be as strong as that in asthma patients.

4.2.4. Blood Eosinophils as a Biomarker of ICS Treatment Response in COPD

From the viewpoint of the effectiveness and the risk of adverse effects such as pneumonia and
osteoporosis [71,72], there is a need to identify which patients will benefit from ICS. A number of studies
have investigated whether the blood eosinophil levels can be used to predict the effectiveness of ICS.
In particular, many studies examined whether blood eosinophil levels can be used to predict whether
patients will benefit from the prevention of future exacerbations by add-on ICS therapy in combination
with long-acting β2-agonist (LABA) or LABA/long-acting muscarinic antagonist (LAMA) compared to
bronchodilators alone [73–81]. Judging from these reports, the Global Initiative for Chronic Obstructive
Lung Disease (GOLD) statements have recommended the use of ICS in combination with LABA or
LABA/LAMA in patients with frequent exacerbations and blood eosinophil counts ≥300 cells/µL, and
is considering the use of ICS in combination with LABA or LABA/LAMA when blood eosinophil
counts are between 100 and 300 cells/µL, while ICS is not at all recommended if the blood eosinophil
counts are <100 cells/µL [14].

A few studies have investigated the usefulness of blood eosinophils to predict the risk of
exacerbations after ICS withdrawal from triple therapy (ICS/LABA/LAMA) [56,82]. Similar results
were obtained, and only patients with baseline elevated blood eosinophil counts (≥300 or 400 cells/µL)
were at an increased risk of exacerbations compared with patients with lower eosinophil counts.

In contrast, several observational studies among COPD patients using ICS did not find an
association between blood eosinophilia and reduced risk of exacerbations [83,84]. The lack of
relationship shown in the observational studies suggests that this association may not be present within
the real-world COPD population. Although randomized controlled trials (RCTs) address important
findings for us, we need to keep in mind that it has been estimated that the patients with COPD
selected for RCTs are representative of about 7% of the entire COPD population [85].

In a real-world survey, most COPD patients belonged to GOLD A or B, who are less likely
to experience exacerbations but continue to have daily symptoms [86,87]. Therefore, knowledge
concerning the effects of ICS other than preventing exacerbations, such as increased lung function
and improvement of symptoms, are also required. A few studies have sought to determine whether
the blood eosinophil levels can predict which patients will benefit in terms of lung function and/or
symptoms from add-on ICS therapy. In a post-hoc analysis of the ISOLDE study, which compared an
ICS with placebo, patients were also stratified using a baseline blood eosinophil threshold of 2% [75].
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This study found that a baseline blood eosinophils ≥ 2% identified a group of patients with slower rates
of decline in FEV1 when treated with ICS. Recently, we reported a prospective study to detect Type2
biomarkers for predicting short-term improvements in both quality of life (QOL) and airflow limitation
by ICS in 43 symptomatic COPD patients who had been taking bronchodilators (De-stress study) [88].
The study excluded subjects who were current smokers with concomitant asthma. Seventy percent of
the patients took LAMA/LABA, and 90% of the patients were classified as GOLD B. After 12 weeks
of ICS treatment, 28% of the patients showed significant improvement in the COPD assessment test
(CAT) and FEV1. Among the several Type2 biomarkers, the absolute blood eosinophil counts and
the percentage of blood eosinophils were less likely to predict the efficacy of ICS compared to FeNO.
Nonetheless, our results did not exclude the possibility of blood eosinophils being used to predict
the effects of ICS in COPD. In fact, more than 60% of patients with blood eosinophilia (≥300 cells/µL)
showed favorable effects from ICS in the present study. Due to the discrepancies reported in various
studies, further studies are needed to determine whether blood eosinophils are useful as a biomarker
for determining the use of ICS.

4.3. FeNO

4.3.1. FeNO Levels in COPD and Modifying Factors

FeNO has been established as a useful biomarker of Type2 airway inflammation and a guide for
anti-inflammatory therapy in asthma [89–91]. Currently, FeNO values can be determined noninvasively,
reproducibly, and easily measured in close to real-time using portable analyzers. Therefore, the Global
Initiative for Asthma recommends that FeNO should be used as part of the clinical assessment in
asthma [92]. Nitric oxide is produced mainly by inducible nitric oxide synthetase (iNOS) in the
epithelial cells of the bronchial wall in response to IL-4 and IL-13 via the signal transducer and
activator of transcription 6 pathway [93]. Since FeNO is a surrogate biomarker for Type2-high asthma,
particularly a downstream molecule of IL-4/13, several trials to apply FeNO to a biomarker to predict
the efficacy of asthma drugs targeting IL-4/13 have been performed [94,95].

The role of FeNO in COPD remains controversial. Although iNOS is highly expressed in COPD
patients [96–98], the results of studies of the FeNO levels in COPD are contradictory, showing elevated,
similar, and reduced levels. According to a recent systematic review and metanalysis, FeNO levels
varied widely among several studies (I2 = 96%) and were mildly elevated in patients with stable COPD
compared with healthy controls (standard mean difference [SMD] 1.21, 95% confidence interval [CI]
0.47–1.96) [99]. Additionally, it was found that the FeNO levels were much higher in ex-smokers than in
current smokers (SMD 2.05, 95% CI 1.13–2.97). This heterogeneity can be explained by various factors.
It is known that current smoking reduces the FeNO levels through reduced production and increased
consumption of NO [100–102]. In addition, ICS treatment decreases the FeNO levels [88,103–105].
FeNO is also influenced by comorbidities such as atopy and rhinitis [101,102].

There are many studies that compared FeNO in COPD subjects with ACO [106–113]. Although
higher levels of FeNO were observed in ACO patients compared to those with COPD-only, it is still
difficult to interpret the results of these studies. These studies used not only different cut-off values
but also different definitions of ACO. Meanwhile, Tamada et al. investigated 331 COPD patients for
asthma-like airway inflammation or atopic factors using FeNO and serum IgE, respectively [112]. In this
study, the values of FeNO were shown in detail, even the histogram. The prevalence rate of FeNO
>25 ppb was 36.9%, those of >35 ppb, >50 ppb were 16.3%, and 5.1%, respectively. Similarly, another
recent study reported that, in 178 severe (FEV1 predicted ≤ 50%) COPD patients, FeNO ≥ 25 ppb was
found in 32.9%, and FeNO ≥ 50 ppb was 2.6% [113].

4.3.2. Relationship to COPD Exacerbations in FeNO

Several studies have addressed the relationship between COPD exacerbations and FeNO.
In the changes of the FeNO levels, most studies reported that FeNO significantly increased during
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exacerbations [31,114–118]. High FeNO values in hospitalized COPD exacerbation patients returned to
the control values only months after these steroid-treated patients were discharged [116]. Rhinovirus
infections induce increases in the FeNO levels as a result of upregulated iNOS expression in the airway
epithelium [119]. Viral infections are a major cause of COPD exacerbations [120]. Thus, the elevation
of FeNO in COPD exacerbations may be the direct result of viral infection.

Fewer studies have examined whether FeNO is a predictive marker for COPD exacerbations.
A recent prospective study showed that persistently elevated FeNO levels (≥20 ppb) in stable COPD
patients were associated with a significantly higher risk of exacerbations [121]. After adjusting for
potential confounding variables, the hazard ratio for exacerbations was higher in the latter group (1.579
[95% CI 1.049–2.378], p = 0.029). Moreover, the time to first moderate and then severe exacerbations
was shorter in patients with persistently high FeNO.

4.3.3. Relationship between Lung Function and FeNO in COPD

High FeNO levels in severe asthma could be used to identify patients with the greatest airflow
limitation [122]. Previous prospective studies in asthmatics showed that higher levels of FeNO
were associated with a rapid decline in lung function [123]. IL-4/IL-13 pathways facilitate airway
smooth muscle contraction and proliferation, and goblet cell hyperplasia, mucus production, increased
extracellular matrix secretion by fibroblasts, and subepithelial basal membrane thickening, all of which
are features of airway obstruction [124]. The roles of IL-4 and IL-13 in orchestrating the pathogenesis of
asthma may help to explain the relationship between high FeNO levels and airflow limitation. However,
the relationship between lung function and FeNO in COPD is not well understood. Most studies
reported no association between the FeNO levels and pulmonary function [104,108,112,125–127], while
two studies showed an association. One study found a negative correlation between FEV1/forced vital
capacity (FVC) ratio and the FeNO levels in patients with COPD (r = −0.59, p = 0.028) [128]. Another
study showed that there was a negative correlation between the FeNO values in COPD and FEV1

(r = −0.50, p = 0.004) [129]. In contrast to previous findings, it has been reported that there was a higher
proportion of patients with severe airflow limitation in the low FeNO group (<25 ppb) compared with
the high FeNO group [130]. This discrepancy may be derived from the patients’ heterogeneity, such as
age and treatment, and differences in the cut-off values of FeNO in each study.

4.3.4. FeNO as a Biomarker of the ICS Treatment Response in COPD

FeNO might be a predictive biomarker of the response to ICS treatment in COPD as in asthma.
A recent systematic review and meta-analysis investigated the response of the FeNO levels to ICS
treatment in COPD patients [131]. Five studies of 171 patients were included in the analysis. Two-thirds
were ex-smokers, and this analysis excluded studies with patients having a diagnosis of asthma. There
was a significant decrease of FeNO in ex-smoking COPD patients following ICS treatment (−7.51,
95% CI: −11.51 to −3.51; p = 0.003), and in a population of subjects that included both smokers and
ex-smokers. However, this analysis focused on the changes of FeNO as a treatment response so it was
not possible to analyze the association of FeNO levels with QOL, pulmonary function, or reduction
in exacerbations. Some studies found an inverse relationship between FeNO levels and FEV1 in
ex-smokers but not in smokers with COPD [115,132,133].

Several studies demonstrated that FeNO predicted the response when adding corticosteroids.
Elevated FeNO in COPD patients may also be a variable signal for an increased spirometric response
to systemic corticosteroids [125]. Other studies reported that FeNO could be a predictor of increased
FEV1 by ICS [104,105,133]. However, whether FeNO is useful for predicting both symptoms and
airflow limitation with ICS treatment in patients with COPD is poorly documented. The findings of our
de-stress study demonstrated that, in the several Type2 biomarkers, FeNO was identified as the most
accurate predictor for benefits from ICS (AUC = 0.92) [88]. Furthermore, the baseline FeNO values were
significantly correlated with changes in FEV1 (ρ = 0.835, p < 0.0001) and CAT (ρ = −0.672, p < 0.0001)
after treatment with ICS, supporting the usefulness of FeNO as a predictor of ICS responsiveness.
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We proposed two cut-off values for FeNO: 35 ppb is associated with certainty for response inclusion,
and 20 ppb is associated with certainty for response exclusion. However, further studies are needed
to confirm the usefulness of FeNO for many patients, including current smokers, and determine the
appropriate cut-off value. Furthermore, future prospective studies should be focused on detecting
biomarkers for predicting the long-term prevention of exacerbations.

4.4. IgE, Atopy

4.4.1. Evaluation of Atopy in Patients with COPD

Atopy is defined as “a personal, and/or familial tendency, to become sensitized and produce IgE
antibodies in response to ordinary exposure to allergens, usually proteins” [134]. There are various
measures of atopy, such as positive skin-prick tests and elevated serum IgE levels. Current studies
define atopic sensitization as a positive allergen-specific serum IgE (most commonly specific IgE levels
>0.35 kUa/L) or a positive skin-prick test (usually, but not exclusively, a wheal diameter ≥3 mm) to
any typical food or inhalant allergen [135]. Atopy has been recognized as a significant contributor to
the pathophysiology of asthma. Although atopy has been less well studied in patients with COPD,
it has been considered that atopy is a risk indicator of COPD since more than 50 years ago. The Dutch
Hypothesis, put forward in 1961, proposes that there are common host factors for asthma and COPD,
including atopy and airway hyperresponsiveness [136]. In a longitudinal study, there was a significant
inverse association between total serum IgE and FEV1/FVC that was independent of smoking and
asthma status [137]. These findings suggest that atopy could potentially influence the impairment
of lung growth and decline in lung function over time. From the findings of longitudinal studies,
it continues to become clearer that atopy has a potential role in the disease expression or progression of
COPD. Therefore, the evaluation of atopy for the management of COPD may become important in
the future.

The reported positive rate of atopy in COPD varies between about 15–40% [57,112,138–145].
Jamieson et al. found a prevalence of 29% with atopy in a population of 77 former smokers with
COPD in the CODE cohort. They found that COPD patients with allergic sensitization had increased
respiratory symptoms and exacerbation rates [142]. Fattahi et al. demonstrated the atopic status in
the EUROSCOP [141]. It was also evaluated for the incidence and remission of respiratory symptoms
of patients during a 3-year follow-up and for the association of atopy with the decline of lung
function. This study found that atopy, defined as a positive specific IgE, was present in 18% of the
1277 current smoking COPD patients. It was found that, compared with nonatopic COPD patients,
atopic COPD patients were more likely male, younger, and obese. Moreover, the presence of atopy
was associated with increased cough and chest tightness, but not with a decline of FEV1. In contrast,
other studies showed an association with the sensitization to Aspergillus antigens and pulmonary
function. Bafadhel et al. determined that atopy (defined by a positive skin prick test and/or elevated
allergen-specific antibodies) was present in 34% of 128 COPD patients [140]. Especially, sensitization to
Aspergillus fumigatus was shown to be 13%, which was associated with severe airflow limitation. Jin et al.
reported that the prevalence of elevated total-IgE and sensitization to Aspergillus fumigatus was 47%
and 15%, respectively [139]. In this study, total serum IgE levels were found to be negatively correlated
with FEV1% predicted. Given the multiple links between Aspergillus species and bronchiectasis [146],
sensitization to Aspergillus antigens may play an important role in the development of COPD-related
bronchiectasis. In fact, a recent report found a high prevalence of Aspergillus fumigatus sensitization
in COPD patients (18%), which highlights a potential role for sensitization to Aspergillus fumigatus in
COPD-related bronchiectasis [138].

4.4.2. Atopy as a Biomarker of ICS Treatment Response in COPD

There has been a growing interest in finding the link between atopy and responses to ICS therapy
in COPD patients. However, only a few studies evaluated whether IgE/atopy can predict the response



J. Clin. Med. 2020, 9, 2670 9 of 23

when adding corticosteroids in COPD patients. In the EUROSCOP, compared to non-atopic COPD
patients, those with atopy more often showed remission of respiratory symptoms when treated with
ICS [141]. However, there was no significant difference in changes in post-bronchodilator FEV1

between atopic and non-atopic patients who received ICS. Akamatsu et al. examined the possibility of
whether atopy predicts the ICS/LABA treatment response in COPD patients. The patients with atopy
(defined by positive specific IgE) showed significantly higher improvement in FEV1 [147], and atopy
yielded 60% sensitivity and 89% specificity for an improvement in FEV1. The findings of our de-stress
study were in line with previous studies. Atopy was useful for predicting improvements in both
symptoms and airflow limitation with ICS treatment [88]. AUC for atopy was 0.79, and the sensitivity
and specificity yielded 75% and 84%, respectively.

4.5. Composite Biomarkers

In recent years, the diversity of airway inflammation and the development of biologics for
asthma have led to increased attention given to evaluations of the composite Type2 biomarkers. Some
researchers have suggested the importance of suppressing both persistent eosinophilia and high FeNO
for the management of asthma control [50,148]. Recently, the diversity of airway inflammation in
COPD has also attracted attention. Based on the findings that the correlations between FeNO values
and blood eosinophil counts in patients with severe and extremely severe COPD were not significant,
Chen et al. have proposed that FeNO and blood eosinophil counts should be both evaluated in patients
with COPD [113]. The use of composite Type2 biomarkers has been recommended for the definition
and diagnosis of ACO in several national and international guidelines [149,150]. In fact, several studies
showed that the combination of blood eosinophil counts and FeNO was useful in differentiating asthma
from COPD or ACO from COPD [151,152].

Additionally, in clinical practice, it could be more important for predicting the therapeutic effect
of ICS to evaluate the composite Type2 biomarkers. Akamatsu et al. reported that combining FeNO
and specific IgE may be a surrogate marker for predicting the response to ICS/LABA on airflow
limitation in patients with COPD [147]. For these reasons, we predict that evaluating the composite
Type2 biomarkers in COPD patients will become increasingly important. Thus, we focused on the
prevalence of Type2 inflammation features of 167 ICS-naïve COPD patients using a combination
of multiple Type2 biomarkers available for daily clinical practice. In this study, COPD outpatients
were retrospectively enrolled in two tertiary care facilities in Japan from April 2017 to March 2020.
Patients with current diagnosis of asthma and current smokers were excluded. The Type2 inflammation
features were determined by the presence of atopy (positive specific IgE for any inhaled antigen) and/or
elevated FeNO (≥35 ppb), and/or blood eosinophilia (≥300 cells/µL). Since the Japanese Respiratory
Society guidelines recommend that 35 ppb as a reference value to capture the inflammatory condition
characteristic of asthma, we have set the reference value for FeNO at 35 ppb [153,154]. A Venn diagram
and the positive prevalence of Type2 inflammation features are shown in Figure 1. Twenty-three
percent of subjects had atopy, 18% of those had elevated FeNO, and 16% of those had blood eosinophilia.
By combing Type2 biomarkers, more than 40% of the patients were positive for at least one Type2
biomarker, and 13% of the patients had multiple biomarkers. Furthermore, patients with multiple
positive biomarkers showed a trend in higher rates of exacerbation than patients without them.
Although the role of the composite Type2 biomarkers in COPD patients remains unclear, the findings
of our study will help develop a clinical decision-making strategy for the appropriate use of ICS in
COPD patients.
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5. Emerging Type2 Biomarkers in COPD

5.1. Periostin

Periostin, a matricellular protein produced by airway epithelial cells under the control of IL-4
and IL-13, is a key molecule linking TType2/eosinophilic airway inflammation and remodeling in
asthma [155]. Periostin can be detected in the blood and is relatively stable without being affected by
ICSs, serving as a marker of the phenotype and a rapid decline of pulmonary function [156]. When
interpreting data, attention should be paid to differences in the ELISA kits used. An open-label,
single-arm, prospective study in 130 stable COPD patients found that high plasma periostin (Adipo
Bioscience kit: >23 ng/mL) levels were associated with FEV1 responders (>12% and >200 mL increase
in FEV1 from baseline: 43% of responders versus 24% of non-responders, p = 0.027) after 12-week
treatment with an ICS/LABA [157]. However, serum periostin alone was not a significant predictor
of FEV1 responders. The serum periostin (Human Periostin/OSF-2 DuoSet kit) levels in 155 patients
hospitalized for acute exacerbations of COPD were higher on admission compared to discharge (34.7
versus 25.9 ng/mL, p = 0.003), and frequent exacerbators had higher levels of serum periostin at
discharge. However, there were no correlations between the serum periostin levels and severity of
airflow obstruction or blood eosinophils on admission [158]. A previous study assessed the effect
of smoking on serum periostin by using the Elecsys Periostin immunoassay in COPD patients and
healthy controls [159]. COPD smokers and past-smokers had significantly higher periostin levels
(51.8 and 54.8 ng/mL, respectively) compared to healthy smokers (44.6 ng/mL), but not healthy never
smokers (49.7 ng/mL). However, the periostin levels did not reflect Type2-driven inflammation, airway
remodeling, or ICS treatment responsiveness.

5.2. Chitinase-3-Like Protein 1 (YKL-40)

Chitinase-3-like protein 1, also known as YKL-40, is a secreted glycoprotein produced by various
cell types, including macrophages, neutrophils, and airway epithelial cells [160]. The multicenter
BIOAIR study found that the serum YKL-40 levels were elevated in patients with asthma and COPD
(the COPD levels were higher than those in asthma) compared to healthy controls [161]. Negative
correlations were observed with lung function, but not with Type2 biomarkers, including FeNO, blood
eosinophils, periostin, and IgE. A previous study in severe asthma patients revealed correlations



J. Clin. Med. 2020, 9, 2670 11 of 23

between YKL-40 levels and markers associated with neutrophilic airway inflammation [162]. Another
study found that serum YKL-40 levels were elevated in healthy smokers and COPD patients compared
to healthy never smokers [163]. In sputum, the YKL-40 levels were increased in COPD patients
compared to healthy never smokers, suggesting smoking-related activation of airway inflammatory
cells. However, no significant differences were observed in the serum and sputum YKL-40 levels
between patients with and those without sputum eosinophilia (>3%). Thus, it is unlikely that the
serum YKL-40 levels reflect Type2/eosinophilic inflammation in COPD.

5.3. Eosinophil-Derived Neurotoxin (EDN)

In addition to eosinophil cationic protein and major basic protein, EDN is a granule contained in
the matrix of eosinophils [164]. Previous studies indicated that serum EDN is a marker of eosinophilic
inflammation [164–166]. One study found a significant negative correlation between the serum EDN
levels and lung function (FEV1 and FEV1/FVC) in asthma patients [164]. Another study showed
that serum EDN predicted the severe asthma phenotype in a multivariate regression analysis [165].
Recently, serum EDN was found to better reflect the asthma control status than blood eosinophil
counts [166]. However, there are no reports assessing serum EDN as a biomarker of Type2/eosinophilic
inflammation in COPD.

5.4. Role of Biomarkers in Identifying Asthma-COPD Overlap (ACO)

Distinguishing asthma from COPD, and diagnosing ACO as having both features, are important,
although there is currently no consensus on its definition. ACO is heterogeneous and includes different
phenotypes such as non-Type2 or non-eosinophilic asthma, and non-emphysematous or frequently
exacerbating COPD. However, Type2 biomarkers may be useful in diagnosing ACO derived from
COPD because adding an ICS to the treatment regimen is critical for such patients. Previous studies
assessed the usefulness of several biomarkers in distinguishing ACO from asthma and COPD [167–169].
Wang et al. found that plasma YKL-40 and neutrophil gelatinase-associated lipocalin (NGAL), but not
the periostin, levels, were higher in COPD patients than in patients with asthma or ACO [167]. Pérez
de Llano et al. investigated the role of systemic and Type2 markers and found that serum IL-5 was
lower and IL-8 was higher in COPD patients than in asthma patients [168]. However, there was no
difference in these levels between COPD and ACO patients. There was also no difference in serum
periostin among the three patient groups. Gon et al. reported that the serum YKL-40 levels were
significantly higher in patients with ACO and COPD than in those with asthma, suggesting neutrophilic
inflammation in ACO patients [169]. Together, these reports clarified the usefulness of some biomarkers
in differentiating between asthma, COPD, and ACO. However, the heterogeneous nature of ACO was
not considered, and the possibility of combined assessment of biomarkers was expected.

We assessed the potential roles of serum periostin, YKL-40, and EDN for identifying ACO,
and investigated their relevance to other Type2 biomarkers in a cross-sectional study [170,171]. Subjects
included patients with asthma (n = 177), ACO (n = 115), and COPD (n = 61) of the ASCOPE cohort
(Nihon University Itabashi Hospital and Shizuoka General Hospital). Serum periostin, YKL-40,
and EDN were measured using the Elecsys Periostin immunoassay, Human Chitinase 3-like 1
Quantikine ELISA Kit, and MBL EDN ELISA Kit, respectively. Serum periostin was significantly higher
in asthma and ACO than in COPD, whereas serum YKL-40 was significantly higher in COPD and
ACO than in asthma. Serum EDN was significantly higher in ACO than in asthma or COPD. Based on
the cutoff values derived by a ROC analysis (periostin: 55.1 ng/mL; YKL-40: 61.3 ng/mL; and EDN:
23.0 ng/mL), patients were classified into high or low groups. The proportion of patients with high
serum EDN and YKL-40 levels was significantly higher in ACO than in asthma or COPD: odds ratio,
3.85 (95% CI, 2.35–6.36); p < 0.001; sensitivity, 45.2%; specificity, 82.4%. The AUC of the ROC analysis
for detecting ACO was significantly higher in serum EDN plus YKL-40 than in serum periostin plus
YKL-40. There was a weak positive correlation between the serum periostin and eosinophil counts,
FeNO, total IgE, YKL-40, FEV1, and FEV1/FVC in COPD. There was no correlation between serum
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YKL-40 and these parameters. There was a weak or moderate positive correlation between serum EDN
and eosinophil counts, FeNO, YKL-40, FEV1, and FEV1/FVC in COPD.

One hundred and fifteen patients with ACO consisting of 86 patients derived from asthma,
denoted as ACO (asthma), and 29 derived from COPD, denoted as ACO (COPD). Serum biomarkers
in these patients are shown in Figure 2. Serum EDN levels were significantly higher in patients with
ACO (COPD) than in those with COPD. Possible explanations for the difference between patients with
ACO (COPD) and ACO (asthma) included lower FEV1/FVC (42.6% [34.7–61.4] vs. 60.7% [48.4–66.4],
p < 0.001) and fewer ICS users (28% vs. 95%, p < 0.001) in ACO (COPD) patients. However, there
was no difference in the serum periostin or YKL-40 levels between patients with ACO (COPD) and
those with COPD. The AUC of the ROC analysis for differentiating ACO (COPD) from COPD was
significantly higher in serum EDN than in serum periostin or YKL-40, with a cut-off value of 22.4 ng/mL,
a sensitivity of 86.2%, a specificity of 55.7%, and an AUC of 0.75 (95% CI, 0.64–0.85; p = 0.002) (Figure 3).
If confirmed in other populations, these findings may facilitate more accurate identification of ACO
from COPD, leading to early intervention with ICSs.
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6. Conclusions

Existent and emerging Type2 biomarkers have been investigated extensively in patients with
COPD. Although the evidence about Type2 biomarkers in COPD is inconclusive compared to asthma,
Type2 biomarkers have shown some potential when analyzing various clinical outcomes or therapeutic
responses to ICS. New clinical trials for ICS treatment and prospective studies for predicting the future
risk could enable stratification of COPD patients according to Type2 biomarkers, which might clarify
this important issue. In the near future, the examination of Type2 biomarkers will be clearly one of the
mainstream tools leading to personalized COPD management.
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