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Abstract

Objective: Easily detecting patients with undiagnosed sleep apnea syndrome (SAS) requires a home-

use SAS screening system. In this study, we validate a previously developed SAS screening 

methodology using a large clinical polysomnography (PSG) dataset (N = 938).

Methods: We combined R-R interval (RRI) and long short-term memory (LSTM), a type of recurrent 

neural networks, and created a model to discriminate respiratory conditions using the training 

dataset (N = 468). Its performance was validated using the validation dataset (N = 470).

Results: Our method screened patients with severe SAS (apnea hypopnea index; AHI  30) with an ≥

area under the curve (AUC) of 0.92, a sensitivity of 0.80, and a specificity of 0.84. In addition, the 

model screened patients with moderate/severe SAS (AHI  15) with an AUC of 0.89, a sensitivity ≥

of 0.75, and a specificity of 0.87.

Conclusions: Our method achieved high screening performance when applied to a large clinical 

dataset.

Significance: Our method can help realize an easy-to-use SAS screening system because RRI data can 

be easily measured with a wearable heart rate sensor. It has been validated on a large dataset 

including subjects with various backgrounds and is expected to perform well in real-world clinical 

practice.
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Highlights

1. Sleep apnea syndrome (SAS) screening AI-based on R-R interval data was validated with a 

large clinical polysomnography dataset.

2. AUC of 0.92, a sensitivity of 0.80 and a specificity of 0.84 were achieved.

3. The SAS screening algorithm is easy to implement into a smartphone app.

Abbreviations

AHI: apnea hypopnea index

A/N: apnea/normal respiration

AS ratio: apnea sleep ratio 

AUC: area under the curve

CPAP: continuous positive airway pressure

CSA: central sleep apnea

CVHR: cyclic validation of heart rate

ECG: electrocardiogram

EEG: electroencephalogram

EMG: electromyography

HRV: heart rate variability

LSTM: long short-term memory
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OCST: out-of-center sleep testing

OSA: obstructive sleep apnea

PSG: polysomnography

RLS: restless leg syndrome

RNN: recurrent neural network

ROC: receiver operating characteristic

RRI: R-R interval

SAS: sleep apnea syndrome

SpO2: saturation in peripheral oxygen

SUMS: Shiga University of Medical Science

TST: total sleep time
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1. Introduction

Sleep apnea syndrome (SAS) is a disorder in which frequent apnea and hypopnea occur during 

sleep. Its severity is quantified in accordance with the apnea hypopnea index (AHI: respiratory events 

per hour of sleep), wherein SAS is an AHI of 5 or more, moderate SAS is 15 - 30, and severe SAS is 

30 or more. Although SAS is a common disease, 80-90% of patients with SAS remain undiagnosed 

(Young et al, 1997). Continuous positive airway pressure (CPAP) has been shown to reduce the risk 

of lifestyle-related diseases (Jose et al, 2005), particularly in patients with AHI ≥ 30. 

Many potential patients are undiagnosed because polysomnography (PSG), which is the gold 

standard test for SAS diagnosis, is costly and has limited access (Hassan and Haque, 2017). Instead, 

portable monitoring devices, which measure nasal pressure, chest and abdominal respiratory 

inductance plethysmography, and saturation in peripheral oxygen (SpO2) (Kapur et al, 2017), have 

been used for SAS diagnosis (Kadotani et al, 2011). Although these methods and devices can be used 

at home, they require operational skills, and their diagnostic performance is not sufficiently high 

(Chesson et al, 2003). Thus, a simple and highly accurate SAS screening system that can be used 

easily at home is in need.

When apnea occurs during sleep, there is a decrease in SpO2, which affects sympathetic nerve 

activities and induces changes in heart rate variability (HRV) (Somers et al, 1995; Qin et al, 2021; 
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Pathinarupothi et al, 2017). As demonstrated (Guilleminault et al, 1984), apnea periods are usually 

accompanied by short periods of respiration, in which higher heart rates are observed (Figure 1). 

During apnea periods, there are more evident fluctuations of heart rate compared to during normal 

respiration; this characteristic can be used to discriminate apnea from normal respiration (Figure 2). 

Apnea detection based on HRV has a great advantage over PSG and portable monitoring devices 

because HRV can be easily and accurately measured with a simple wearable device (Yamakawa et al, 

2020). Based on this mechanism, we previously developed a method for detecting apnea using only 

electrocardiogram (ECG) data (Iwasaki et al, 2021). In our developed method, R-R intervals (RRIs) 

are extracted from ECG data and are used as input of long short-term memory (LSTM), which is a 

type of recurrent neural network. The trained model screened moderate-to-severe SAS patients with 

a sensitivity of 100% and a specificity of 100% in a clinical PSG dataset (N = 59), collected at Shiga 

University of Medical Science Hospital, Japan (Iwasaki et al, 2021). The Limitation of our previous 

study was that the number of subjects was not large enough to validate the algorithm and, accordingly, 

that the relationship between various complications with SAS and the performance could not be 

sufficiently investigated. 

In this study, we evaluated the precise screening performance of our previously proposed model 

training procedure through its application to another large clinical PSG dataset (N = 938), collected 
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at the Nakamura clinic in Okinawa, Japan. Using a large number of subjects with various 

backgrounds, we further examined the impact of subject comorbidities on results. 

2. Methods

We divided the clinical PSG dataset into a training dataset and validation dataset and retrained 

a machine learning model from the training dataset following our previously proposed method 

(Iwasaki et al, 2020). Finally, the screening performance of the retrained model was evaluated using 

the validation dataset.

2.1 Long short-term memory

Below, we briefly explain LSTM, which plays an important role in our SAS screening method.

Modern neural networks have been adopted in various fields, such as image analysis, text 

mining, and audio recognition, and a variety of network architectures have been developed. A 

recurrent neural network (RNN), focusing on time-series data analysis, receives output from a 

previous time point in addition to the current measurement. Thus, RNN can utilize past information 

as well as current information for time-series data analysis.

LSTM is a modification of RNN and can handle long-term dependencies by introducing a 

memory cell that holds long-term memory (Gers et al, 2000). As illustrated in Figure 3, the input, 

forget, and output gates can be trained to learn which information to store in the memory, for how 
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long, and when to read it out, respectively. Since LSTM can achieve a higher performance than the 

original RNN, LSTM has been used for speech recognition, natural language processing, and video 

analysis (Van Houdt et al, 2020). In our developed SAS screening method, LSTM is used for training 

an apnea/normal respiration (A/N) discriminant model, to which are input RRI data during sleep.

2.2 Sleep apnea screening method

The following is an overview of the screening method. The RRIs of subjects are extracted from 

an ECG signal in PSG data and divided into one-minute segments without overlap (see Figure 4). The 

length of the segment was determined based on the validation in our previous paper (Iwasaki et al, 

2021). Since the raw RRI data are not sampled at equal intervals, the length of the vector is not 

constant. The PSG data were annotated with respiratory status every second, and segments 

containing apnea or hypopnea of more than  seconds was labeled as apneic (where  is an integer 𝑥 𝑥

greater than or equal to zero), while others were labeled as normal respiration.  is set to 0 by default 𝑥

based on a previous study showing that heart rate changes not only during apnea periods but also 

before and after them (Vanninen et al, 1996). A model using LSTM is trained to determine whether 

the respiration condition of each RRI segment is apneic or normal (A/N) respiration. The trained A/N 

discriminant model is a network with three layers: an input layer, a hidden layer (LSTM with 32 

units), and an output layer. It was trained using an Adam optimizer with a learning rate of 0.01, 



9

batch size of 50, and run at 250 epochs. These hyperparameters of the LSTM model were determined 

by means of 5-fold cross-validation using the training dataset.

To determine whether a subject is a potential SAS patient, the apnea sleep ratio (AS ratio)  𝐴

is calculated for each subject (Nakayama et al, 2015)

𝐴 =  
𝑡𝑎

𝑡

where  is the apneic periods determined by the model and  is the total sleep time (TST). A subject 𝑡𝑎 𝑡

is considered to be a potential SAS patient if the AS ratio is greater than a predetermined threshold 

.𝐴

The AS ratio defined above requires the TST for each subject; however, measuring TST requires 

sleep scoring based on electroencephalogram (EEG) data analyzed by a technician. Thus, the average 

sleep latency in the training dataset was used instead to calculate the TST for simplification.

After training the LSTM-based A/N discriminant model, the RRI segments of the training 

dataset were input to the model to calculate the AS ratios. Using these AS ratios, we plotted a receiver 

operating characteristic (ROC) curve and defined the threshold of AS ratio  so that the Youden 𝐴

index (Youden 1950) is maximized. In addition, the AS ratio was calculated for each subject in the 

validation dataset. A subject was judged as a potential patient with SAS if the AS ratio was greater 

than .𝐴
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2.3 Dataset

PSG recordings during sleep (6 - 7 hours) were collected from patients and healthy persons at 

the Nakamura clinic in Okinawa, Japan (N = 938). A PSG system (Alice6LDe or Alice5) included 

EEG, ECG (lead I or II, sampling frequency: 200 or 500 Hz), electromyography (EMG), SpO2, chest 

and abdominal wall movements for respiratory efforts, nasal airflow, and a thermistor for respiratory 

monitoring. The study was approved by the Shiga University of Medical Science Research Ethics 

Committee (R2019-204). 

After the removal of PSG data with strong artifacts in the ECG data, the dataset included 1015 

subjects (original PSG dataset). Considering that the diagnostic criteria for obstructive sleep apnea 

(OSA) in children differ from those in adults (Seteia 2014; Berry et al, 2020), we excluded children 

under 12 years of age (N = 77) and created an adult PSG dataset (N = 938)

Each segment was labelled apnea or normal respiration based on the PSG data. The annotations 

were made by certified polysomnographic technologists of the Japanese Society of Sleep Research. 

We extracted ECG data from PSG recordings and detected R waves using the Pan-Tompkins 

algorithm (Pan and Tompkins, 1985). RRIs were obtained from the detected R waves and divided into 

one-minute segments. Segments containing RRIs longer than 2,000 msec were deleted as invalid data. 

Then, each segment was normalized with a zero mean and a unit variance for each subject. In addition, 
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each RRI segment was labeled as apnea or normal respiration based on annotations in the PSG data 

by technicians.

To validate the screening performance of the model, we evaluated the results when it was 

applied to two other clinical datasets. One is a collection of PSG data from Shiga University of Medical 

Science Hospital (SUMS dataset, N = 59) whose subjects are Japanese, and the other is the Physionet 

apnea-ECG database (N = 69, Penzel et al, 2000).

2.4 Statistical Analysis

The training of the SAS screening model was conducted using Python 3.6.6 and TensorFlow 

1.10.0. We used the Welch’s t test for comparison of the ages between subjects who tested negative 

correctly and subjects with false positive. The significance level was set to p< 0.05, and computation 

was performed in Python 3.6.6 with SciPy 1.1.0. We calculated Spearman rank-order correlation 

coefficients between AHI and sleep parameters with Python 3.6.6 and Scipy 1.5.4.

3 Results

3.1 Screening performance

Subjects were classified into patients with severe SAS (AHI  30), moderate SAS (30 > AHI ≥

 15), or control (subjects with no or mild SAS: AHI < 15). Central and mixed apnea patients, as ≥

well as those with obstructive sleep apnea, were also included in this dataset. Subjects in the adult 
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PSG dataset (N = 938) were randomly split into training (N = 468) and validation (N = 470) datasets. 

A summarized profile and clinical characteristics of the subjects are shown in Tables 1 and 2, 

respectively. An example of ECG, RRI and respiratory status obtained from a patient is shown in 

Figure 1.

We built an LSTM model for screening severe SAS (AHI  30) from the training dataset and ≥

validated its performance through application to the validation dataset. The threshold of the AS ratio 

was 0.16. The ROC curves shown in Figure 5a, in which blue and orange lines indicate the ROC curve 

of the training and validation datasets, respectively. There is little difference between the two, which 

suggests that overfitting might not occur. Of the 470 subjects in the validation dataset, 163 subjects 

(35%) tested positive while 307 subjects (65%) tested negative. The model distinguished patients with 

severe SAS (N = 138) from subjects with AHI < 30 (N = 332) with an area under the curve (AUC) of 

0.92, a sensitivity of 0.80, and a specificity of 0.84. 279 subjects (59%) with AHI < 30 correctly tested 

negative while 53 (11%) were false positives in the validation dataset. 110 severe SAS patients (23%) 

correctly tested positive while 28 (6%) were false negatives.

We also built an LSTM model for screening moderate-to-severe SAS (AHI  15) from the ≥

training dataset and validated its performance through application to the validation dataset. The 

threshold of the AS ratio was 0.13. The ROC curves are shown in Figure 5b; there is little difference 
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between the ROC curve of the training and validation datasets, which suggests that overfitting also 

might not occur in this model. In the validation dataset, the model distinguished patients with 

moderate-to-severe SAS (N = 221) from subjects with AHI < 15 (N = 249) with an AUC of 0.89, a 

sensitivity of 0.75, and a specificity of 0.87.

In addition, we built a model for mild SAS (AHI  5) in the same way; and the screening ≥

performance in the validation dataset was AUC of 0.83, sensitivity of 0.66, and specificity of 0.87.

3.2 Robustness of the performance

To validate the robustness of the trained severe SAS screening model (AHI  30), we ≥

randomly rearranged the training dataset and the validation dataset, trained models, and plotted the 

ROC for each trial (Figure 6). This procedure was repeated five times. The averages of the AUCs in 

the five trials were 0.92  0.01, suggesting the steady performance of this method.±

3.3 Change of the definition of apneic segments

In the above experiments, we labeled segments including apneas or hypopneas of one second or 

more as apneic. This may cause labeling of mostly normal breathing segments as apneic and normal 

breathing may be more likely to be identified as apneic. To explore this possibility, we modified the 

threshold to five seconds, which leads to a decrease in the number of apneic segments in the dataset 

by 4%. We retrained the model using the modified dataset and determined the subjects with AHI of 
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30 or higher, which resulted in an AUC of 0.93, sensitivity of 0.78, and specificity of 0.89 in the 

validation dataset. It is thought that, as a result of stricter judgments of apnea segments, the 

sensitivity of apnea detection is reduced.

3.4 Screening performance with children

In order to validate the performance when children were applied to this method, we 

constructed a model using the original PSG dataset. The profile of children added in the dataset is 

shown in Table 3. The method screened patients with severe SAS in the validation dataset with an 

AUC of 0.92, a sensitivity of 0.77, and a specificity of 0.87, and moderate or severe SAS with an AUC 

of 0.87, a specificity of 0.70, and a specificity of 0.88, which were slightly worse results than Figure 5. 

3.5 Gender difference

In order to evaluate the effect of gender on the screening performance, we trained the model 

and validated the data separately for males (N = 715) and females (N = 223) with an AHI threshold 

of 30 (Figure 7). As a result, the validation data showed an AUC of 0.92, a sensitivity of 0.79, and a 

specificity of 0.84 for males (N = 364), and an AUC of 0.95, a sensitivity of 0.88, and a specificity of 

0.84 for females (N = 106). The performance for females was improved compared to Figure 5a, while 

the performance for males was almost the same.
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3.6 Validation using another clinical dataset

There may be a potential bias in the tendency of diagnosis and the attributes of the subject. To 

evaluate this point, we used another clinical dataset collected at Shiga University of Medical Science 

Hospital (SUMS), whose profile was shown in Table 4. When we applied the model trained from the 

Nakamura clinic data to the SUMS dataset, it was able to screen severe SAS (AHI  30) with an ≥

AUC of 0.94, a sensitivity of 0.93 and a specificity of 0.80, and moderate or severe SAS (AHI  15) ≥

with an AUC of 0.93, a sensitivity of 0.92 and a specificity of 0.89. These results suggest that our 

method is applicable to datasets collected at different institutions.

3.7 Validation using open datasets

Although the nationalities of the subjects were not recorded, most of the subjects in the dataset 

are thought to be Japanese. In order to investigate the effect of nationalities on the performance, we 

validated the developed method by using the Physionet apnea-ECG database (N = 69, Penzel et al, 

2000). The subject profile of the database is summarized in Table 5. When we applied the threshold 

of AS ratio we determined using dataset collected at Nakamura clinic, it resulted in a sensitivity of 

0.97 and a specificity of 0.58 with an AHI threshold of 30 and a sensitivity of 0.98 and a specificity of 

0.74 with an AHI threshold of 15. When we determined the threshold of the AS ratio by using the half 

of the Physionet database (Table 5 (a), N = 34). As a result, the other half of the Physionet dataset 
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(Table 5 (b), N = 35) showed an AUC of 0.91, a sensitivity of 0.79 and a specificity of 0.95 with an AHI 

threshold of 30 and an AUC of 0.95, a sensitivity of 0.95 and a specificity of 0.86 with an AHI threshold 

of 15, which are comparable to results in Figure 5.

3.8 Relationship with sleep quality parameters

In order to investigate the relationship between AS ratio and actual sleep quality, the 

correlation coefficients between various sleep indices measured by PSG and the AS ratio were 

calculated in the validation dataset; the results are summarized in Table 6. The correlation 

coefficients between AS ratio and AHI and arousal index were 0.74 and 0.60, respectively. Figure 8 

shows a scatter plot of AS ratio versus AHI and arousal index.

4. Discussion

The proposed method was able to screen severe SAS patients (AHI  30) with an AUC of 0.92, ≥

and moderate-to-severe SAS patients (AHI  15) with an AUC of 0.89. Table 7 summarizes the ≥

performance of the existing screening devices or methods validated using a large dataset of N > 100 

(Mendonça et al, 2019; Álvarez et al, 2010; Huang et al, 2020, Roche et al, 2003, Gutiérrez-Tobal et 

al, 2015; Nakayama et al, 2019). Although SpO2 measured with PSG data displays a relatively high 

performance to detect SAS (Álvarez et al, 2010), it has been reported that the performance of SpO2-

based methods declines when conducted in out-of-center sleep testing (OCST) (Ito et al, 2020). On the 



17

other hand, RRI can be measured easily and precisely using an inexpensive wearable RRI sensor 

(Yamakawa et al, 2020), which realizes stable data collection in comparison with SpO2, even in OCST. 

Table 3 shows that our method achieved results comparable with existing screening methods. Taking 

into consideration the fact that the number of subjects in this study is much larger than that of 

previous studies, our method is expected to stably exhibit high performance.

When screening severe SAS, 279 subjects with AHI < 30 correctly tested negative while 53 were 

false positives in the validation dataset. In the false positives, 23% of the subjects were over 60 years 

old, while 13% in the true negatives. This resulted in a statistical significance between the ages of the 

two groups (p < 0.05). It has been reported that HRV of an elderly person shows different patterns 

from that of a young or middle-aged person, since HRV decreases with age (Umetani et al, 1998) or is 

altered with mild cognitive impairment (Kong et al, 2020). These factors may prevent elderly persons 

from being screened correctly.

On the other hand, 110 severe SAS patients correctly tested positive while 28 were false 

negatives. Severe SAS patients with a history of arrhythmia account for 5% of the true positives (5 

out of 110) and 11% of the false negatives (3 out of 28), suggesting the possibility that the existence 

of arrhythmia may lead to misclassification. The details in arrhythmia is in Supplementary Table 1. 

This result can be associated with the cyclic validation of heart rate (CVHR), in which the average or 
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variance of RRI fluctuates periodically during sleep apnea (Guilleminault et al, 1984). An arrhythmia 

may mask the cyclic validation pattern and make it difficult to appropriately detect apnea.

Diabetes also may affect the screening results. In the screening of severe SAS, there were five 

patients with diabetes in the subjects with false-negative results and three in the subjects with false-

positive results. Diabetes can cause autonomic neuropathy, and it has been reported that the highly 

vulnerable parasympathetic nervous system is affected in the early stage of the disease, followed by 

sympathetic dysfunction (Pop-Busui 2010). This disturbance in the activity of the autonomic nervous 

system may alter CVHR patterns and cause misclassifications. It has been reported that CVHR did 

not occur in SAS patients with autonomic neuropathy including diabetes (Guilleminault et al, 1984).

There is the possibility that subjects with daytime sleepiness have sleep disorders other than 

SAS even if they suspect their SAS. Among these disorders, we examined restless leg syndrome (RLS) 

and narcolepsy. There were nine RLS patients with false-positive results in the validation dataset. It 

has been reported that HRV changes are observed in patients with not only RLS (Yıldız et al, 2018) 

but also periodic leg movements disorder which is a disorder closely related to RLS. Patients with 

these disorders show HRV with a pattern similar to that of CVHR (Hayano et al, 2011). The false 

positives may have been caused by these factors. In addition, there were three patients with 

narcolepsy in the validation dataset, all of whom currently tested negative. This result is consistent 
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with a previous study in which patients with narcolepsy were less likely to experience heart rate 

changes when the wake-up response occurred during sleep (Sorensen et al, 2013).

HRV is affected by gender as well as diseases and age; males are reported to have a lower heart 

rate than females and the distribution of their RRI is different (Voss et al, 2015). In order to evaluate 

such gender difference, we performed experiments separately (Figure 7). The performance for females 

was improved compared to Figure 5a, while the performance for males was almost the same. This 

may indicate that the male group has stronger heterogeneity than the female group. The number of 

males is larger than that of females, and the standard deviations of AHI in the male and female were 

31.0 and 23.2, respectively, in this validation dataset. This diversity in males makes it harder for 

them to be screened correctly.

When we investigated the association of AS ratio with various sleep parameters, AHI and 

arousal index showed strong correlations therewith (Table 6). These results are consistent with the 

fact that apnea produces an arousal response (Eckert and Younes, 2014), which suggests that AS 

ratio is a good indicator of sleep quality. According to Table 6, there was no clear correlation with 

other sleep indices, such as wake after sleep onset, sleep efficacy, and total sleep time.

Our method exhibited high performance even when applied to another clinical dataset (SUMS 

dataset), suggesting that the trained model is applicable to data collected at other hospitals. We 
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further applied the model to a dataset whose subjects are not Japanese (Physionet apnea-ECG 

database) and got results with low specificity while the AUC was preserved. When we took into 

consideration that there are racial differences in heart rate variability (Hall et al, 2013) and 

determined the threshold of AS ratio using half of the Physionet database, the performance was 

comparable to the original results. These data indicate that the developed method exerts high 

performance even without re-training the model for each different race; we need to tune the threshold 

of the AS ratio for each race.

The limitation of this study is that the performance of the method deteriorates when the 

threshold of AHI is set to 5 for the screening of mild SAS. This may be because brief periods of apnea 

do not cause fluctuations in autonomic function, resulting in apnea and hypopnea segments with false 

negative. Another limitation is that the screening performance for patients with central sleep apnea 

(CSA) cannot be appropriately evaluated. Although two out of the three CSA patients in the validation 

dataset were screened correctly, it was difficult to evaluate them due to the very small number of 

patients with CSA. Since it has been reported that CVHR is clearly observed in CSA (Szollosi et al, 

2007), the proposed method is expected to be capable of screening the patients without problem; 

however, further investigation is needed by collecting more data from CSA patients.
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5. Conclusion

In this study, we validated our previously developed SAS screening method through application 

to a large clinical dataset. Our method was able to screen severe SAS (AHI  30) with an AUC of ≥

0.92, and moderate or severe SAS (AHI  15) with an AUC of 0.89. In this study, we validated the ≥

proposed method using a large population with various backgrounds. In addition, we also confirmed 

the applicability of the model to populations of different institutions and nationalities.

While existing SAS screening devices based on SpO2 were not appropriate for out-of-center 

testing due to the difficulty in signal measurement and analysis, our method is expected to solve the 

problems in the future because RRI data can be easily and stably measured using a wearable sensor 

(Yamakawa et al, 2013). 

Thus, simple screening for SAS can be performed at home, which provides undiagnosed patients 

with an opportunity for diagnosis and proper treatment. We have developed a smartphone app 

implementing the SAS screening method, which can be connected to a wearable RRI sensor. In the 

future, we aim to perform a real-world prospective test using a wearable RRI sensor and the developed 

smartphone app.
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Figures

Figure 1. An example of an electrocardiogram and respiratory waves from a patient (30 years old, 

apneal-hypopnea index; AHI = 86).

Figure 2. Whole R-R interval (RRI) data collected from (a) healthy subject (20 years old, apnea-

hypopnea index; AHI = 0.9) and (b) patient (male, 46 years old, AHI = 22.2). (c) and (d) are their 

zoomed RRI data. The colored bands denote periods including a lot of apnea or hypopnea events. 

Figure 3. An internal state of long short-term memory (LSTM) at timepoint . LSTM receives the 𝑡

output from the previous point to handle time-series as well as the current measurement . In ℎ𝑡 ― 1 𝑥𝑡

addition, LSTM introduces a cell memory  to handle long-term dependencies. The input gate , the 𝐶 𝑖

forget gate , and the output gate  can be trained to learn which information to store in the memory, 𝑓 𝑜

how long, and when to read it out, respectively.  is a new memory added to the memory cell.𝑔

Figure 4. Feature extraction framework. The R-R interval (RRI) is extracted from electrocardiogram 

(ECG) data and then split into periods of one-minute. The numbers in the figure indicate RRIs 

expressed in millisecond. Each interval is labeled as apnea (1) or normal respiration (0) based on the 
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annotations made by technicians, and an input vector of the screening model is built by clipping the 

RRI data.

Figure 5. Diagnostic performance of the Apnea/Sleep ratio (AS ratio) to detect severe (apnea-hypopnea 

index; AHI ≥ 30) (a) or moderate-to-severe (AHI ≥ 15) sleep apnea (b). Receiver operating 

characteristics curves (ROC) were constructed for training (N = 468, blue line) and validation (N = 

470, orange line) datasets.

Figure 6. Robustness of the proposed model to detect severe sleep apnea (apnea-hypopnea index; AHI 

≥ 30). The training and validation datasets were randomly replaced five times and a receiver 

operating characteristics curve (ROC) was plotted for each trial using the validation dataset (N = 

470). 

Figure 7. Comparison between the classification performance when males (a) and females (b) were 

trained and validated separately. Receiver operating characteristics curves (ROC) were constructed 

for training (blue line) and validation (orange line) datasets.
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Figure 8. Scatter plot of Apnea/Sleep ratio (AS ratio) versus apnea-hypopnea index (AHI) (a) and 

arousal index (b). The red line indicates the regression line where AHI or arousal index is a predictor 

variable and AS ratio is a response variable. “r” represents a correlation coordinate between the two 

variables.
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Tables

Table 1: Subject profile in the adult polysomnography dataset

(a) Training dataset (N = 468)

Male Female

Age AHI 0-15 15-30 30- 0-15 15-30 30-

13-30 48 6 7 18 0 1

31-60 98 53 81 45 8 7

61- 19 17 22 20 5 13

(b) Validation dataset (N = 470)

Male Female

Age AHI 0-15 15-30 30- 0-15 15-30 30-

13-30 38 4 8 15 1 0

31-60 125 50 94 44 6 9

61- 13 12 20 14 10 7

Age and sleep apnea severity (apnea-hypopnea index; AHI) distribution in the training and validation 

datasets collected at Nakamura clinic in Okinawa, Japan.
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Table 2: Clinical and demographic characteristics of the subjects in the adult polysomnography 

dataset

Training

(N = 468)

Validation

(N = 470)

All subjects

(N = 938)

Apnea hypopnea index 25.3 (28.5) 25.5 (29.8) 25.4 (29.2)

Age -- yr 46.4 (16.2) 46.7 (14.9) 46.6 (15.6)

Female sex -- no. (%) 117 (25.0) 106 (22.6) 223 (23.8)

Body mass index (kg/m2) 27.7 (5.3) 28.3 (5.1) 28.0 (5.2)

Hypertension -- no. (%) 125 (26.7) 128 (27.2) 253 (27.0)

Myocardial infarction -- no. (%) 3 (0.6) 1 (0.2) 4 (0.4)

Arrhythmia -- no. (%) 21 (4.5) 20 (4.3) 41 (4.4)

Diabetes -- no. (%) 39 (8.3) 41 (8.7) 80 (8.5)

Depression -- no. (%) 14 (3.0) 16 (3.4) 30 (3.2)

Allergic rhinitis -- no. (%) 45 (9.6) 50 (10.6) 95 (10.1)

Asthma -- no. (%) 43 (9.2) 34 (7.2) 77 (8.2)

COPD -- no. (%) 9 (1.9) 11 (2.3) 20 (2.1)

Restless leg syndrome -- no. (%) 52 (11.1) 50 (10.6) 102 (10.9)

Migraine -- no. (%) 4 (0.9) 8 (1.7) 12 (1.3)

OAB -- no. (%) 0 (0.0) 2 (0.4) 2 (0.2)

COPD: chronic obstructive pulmonary disease, OAB: overactive bladder.
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Table 3: Subject profile of children used in the additional analysis (N = 77)

Male Female

Age AHI 0-15 15-30 30- 0-15 15-30 30-

0-5 24 4 2 9 2 1

6-12 20 1 2 11 0 1

Age and sleep apnea severity (apnea-hypopnea index; AHI) distribution (under 13) collected at 

Nakamura clinic in Okinawa, Japan.
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Table 4: Subject profile of the SUMS dataset (N = 59)

Male Female

Age AHI 0-15 15-30 30- 0-15 15-30 30-

13-30 7 0 1 15 0 1

31-60 7 5 7 6 0 0

61- 0 4 4 0 1 1

Age and sleep apnea severity (apnea-hypopnea index; AHI) distribution (under 13) collected at Shiga 

University of Medical Science Hospital (SUMS) in Otsu, Japan.
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Table 5: Subject profile of the Physionet database (N = 69)

(a) Dataset used to determine the threshold of AS ratio (N = 34)

Male Female

Age AHI 0-15 15-30 30- 0-15 15-30 30-

13-30 1 0 0 2 0 0

31-60 8 3 17 2 0 0

61- 0 1 0 0 0 0

(b) Validation dataset (N = 35)

Male Female

Age AHI 0-15 15-30 30- 0-15 15-30 30-

13-30 1 0 0 4 2 0

31-60 7 6 12 2 0 0

61- 0 1 0 0 0 0

Age and sleep apnea severity (apnea-hypopnea index; AHI) distribution of the Physionet apnea-ECG 

database (Penzel et al, 2000).



35

Table 6: Correlation coordinates between Apnea/sleep ratio (AS ratio) and sleep parameters

Sleep parameters Correlation coordinates P value

AHI 0.74 < 0.001

Arousal index 0.60 < 0.001

WASO 0.23 < 0.001

Sleep efficiency -0.23 < 0.001

Total sleep time -0.21 < 0.001

AHI: apnea hypopnea index, WASO: wake time after sleep onset.
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Table 7: Summary of the performances of various screening methods using a large dataset

Ref Number 

of 

subjects

Ages Male 

sex 

(%)

Discrimination 

algorithm

Modality Signal AUC 

(Threshold 

of AHI)

Álvarez et 

al (2010)

148 52.9 ±

14.1

78 Logistic 

regression

PSG SpO2 0.97 (10)

Huang et 

al (2020)

6875 47.8 ± 

14.5

76 Support vector 

machine

Questionnaire None 0.82 (5), 

0.80 (15), 

0.78 (30)

Roche et al 

(2003)

147 53.8 ±

11.2

69 Classification 

and Regression 

Trees

PSG ECG 0.76 (10)

Gutiérrez-

Tobal et al 

(2015)

188 - 71 Logistic 

regression

PSG ECG 0.89 (10)

Nakayama 

et al 

(2019) 

115 42.2 ±

15.4

73 Classification 

and Regression 

Trees

PSG ECG 0.84 (15)

Proposed 938 43.5 ±

18.5

76 LSTM PSG ECG 0.89 (15), 

0.92 (30)

AUC: area under the curve, AHI: apnea hypopnea index, PSG: polysomnography, SpO2: saturation of 

peripheral oxygen, ECG: electrocardiogram, LSTM: long short-term memory.

Objectives: Easily detecting patients with undiagnosed sleep apnea syndrome (SAS) requires a home-

use SAS screening system. In this study, we validate a previously developed SAS screening 

methodology using a large clinical polysomnography (PSG) dataset (N = 938).

Methods: We combined R-R interval (RRI) and long short-term memory (LSTM), a type of recurrent 

neural networks, and created a model to discriminate respiratory conditions using the training dataset 
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(N = 468). Its performance was validated using the validation dataset (N = 470).

Results: Our method screened patients with severe SAS (apnea hypopnea index; AHI ≥ 30) with an 

area under the curve (AUC) of 0.92, a sensitivity of 0.80, and a specificity of 0.84. In addition, the 

model screened patients with moderate/severe SAS (AHI ≥ 15) with an AUC of 0.89, a sensitivity of 

0.75, and a specificity of 0.87.

Conclusions: Our method achieved high screening performance when applied to a large clinical dataset.

Significance: Our method can help realize an easy-to-use SAS screening system because RRI data can 

be easily measured with a wearable heart rate sensor. It has been validated on a large dataset including 

subjects with various backgrounds and is expected to perform well in real-world clinical practice.
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