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Sleep quality can be evaluated from the viewpoint of recovery from fatigue

and sleepiness; however, it is di�cult to investigate sleep quality while

distinguishing between the two. The aim of this study is to find biomarkers

that can discriminate between daytime fatigue and sleepiness and to assess

sleep quality in consideration thereof. We collected answers to questionnaires

regarding daytime fatigue and sleepiness, as well as EEG data measured

during sleep, from 754 city government employees in a rural area of Japan.

The respondents were categorized into four groups in accordance with the

severity of fatigue and sleepiness as assessed by the questionnaires: fatigued

and sleepy (FS), fatigued, non-sleepy (FO), non-fatigued and sleepy (SO), and

non-fatigued and non-sleepy (neither fatigued nor sleepy; NE) groups. EEG

data of medial frontal electrodes were obtained with a one-channel portable

electroencephalograph, and various sleep parameters such as powers or sleep

durations in each stage were compared among the four groups. Statistical

tests confirmed significant di�erences in some derived sleep parameters

among the four groups. The Theta Delta power may be a biomarker that

can discriminate between fatigue and sleepiness. In addition, the Delta and

Theta powers may be associated with sleep quality in terms of recovery from

sleepiness and fatigue, respectively. Moreover, high frequency or long duration

of mid-arousals may contribute to recovery from fatigue. The results showed

that fatigue and sleepiness have di�erent e�ects on sleep, and multiple sleep

parameters derived from EEG are associated with sleep quality.

KEYWORDS

EEG analysis, questionnaire survey, frequency analysis, biomarker identification,

fatigue, sleepiness

Introduction

Good sleep is essential for physical and cognitive performances, everyday health, and
wellbeing (Spiegel et al., 1999; Maquet, 2001; Czeisler, 2015). Sleep quality should be
taken into account in addition to sleep duration for evaluating good sleep (Pilcher et al.,
1997). Complaints about sleep quality are common; epidemiological surveys indicate that
15–35% of the adult population complain of frequent sleep quality disturbance (Karacan
et al., 1976; Bixler et al., 1979), and deterioration of sleep quality may be an important
symptom of many sleep and medical disorders (Kripke et al., 1979).

Frontiers in Sleep 01 frontiersin.org

https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org/journals/sleep#editorial-board
https://www.frontiersin.org/journals/sleep#editorial-board
https://www.frontiersin.org/journals/sleep#editorial-board
https://www.frontiersin.org/journals/sleep#editorial-board
https://doi.org/10.3389/frsle.2022.975415
http://crossmark.crossref.org/dialog/?doi=10.3389/frsle.2022.975415&domain=pdf&date_stamp=2022-10-26
mailto:fujiwara.koichi@hps.material.nagoya-u.ac.jp
https://doi.org/10.3389/frsle.2022.975415
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frsle.2022.975415/full
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Fujiwara et al. 10.3389/frsle.2022.975415

Researchers have developed various methods for assessing
sleep quality (Landry et al., 2015), which can be classified
mainly into two types: subjective sleep quality assessment
using questionnaires such as the Pittsburgh Sleep Quality
Index (PSQI) (Buysse et al., 1989) and objective sleep quality
measurement based on physiological measurements by means
of polysomnography (PSG) (Åkerstedt et al., 1994; Littner et al.,
2003). For example, total sleep duration, number of arousals,
sleep efficiency, and duration of slow-wave sleep (SWS) have
been used as objective indicators of sleep quality that can be
derived from PSG (Unruh et al., 2008).

The objective measures are rarely consistent with the
subjective assessments. Buysse et al. (Buysse et al., 2008) reported
that the PSQI does not correlate well with PSG. It is difficult to
rigorously evaluate “sleep quality" despite it being widely used in
sleep medicine as well as in daily life.

In this study, we focus on daytime fatigue and sleepiness
to evaluate sleep quality because recovery therefrom is one of
the main functions of sleep. The close relationship between
fatigue and sleep is generally known (Aaronson et al., 1999). For
example, subjects with daytime fatigue show significantly low
sleep efficiency (Stores et al., 1998; Jackson and Bruck, 2012).

Fatigue has been confused frequently with sleepiness since
the symptom of fatigue is a poorly defined subjective feeling.
Some studies suggest differences in sleep characteristics between
daytime fatigue and sleepiness. Lichstein et al. reported that
fatigue was associated with being female, a smoker, a high
body-mass index (BMI), and low sleep efficiency, whereas
sleepiness was not (Lichstein et al., 1997). Neu et al. showed
that subjects with fatigue and without sleepiness had different
electroencephalogram (EEG) powers in non-REM sleep from
subjects with only sleepiness (Neu et al., 2014). In order to
precisely assess sleep quality while avoiding confusion between
fatigue and sleepiness, new biomarkers that can discriminate
between daytime fatigue and sleepiness are required.

Abbreviations: abs, absolute power; ANOVA, analysis of variance; ARI,

arousal index; Avg, average; BMI, Body-Mass Index; CFS, the Chalder

Fatigue Scale; EEG, Electroencephalogram; EES, Epworth Sleepiness

Scale; FO group, Only Fatigued group; FS group, Fatigued and Sleepy

group; KW test, Kruskal-Wall test; MAD, median absolute deviation;

maxT, timing with the maximum value; maxTratio, ratio of maxT and

the length of the period; maxVal, maximum value; minT, timing with

the minimum value; minVal, minimum value; NE group, NEither fatigued

nor sleepy group; PSD, Power Spectral Density; PSG, Polysomnography;

PSQI, Pittsburgh Sleep Quality Index; REM, Rapid Eye Movement; rel,

relative power; SC1, first Sleep Cycle; SC2, second Sleep Cycle; SO group,

Only Sleepy group; SPT, Sleep Period Time; Std, Standard Deviation; SWS,

Slow-Wave Sleep; TS1, time in N1; TS3, time in N3; WASO, wake time

after sleep onset; WASO2h, wake time after sleep onset 2 h before the

final awakening; %S1, percentage of N1; %S3, percentage of N3; %SW,

percentage of wake.

In this study, we analyze answers to questionnaires regarding
fatigue and sleepiness, as well as sleep EEG data, collected
from adult employees to find biomarkers that discriminate
between fatigue and sleepiness. We employed a 1-channel
portable electroencephalograph for EEG measurement because
it is suitable for collecting EEG data from a large number of
people. In addition, sleep parameters that affect sleep quality
are discussed from the viewpoint of recovery of daytime fatigue
and sleepiness.

Methods

Participants

We performed a questionnaire survey and sleep EEG
measurement over two nights in 2018 and 2019 as part of
the Night in Japan Home Sleep Monitoring (NinJaSleep) study
(Takami et al., 2018; Omichi et al., 2022). All the participants in
this study were government employees of Koka City, a rural city
in Shiga prefecture, Japan. 754 employees agreed to participate
in the study and the number of actual participants was 672
(288 males and 384 females, aged 20–72 years). The exclusion
criteria were as follows: (a) Participants who did not participate
in the questionnaires and the sleep tests; (b) Participants who
failed the EEGmeasurement on both nights; and (c) Participants
with less than two sleep cycles. According to these criteria, 523
subjects were retained for further analysis. Figure 1 shows a
study inclusion flowchart.

The Ethics Committee of Shiga University of Medical
Science approved the study protocol (R2017-111). The study
was registered at UMIN-CTR (UMIN000028675, registered on
August 15, 2017) and ClinicalTrials.gov (NCT03276585,
registered on August 3, 2017). Informed consent was
obtained from each participant prior to participation. The
datasets analyzed in the current study are available from the
corresponding author upon reasonable request.

Measurements

All participants completed the Japanese version of the
Chalder Fatigue Scale (CFS) (Chalder et al., 1993; Tanaka
et al., 2008) and the Epworth Sleepiness Scale (ESS) (Johns,
1991; Takegami et al., 2009), and other general questionnaires
about clinical characteristics before the sleep test. The CFS is a
self-administered questionnaire for measuring the degree and
severity of fatigue, consisting of 14 questions related to physical
and mental fatigue. Each question is answered on a four-point
scale ranging from asymptomatic to maximum symptomology:
“0: Less than usual,” “1: as usual,” “2: More than usual,” and
“3: Much more than usual.” Thus, the total score of the CFS
ranges from 0 to 42. Since the CFS assesses fatigue over the
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Participants
(n = 672)

Participants who complete 
the experiment (n = 568)

Eligible samples
(n = 523)

Did not complete questionnaire (n = 46)
Did not undergo sleep tests (n = 58)

Failed the EEG measurement on both nights (n = 15)
Participants with less than two sleep cycles (n = 30)

Agreed to participate
(n = 754)

FIGURE 1

Study inclusion flowchart. The exclusion criteria in this study were (a) Participants who did not participate in the questionnaires and the sleep

tests; (b) Participants who failed the EEG measurement on both nights; and (c) Participants with less than two sleep cycles.

past month, it is not affected by daily external factors. The
Japanese version of CFS was validated by Tanaka et al. (2008).
Supplementary Table S1 shows the original and the Japanese
version of CFS.

The ESS is a self-administered questionnaire for measuring
the degree of daytime sleepiness, which has been widely used
for sleepiness assessment in both clinical and epidemiological
settings. The ESS consists of eight questions, and respondents
are asked to rate each on a four-point scale (0–3). The total
ESS score ranges from 0 to 24. Since the ESS assesses daytime
sleepiness in recent daily life, it is not affected by daily external
factors. Takegami et al. (2009) made and validated the Japanese
version of ESS.

The participants obtained all-night sleep EEG measurement
from bedtime to wake-up time for two nights at home using
a portable EEG device equipped with a single EEG channel
with a sampling rate of 128Hz (SLEEP SCOPE; Sleep Well
Co., Japan). SLEEP SCOPE has been used in several sleep
studies (Svensson et al., 2019; Liang and Chapa-Martell, 2021;
Torimoto et al., 2022) and validated with medical EEG devices
(Yoshida et al., 2015; Matsuo et al., 2016; Kawamura et al.,
2022). An EEG electrode was positioned at the median frontal
lobe, and the reference was the right mastoid bone. The
participants attached and detached the electrodes by themselves.
Overnight hospitalization was not needed, and the sleep tests
were performed at the participants’ homes using the portable
EEG device.

Subject groups classification based
on questionnaires

We defined a CFS score of 16 or greater as fatigued and an
ESS score of 8 or greater as sleepy. These cut-off values were

determined using a median-split method (Waters et al., 2013;
Matsuo et al., 2016). All subjects were classified into four groups
as follows: the fatigued and sleepy (FS) group, the fatigued
and non-sleepy (only fatigued; FO) group, the non-fatigued
and sleepy (only sleepy; SO) group, and the non-fatigued and
non-sleepy (neither fatigued nor sleepy; NE) group.

EEG data analysis

In this study, EEG data obtained on the second night were
analyzed to assess the first night effect, which is change that
may occur in sleep structures caused by the sleep test itself.
The EEG data of the first night were used when technicians
determined that the EEG data of the second night were
incorrectly measured.

The parameters representing sleep characteristics were
extracted from the collected EEG data using two methods: time-
domain analysis conducted by the technicians and frequency-
domain analysis conducted by a computer.

In the time-domain analysis, technicians scored the EEG
data following the American Academy of Sleep Medicine
(AASM) manual (AASM, 2014), and we derived 28 sleep
parameters listed in Supplementary Table S2 based on the
scoring result. In these parameters, the first sleep cycle (SC1)
and the second sleep cycle (SC2) are defined as the period
from sleep onset to the end of the first REM sleep, and the
period from the end of the first REM sleep to the end of the
second REM sleep, respectively. These definitions are illustrated
in Figure 2.

The previous studies reported that slow wave sleep (SWS) is
associated with fatigue (Buguet et al., 1980; Susić and Kovacévić-
Ristanović, 1980) and SWS abundantly appears in the first half
of the whole sleep (Kryger et al., 2022). In addition, early sleep
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FIGURE 2

Definitions of the first sleep cycle (SC1), the second sleep cycle

(SC2), and the whole sleep period time (SPT).

stages are more important than later ones from the viewpoint
of recovery of fatigue (Van Cauter and Plat, 1996). Although
the last half of sleep such as SC3 and SC4 may be associated
with sleep disorders; however, we excluded patients with sleep
disorders in this study. In addition, it is difficult to analyze SC3
and SC4 due to their short duration. Thus, we focused on SC1
and SC2 in this study.

The frequency-domain analysis extracts sleep parameters
based on the powers of EEG. To calculate accurate parameters,
the following preprocessing is performed: (1) filter artifacts from
the collected EEG data, (2) estimate power spectral density
(PSD) from the filtered EEG data, (3) calculate the powers in
four frequency bands based on the estimated PSD, and (4)
filter spikes from the calculated powers. In step 3, the PSD is
divided into four frequency bands: the Delta power (1–4Hz), the
Theta power (4–8Hz), the Alpha power (8–13Hz), and the Beta
power (13–30Hz). This preprocessing is described in detail in
the Appendix.

After preprocessing, the filtered powers are clipped from the
following three periods: SC1, SC2, and the whole sleep period
time (SPT). The following eight power indexes are calculated in
each period:

• Absolute power (abs): the absolute power in the
four frequency bands (absDelta, absTheta, absAlpha,
and absBeta).

• Relative power (rel): the power ratio of each frequency
band and the total bandwidth (relDelta, relTheta, relAlpha,
and relBeta).

Finally, nine types of sleep parameters described in
Supplementary Table S3, such as maxVal (maximum value),
maxT (timing with the maximum value), and Avg (average),
are calculated based on each power index; that is, a total of
216 (= 3 periods × 8 power indexes × 9 types) parameters
were extracted.

FIGURE 3

Scatter plot showing distribution of CFS and ESS scores. One

hundred sixty-four subjects were categorized into the FS group,

98 into the FO group, 86 into the SO group, and 175 into the NE

group. Colors denote the subject group.

Statistical analysis

The sleep parameters derived from both time-domain and
frequency-domain analyses were compared among the four
groups—FS, FO, SO, and NE groups. Since the Shapiro-Wilk test
showed that the derived sleep parameters violated normality, we
used the Kruskal-Wallis (KW) test, which is a non-parametric
version of the one-way analysis of variance (ANOVA) that tests
whether sample groups originate from the same distribution.
The KW test is used for comparing between two or more
independent groups consisting of equal or different sample sizes.
Its null hypothesis is that the medians of all groups are equal,
and the alternative hypothesis is that a median calculated from
one group is different from that of at least one other group. In
addition, we used the Dunn’s test as a sub-effect test, which is
used formultiple comparisons using rank sums. The significance
level was set to p < 0.05.

The EEG data were analyzed using Python 3.6.4 withNumPy
1.16.2 and SciPy 1.1.0, and the statistical tests were performed
in Python 3.6.4 with SciPy 1.1.0. Figures were plotted with
Matplotlib 2.1.2.

Results

Subject groups

One hundred and sixty four subjects were categorized into
the FS group, 98 into the FO group, 86 into the SO group,
and 175 into the NE group. Figure 3 shows a scatter plot of the
distribution of the CFS and the ESS scores, wherein the colors
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TABLE 1 Demographic data of each group.

FS FO SO NE p

Num of subjects 164 98 86 175

Male/Female 49/115 33/65 30/56 86/89 0.002 (χ2 test)

Age (mean± SD) 42.2± 10.9 46.9± 9.5 41.5± 12.1 48.2± 12.4 <0.001 (KW test)

BMI (mean± SD) 22.3± 3.7 23.3± 5.2 22.2± 3.2 22.6± 3.8 0.195 (KW test)

denote the subject group. There was a weak positive correlation
between the CFS and the ESS scores (r = 0.393, p < 0.001).

The biographic data of each group are displayed in Table 1.
There was a significant difference in gender among the groups
according to the χ2 test (p < 0.05), with the most significant
proportion of females in the FS group and a relatively large
proportion of males in the NE group. The KW test showed
a significant difference in age among the groups (p < 0.05).
Multiple comparisons by the Dunn’s test showed that the NE
group was significantly older than the SO and FS groups, and the
FO group was also significantly older than the SO and FS groups
(p < 0.05). These results showed that groups with sleepiness
were significantly younger than groups without sleepiness, and
sleepiness increased with a decrease in age (r = −0.236, p <

0.001). A significant difference in BMI was not confirmed.

Sleep parameter comparison

The KW test was conducted on 244 sleep parameters derived
from the analysis of the time-domain (28 parameters) and the
frequency-domain (216 parameters). Thirty-one out of the 244
sleep parameters listed in Table 2 had significant differences (p <

0.05). Of the 31 parameters, eight were derived from the time
domain analysis and 23 were derived from the frequency domain
analysis—specifically, 14 from SC1, three from SC2, and six from
SPT. Multiple comparisons were subsequently conducted using
the Dunn’s test. The p-values calculated for all group pairs are
shown in Table 3. The pairs with significant differences (p <

0.05) are colored gray. Most of these parameters had significant
differences between the FS and NE groups, while only WASO2h
(wake time after sleep onset 2 h before the final awakening) was
significantly different between the FO and the SO groups.

Time domain parameters

Figure 4 shows the comparison results of the significant
time-domain sleep parameters. The following three major
results were obtained.

• N1 and fatigue
TS1 (time in N1) was significantly smaller in the FS and
FO groups than in the NE group, and %S1 (percentage

of N1) was significantly smaller in the FO group than in
the NE group. These results suggest that fatigue reduces
N1 duration.

• N3 and sleepiness
TS3 (time in N3) and %S3 (percentage of N3) were
significantly larger in the FS and SO groups than in the
NE group, suggesting that sleepiness is associated with the
extension of N3 duration.

• Mid arousals and fatigue/sleepiness
%SW (percentage of wake) and ARI (arousal index) were
significantly lower in the FS and FO groups than in
the NE group, which suggests that fatigue decreased the
percentage and the frequency of mid arousal time. WASO
(wake time after sleep onset) was significantly smaller in
the FS, FO, and SO groups than in the NE group. A
significant difference between the SO and NE groups was
not confirmed in %SW; however, there was a significant
difference in WASO. The SO group had a relatively shorter
SPT than the NE group and a small WASO. WASO2h
was significantly smaller in the FS and FO groups than
in the NE group, and in the FO group than in the SO
group, which suggests that the total mid-arousal duration
2 h before the final awakening is decreased by fatigue and
increased by sleepiness.

Frequency domain parameters

The comparison results of the frequency domain sleep
parameters in which a significant difference was confirmed are
shown in Figures 5–8. We obtained the following relationships
of fatigue and sleepiness with parameters of the Delta, the Theta,
and the Beta powers.

• Delta power parameters
As to absDelta (absolute Delta power), maxVal (maximum
value) in SC1 and Avg (average value) and maxVal in SPT
were significantly larger in the FS and SO groups than in the
NE group, as shown in Figures 5A–C. The maxVal range
in SC1 and SPT were almost the same and SPT contained
SC1, which suggests that most subjects got the maximum
of the Delta power during SC1. In addition, Std (standard
deviation) of absDelta in SC1 and SPT were significantly
larger in the SO group than in the NE group according to
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TABLE 2 Significant parameters confirmed by KW test (p < 0.05).

Method Period Power index Parameter Groups (mean± SD) KW test

FS FO SO NE p-value

Time-domain TSI 52.9± 22.1 51.6± 27.0 55.3± 22.1 59.4± 25.0 0.011

TS3 31.3± 29.4 27.4± 26.3 34.8± 29.9 25.5± 28.6 0.036

%SI 14.8± 5.9 14.3± 6.8 15.0± 5.2 15.6± 5.6 0.047

%S3 8.46± 7.63 7.59± 7.08 9.37± 8.05 6.91± 8.11 0.02

%SW 6.96± 3.92 6.67± 4.17 7.13± 4.49 8.25± 5.31 0.017

ARI 8.36± 4.70 8.00± 5.01 8.56± 5.39 9.90± 6.37 0.017

WASO 25.4± 15.7 25.1± 19.8 26.8± 20.1 32.5± 23.5 0.002

WASO2h 13.5± 9.5 13.0± 10.8 14.8± 11.3 16.2± 12.7 0.005

Frequency-domain SCI absDelta maxVal 213.0± 128.0 200.3± 95.2 245.4± 169.4 197.5± 152.8 0.023

minVal 49.0± 35.7 45.8± 32.1 52.3± 48.1 40.3± 32.5 0.031

minT 171.1± 75.7 179.4± 86.4 188.4± 78.4 192.3± 82.1 0.016

Avg 137.1± 80.9 129.3± 59.6 153.2± 102.1 126.8± 97.3 0.039

Std 51.1± 35.3 47.7± 27.7 60.6± 43.6 47.1± 39.6 0.019

relDelta minVal 0.61± 0.11 0.61± 0.09 0.60± 0.12 0.58± 0.11 0.023

minT 166.6± 74.6 171.9± 84.0 184.5± 77.4 182.4± 78.3 0.027

relTheta maxVal 0.21± 0.05 0.21± 0.04 0.21± 0.04 0.22± 0.04 0.003

Avg 0.15± 0.03 0.15± 0.03 0.15± 0.03 0.16± 0.03 0.027

Total 28.1± 14.0 29.7± 16.0 30.8± 13.8 32.3± 14.6 0.012

absBeta maxT 46.6± 66.5 69.7± 98.1 73.3± 86.6 58.0± 75.8 0.023

maxTratio 0.28± 0.38 0.36± 0.42 0.38± 0.42 0.30± 0.40 0.043

relBeta maxT 153.5± 89.7 168.0± 101.8 169.3± 105.8 180.4± 92.2 0.046

Total 7.16± 4.55 8.07± 7.03 7.91± 5.96 8.30± 4.92 0.047

SC2 absDelta minVal 25.2± 16.1 23.5± 11.1 25.0± 13.6 21.5± 12.2 0.017

relDelta minVal 0.60± 0.11 0.59± 0.09 0.58± 0.12 0.57± 0.10 0.047

relTheta minTratio 0.83± 0.22 0.85± 0.23 0.89± 0.19 0.88± 0.20 0.04

SPT absDelta maxVal 227.6± 125.3 210.4± 95.6 255.4± 168 211.9± 153.8 0.037

Std 54.2± 33.3 49.6± 24.6 61.2± 42.1 51.2± 42.8 0.042

relTheta minTratio 0.82± 0.22 0.83± 0.18 0.79± 0.24 0.75± 0.24 0.047

Total 123.1± 31.8 124.1± 31.3 127.7± 34.2 134.6± 35.5 0.011

relAlpha minT 593.6± 201.3 609.4± 221.2 625.9± 186.9 656.3± 187.4 0.029

relBeta minT 520.8± 227.0 552.7± 245.1 539.5± 206.1 597.5± 212.3 0.011

Figures 5D,E. Thus, sleepiness may increase the maximum
and the mean of the Delta power in SC1 and its variability
in both SC1 and SPT.
minVal (minimum value) of absDelta in SC1 and SC2 were
significantly larger in the FS and FO groups than in the NE
group, as shown in Figures 6A,B. relDelta (relative Delta
power) in SC1 was significantly larger in the FS and FO
groups than in the NE group (Figure 6C), and relDelta in
SC2 was significantly larger in the FS group than in the
NE group (Figure 6D). According to Figures 6E,F, minT
(timing with the minimum value) of relDelta in SC1 was
significantly longer in the SO and NE groups than in the FS
group, and minT of absDelta in SC1was also significantly
longer in the SO and NE groups than in the FS group,

and in the NE group than in the FO group. These results
suggest that the Delta power in SC1 becomes large, and
subsequently reaches the minimum value at an early timing
when the participant is fatigued.

• Theta power parameters
Figure 7 shows the relationship between fatigue and the
Theta power. Regarding relTheta (relative Theta power),
maxVal in SC1 and Total in SPT were significantly
smaller in the FS and FO groups than in the NE group
(Figures 7A–C), and the Avg in SC1 of the FS group was
significantly smaller than that of the NE group (Figure 7D).
Thus, the maximum, the mean, and the Total of the Theta
power in SC1 and SPTmay decrease with fatigue. As shown
in Figure 7E, minTratio (ratio of minT to the length of the
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TABLE 3 Multiple comparison results between groups by the Dunn’s test.

Method Period Power index Parameter p-value

FS-FO FS-SO FS-NE FO-SO FO-NE SO-NE

Time-domain TSI 0.312 0.380 0.015 0.096 0.002 0.265

TS3 0.531 0.423 0.027 0.206 0.202 0.008

%SI 0.194 0.521 0.098 0.089 0.006 0.471

%S3 0.608 0.497 0.013 0.291 0.104 0.006

%SW 0.314 0.880 0.024 0.315 0.003 0.087

ARI 0.314 0.866 0.023 0.306 0.003 0.089

WASO 0.273 0.764 0.004 0.224 <0.001 0.039

WASO2h 0.243 0.140 0.015 0.020 0.001 0.600

Frequency-domain SCI absDelta maxVal 0.994 0.223 0.042 0.275 0.078 0.004

minVal 0.989 0.771 0.014 0.784 0.036 0.020

minT 0.620 0.048 0.004 0.177 0.044 0.676

Avg 0.964 0.368 0.040 0.440 0.070 0.009

Std 0.957 0.094 0.085 0.120 0.153 0.002

relDelta minVal 0.611 0.590 0.004 0.963 0.045 0.062

minT 0.874 0.026 0.016 0.062 0.056 0.787

relTheta maxVal 0.408 0.150 <0.001 0.559 0.022 0.123

Avg 0.302 0.295 0.003 0.958 0.119 0.151

Total 0.595 0.108 0.002 0.321 0.031 0.336

absBeta maxT 0.024 0.006 0.239 0.601 0.204 0.072

maxTratio 0.032 0.017 0.440 0.762 0.133 0.075

relBeta maxT 0.458 0.110 0.007 0.423 0.111 0.530

Total 0.577 0.477 0.007 0.874 0.076 0.127

SC2 absDelta minVal 0.621 0.975 0.004 0.69 0.048 0.019

relDelta minVal 0.133 0.173 0.005 0.942 0.368 0.345

relTheta minTratio 0.162 0.022 0.010 0.393 0.421 0.852

SPT absDelta maxVal 0.633 0.402 0.029 0.243 0.163 0.008

Std 0.751 0.277 0.051 0.210 0.173 0.007

relTheta minTratio 0.674 0.273 0.007 0.532 0.058 0.263

Total 0.697 0.364 0.002 0.63 0.019 0.089

relAlpha minT 0.475 0.295 0.003 0.743 0.070 0.171

relBeta minT 0.257 0.641 0.001 0.576 0.103 0.029

Colored cells denote significant differences (p < 0.05).

period) of relTheta in SC2 was significantly larger in the SO
and NE groups than in the FS group. These results suggest
that the Theta powers in SC1 and SPT become small and
the Theta power in SC2 reaches minimum early when a
participant is fatigued.

• Beta power parameters
As to relBeta (relative Beta power), Total (sum of power)
in SC1 was significantly smaller in the FS group than in the
NE group, as shown in Figure 8A, which suggests that at
least fatigue or sleepiness contributes to a decrease in the
Beta power in SC1. maxT of relBeta in SC1 was significantly
smaller in the FS group than in the NE group, as shown
in Figure 7B. In addition, Figures 8C,D show that maxT

(timing with the maximum value) and maxTratio (ratio of
maxT and the length of the period) of absBeta (absolute
Beta power) in SC1 were significantly larger in the FO and
SO groups than in the FS group. These results indicate that
the combination of fatigue and sleepiness leads to the Beta
power in SC1 reaching its maximum early.

E�ect question about sleepiness

The third question of CFS asks about sleepiness; “Do you
feel sleepy or drowsy?” We removed this question in order to
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FIGURE 4

Comparison results of significant time-domain sleep parameters. These results suggest the following points: fatigue reduces N1 duration, sleep

extends N3 duration, and the mid-arousal duration in two hours before the final awakening is decreased by fatigue and increased by sleepiness.

Significant group pairs (p < 0.05) are marked with an asterisk.

completely separate sleepiness and fatigue when the participates
were categorized into four groups.

The cut-off value of CFS was 14 when the third question
was removed since it was defined based the median-split method
(Waters et al., 2013). The numbers of participants in FS, FO, SO,
and NE were 169, 113, 81, and 160, which shows that the third
question of CFS did not significantly affect grouping (the χ2 test,
p = 0.21).

Discussion

In this study, we analyzed the sleep EEG data by means
of time-domain analysis and frequency-domain analysis by
categorizing participants into four groups in accordance with
the CFS and the ESS: the fatigued and sleepy (FS) group, the
fatigued and non-sleepy (only fatigue; FO) group, the non-
fatigued and sleepy (only sleepy; SO) group, and the non-
fatigued and non-sleepy (neither fatigue nor sleepy; NE) group.
Our analysis results specified some sleep parameters that are
different between fatigue and sleepiness.

N3 sleep, also known as slow-wave (Delta wave) sleep,
is the deepest sleep stage dominated by Delta waves and
appears mostly in SC1. The time-domain analysis indicated
that sleepiness might contribute to extending the N3 duration.
According to the frequency-domain analysis, sleepiness
increases the maximum, the mean, and the variability of the

Delta power in SC1, and extends the duration of N3 in SC1.
Our data showed that the increase in the Delta power extends
the N3 duration in SC1 when a participant is sleepy, which is
consistent with a previous study which indicated that Delta
waves are associated with the depth of sleep and sleepiness
(Borbély et al., 1981). On the other hand, our data showed
slightly weak negative correlations between age and the N3
duration (r = −0.164, p < 0.001) and the mean Delta power
(r = −0.187 p < 0.001), which is consistent with a previous
research which indicated that the duration of N3 decreases with
age (Luca et al., 2015).

We introduce1Power as the difference betweenmaxVal and
minVal of the powers. The 1Delta power in SC1 may increase
when participants are sleepy because it was confirmed that the
maximum and the variability of the Delta power in SC1 increase
with sleepiness. Additional analyses were performed to verify
our hypothesis. The KW test and the Dunn’s test showed that
the1Delta power in SC1 was significantly larger in the SO group
than in the NE group (p = 0.021). Thus, it was also confirmed
that the 1Delta power in SC1 increases with sleepiness. On
the other hand, the 1Delta power in SC1 may decrease with
fatigue, since the Delta power stays high in SC1, and reach
its minimum at an early timing in SC1 when a participant
is fatigued.

This analysis indicates that the 1Delta power may be a
biomarker that can discriminate between sleepiness and fatigue
since the 1Delta power becomes small with fatigue and large
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FIGURE 5

Relationship between Delta power and sleepiness. Sleepiness may increase the maximum and the mean of the Delta power in SC1 and its

variability in both SC1 and SPT. (A–C) maxVal (maximum value) in SC1 and Avg (average value) and maxVal in SPT of absDelta were significantly

larger in the FS and SO groups than in the NE group. The maxVal range in SC1 and SPT were almost the same and SPT contained SC1, which

suggests that most subjects achieved the maximum of the Delta power during SC1. (D,E) Std (standard deviation) of absDelta in SC1 and SPT

were significantly larger in the SO group than in the NE group.

with sleepiness in SC1. Thus, the 1Delta power could be a
helpful tool for evaluating sleepiness recovery.

Our analysis results also showed that fatigue shortens the
N1 duration and the total mid-arousal duration and reduces
the Beta power in SC1, while sleepiness extends the mid-
arousal duration 2 h before final awakening. Previous studies
have shown that a small Beta power is associated with a high
arousal level and shallow sleep, which indicates that Beta waves
are related to wakefulness (Perlis et al., 2001). Beta power is
high in people with insomnia (Spiegelhalder et al., 2012) and
depression (Nofzinger et al., 2000) who have problems in sleep
quality. However, our analysis suggested that a low Beta power
may improve sleep quality by shortening the N1 duration and
the mid-arousal duration. Thus, it is concluded that a low Beta
power in SC1 caused by fatigue may shorten the N1 and the mid
arousal duration, while a high Beta power caused by sleepiness
extends the mid-arousal duration 2 h before the final awakening.

Sleepiness raises the maximum of the Beta power and delays
its timing 2 h before the final awakening, which means that
sleepiness may raise the Beta power toward the final awakening.
We compared seven sleep parameters, maxVal, maxT, minVal,
minT, Avg, Std, and Total, of the Beta power derived from 2 h
before the final awakening among the four groups. Statistical
tests showed that only maxVal and maxT were significantly
different, and both were significantly larger in the FS and SO
groups than in the NE group (p < 0.05).

Although it is often considered that the frequency and
the duration of mid-arousals reflect poor sleep quality, our
analysis showed that they are associated with fatigue recovery.
In addition, sleepiness may extend the mid-arousal duration
2 h before the final awakening by raising the Beta power.
Thus, mid-arousals during the 2 h before final awakening
may be a useful biomarker for distinguishing between fatigue
and sleepiness.
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FIGURE 6

Relationship between Delta power and fatigue. The Delta power in SC1 becomes large and reaches the minimum value at early timing when a

participant is fatigued. (A,B) minVal (minimum value) of absDelta in SC1 and SC2 were significantly larger in the FS and FO groups than in the NE

group. (C) relDelta (relative Delta power) in SC1 was significantly larger in the FS and FO groups than in the NE group. (D) relDelta in SC2 was

significantly larger in the FS group than in the NE group. (E) minT (timing with the minimum value) of relDelta in SC1 was significantly longer in

the SO and NE groups than in the FS group. (F) minT of absDelta in SC1was significantly longer in the SO and NE groups than the FS group and

in the NE group than the FO group.

Our analysis result suggest that fatigue decreases the Theta
power, reflecting a homeostatic dysfunction of sleep. Fatigue
decreases the maximum and the mean of the Theta power both
in SC1 and SPT and moves the timing of the maximum of
the Theta power forward in SC2. Theta waves are involved in
homeostatic sleep processes and enhance sleepiness recovery
(Finelli et al., 2000). Sleepiness results from impairment of sleep
homeostasis and can be recovered when sleep homeostasis is
repaired (Neu et al., 2014). Although Theta power has rarely
been mentioned in assessment of sleep quality, a large Theta
power may be associated with sleep quality in terms of fatigue
recovery. In addition, the Theta power represents an essential
difference in sleep characteristics between fatigue and sleepiness
from the viewpoint of sleep homeostasis.

In our data, there was a significant difference in gender
among the groups. The gender distribution was mostly
consistent with a study that indicated fatigue and insomnia are
twice as common in female as in male (Sharpe and Wilks, 2002;
Lind et al., 2015). The groups with sleepiness were significantly
younger than groups without sleepiness, which indicated
that younger participants tend to have sleepiness than older
participants in our data. According to a survey by theMinistry of

Health, Labour and Welfare, Japan, daytime sleepiness decrease
with age in the Japanese population (Ministry of Health LaW,
2019). Thus, the distributions of gender and age in our data are
consistent with the previous reports.

Our analysis will contribute to finding a new method for
detecting chronic fatigue syndrome. In addition, it may help to
investigate pathophysiology and new therapies of diseases with
strong fatigue like post-COVID-19 fatigue.

The limitations of this study include the collected data, such
as all of the participants being Japanese and recruited at a single
region, and the number of female participants was about twice
that of male participants; that is, we could consider neither
racial nor regional difference in this study. Therefore, we need
to collect data from participants in various regions to confirm
our results.

Conclusion

We analyzed the sleep EEG data collected from a large
population focusing on fatigue and sleepiness. Various sleep
parameters were extracted from the EEG data with the
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FIGURE 7

Relationship between Theta power and fatigue. The Theta powers in SC1 and SPT become small and the Theta power in SC2 reaches minimum

early when a participant is fatigued. (A–C) maxVal in SC1 and total in SPT of relTheta (relative Theta power) were significantly smaller in the FS

and FO groups than in the NE group. (D) Avg in SC1 of the FS group was significantly smaller than of the NE group. (E) minTratio (ratio of minT to

the length of the period) of relTheta in SC2 was significantly larger in the SO and NE groups than in the FS group.

A B C D

FIGURE 8

Relationship between Beta power and fatigue and sleepiness. At least fatigue or sleepiness contributes to a decrease in the Beta power in SC1,

and the combination of fatigue and sleepiness leads to the Beta power in SC1 reaching its maximum early. (A) Total (sum of power) of relBeta

(relative Beta power) in SC1 was significantly smaller in the FS group than in the NE group. (B) maxT of relBeta in SC1 was significantly smaller in

the FS group than in the NE group. (C,D) maxT (timing with the maximum value) and maxTratio (ratio of maxT to the length of the period) of

absBeta (absolute Beta power) in SC1 were significantly larger in the FO and SO groups than in the FS group.

time-domain analysis and the frequency-domain analysis and
compared among participants groups categorized in accordance
with their sleepiness and fatigue.

Our analysis showed that fatigue and sleepiness have
different effects on sleep, particularly in the Delta power and
Theta power. Sleep quality can be evaluated by using multiple
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sleep parameters such as the frequency and the duration of
mid-arousals as well as parameters from sleep EEG.

In a future work, we will establish a new EEG-based
sleep quality assessment method that can respectively evaluate
sleepiness and fatigue.
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Appendix

This Appendix explains the preprocessing method of
EEG data for the frequency-domain analysis. An appropriate
preprocessing is needed because PSD calculation is intolerant
of artifacts. The preprocessing procedure is as follows: (1) filter
artifacts from the EEG data, (2) estimate PSD from the filtered
EEG data, (3) calculate the powers in each frequency band
based on the estimated PSD, and (4) filter spikes from the
calculated powers.

1) Artifact filtering
Abandpass filter of 1–32 Hz is applied to attenuated

relatively regular waves, such as lead impedance, heart, and
respiratory artifacts. In addition, the 30-s epoch EEG data with
an amplitude over±100µV are removed as artifacts because the
maximum voltage of EEG is around± 75 µV, even in N3 which
has the largest amplitude in the entire sleep. Such high amplitude
artifacts may originate from body movement or bruxism.

2) PSD estimation
We estimate PSD by usingWelch’s method (Neu et al., 2014)

from the filtered EEG data using 15 overlapping 4-s sub-epochs
for each 30-s epoch, with a 50% Hann window.

3) Power calculation
Based on the estimated PSD, the powers in four frequency

bands commonly used in sleep science are calculated: the Delta
power (1–4 Hz), the Theta power (4–8 Hz), the Alpha power
(8–13 Hz), and the Beta power (13–30 Hz).

FIGURE A1

Calculated original power (blue) and power after spikes are filtered with the Hampel identifier (orange). The original power has many spikes

because artifacts remain in the EEG data even when the filters are applied; however, spikes are successfully filtered with the Hampel identifier.

4) Spike filtering
Figure A1 is an example of the calculated power in step

3, which shows that it contains many spikes because artifacts
remain in the EEG data even when the filters are applied in
step 1. To eliminate these spikes, the Hampel identifier (Liu
et al., 2004) is used, which is a variation of the three-sigma rule
in statistics for improving robustness against outliers. When a
sequence x1, x2, · · · xn, · · · and a sliding window of length k are
given, a point-to-point median mi and a standard deviation σi

can be estimated as follows:

mi = median
(

xi−k, xi−k+1, xi−k+2, · · · , xi, · · · , xi+k−2,

xi+k−1, xi+k

)

(A1)

σi = 1.4826×MAD. (A2)

MAD (median absolute deviation) is defined as

MAD = median
(
∣

∣xi−k −mi

∣

∣ , · · · ,
∣

∣xi+k −mi

∣

∣

)

. (A3)

When |xi −mi| > 3σi, the Hampel identifier detects
xi as an outlier and replaces it with mi. Figure A1 shows
an application example of the Hampel identifier to the
calculated power, which shows the spikes were successfully
filtered. In this study, a sliding window of length k = 60
was adopted.
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