論文

査読有り 国際誌
2021年10月3日

Cofilin Signaling in the CNS Physiology and Neurodegeneration.

International journal of molecular sciences
  • Jannatun Nayem Namme
  • ,
  • Asim Kumar Bepari
  • ,
  • Hirohide Takebayashi

22
19
開始ページ
10727
終了ページ
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.3390/ijms221910727

All eukaryotic cells are composed of the cytoskeleton, which plays crucial roles in coordinating diverse cellular functions such as cell division, morphology, migration, macromolecular stabilization, and protein trafficking. The cytoskeleton consists of microtubules, intermediate filaments, and actin filaments. Cofilin, an actin-depolymerizing protein, is indispensable for regulating actin dynamics in the central nervous system (CNS) development and function. Cofilin activities are spatiotemporally orchestrated by numerous extra- and intra-cellular factors. Phosphorylation at Ser-3 by kinases attenuate cofilin's actin-binding activity. In contrast, dephosphorylation at Ser-3 enhances cofilin-induced actin depolymerization. Cofilin functions are also modulated by various binding partners or reactive oxygen species. Although the mechanism of cofilin-mediated actin dynamics has been known for decades, recent research works are unveiling the profound impacts of cofilin dysregulation in neurodegenerative pathophysiology. For instance, oxidative stress-induced increase in cofilin dephosphorylation is linked to the accumulation of tau tangles and amyloid-beta plaques in Alzheimer's disease. In Parkinson's disease, cofilin activation by silencing its upstream kinases increases α-synuclein-fibril entry into the cell. This review describes the molecular mechanism of cofilin-mediated actin dynamics and provides an overview of cofilin's importance in CNS physiology and pathophysiology.

リンク情報
DOI
https://doi.org/10.3390/ijms221910727
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/34639067
ID情報
  • DOI : 10.3390/ijms221910727
  • PubMed ID : 34639067

エクスポート
BibTeX RIS