論文

本文へのリンクあり
2018年11月20日

KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector

NATURE ASTRONOMY
  • T. Akutsu
  • M. Ando
  • K. Arai
  • Y. Arai
  • S. Araki
  • A. Araya
  • N. Aritomi
  • H. Asada
  • Y. Aso
  • S. Atsuta
  • K. Awai
  • S. Bae
  • L. Baiotti
  • M. A. Barton
  • K. Cannon
  • E. Capocasa
  • C-S. Chen
  • T-W. Chiu
  • K. Cho
  • Y-K. Chu
  • K. Craig
  • W. Creus
  • K. Doi
  • K. Eda
  • Y. Enomoto
  • R. Flaminio
  • Y. Fujii
  • M. -K. Fujimoto
  • M. Fukunaga
  • M. Fukushima
  • T. Furuhata
  • S. Haino
  • K. Hasegawa
  • K. Hashino
  • K. Hayama
  • S. Hirobayashi
  • E. Hirose
  • B. H. Hsieh
  • C-Z. Huang
  • B. Ikenoue
  • Y. Inoue
  • K. Ioka
  • Y. Itoh
  • K. Izumi
  • T. Kaji
  • T. Kajita
  • M. Kakizaki
  • M. Kamiizumi
  • S. Kanbara
  • N. Kanda
  • S. Kanemura
  • M. Kaneyama
  • G. Kang
  • J. Kasuya
  • Y. Kataoka
  • N. Kawai
  • S. Kawamura
  • T. Kawasaki
  • C. Kim
  • J. Kim
  • J. C. Kim
  • W. S. Kim
  • Y. -M. Kim
  • N. Kimura
  • T. Kinugawa
  • S. Kirii
  • Y. Kitaoka
  • H. Kitazawa
  • Y. Kojima
  • K. Kokeyama
  • K. Komori
  • A. K. H. Kong
  • K. Kotake
  • R. Kozu
  • R. Kumar
  • H-S. Kuo
  • S. Kuroyanagi
  • H. K. Lee
  • H. M. Lee
  • H. W. Lee
  • M. Leonardi
  • C-Y. Lin
  • F-L. Lin
  • G. C. Liu
  • Y. Liu
  • E. Majorana
  • S. Mano
  • M. Marchio
  • T. Matsui
  • F. Matsushima
  • Y. Michimura
  • N. Mio
  • O. Miyakawa
  • A. Miyamoto
  • T. Miyamoto
  • K. Miyo
  • S. Miyoki
  • W. Morii
  • S. Morisaki
  • Y. Moriwaki
  • T. Morozumi
  • M. Musha
  • K. Nagano
  • S. Nagano
  • K. Nakamura
  • T. Nakamura
  • H. Nakano
  • M. Nakano
  • K. Nakao
  • T. Narikawa
  • L. Naticchioni
  • L. Nguyen Quynh
  • W. -T. Ni
  • A. Nishizawa
  • T. Ochi
  • J. J. Oh
  • S. H. Oh
  • M. Ohashi
  • N. Ohishi
  • M. Ohkawa
  • K. Okutomi
  • K. Ono
  • K. Oohara
  • C. P. Ooi
  • S-S. Pan
  • J. Park
  • F. E. Peña Arellano
  • I. Pinto
  • N. Sago
  • M. Saijo
  • Y. Saito
  • K. Sakai
  • Y. Sakai
  • Y. Sakai
  • M. Sasai
  • M. Sasaki
  • Y. Sasaki
  • S. Sato
  • T. Sato
  • Y. Sekiguchi
  • N. Seto
  • M. Shibata
  • T. Shimoda
  • H. Shinkai
  • T. Shishido
  • A. Shoda
  • K. Somiya
  • E. J. Son
  • A. Suemasa
  • T. Suzuki
  • T. Suzuki
  • H. Tagoshi
  • H. Tahara
  • H. Takahashi
  • R. Takahashi
  • A. Takamori
  • H. Takeda
  • H. Tanaka
  • K. Tanaka
  • T. Tanaka
  • S. Tanioka
  • E. N. Tapia San Martin
  • D. Tatsumi
  • T. Tomaru
  • T. Tomura
  • F. Travasso
  • K. Tsubono
  • S. Tsuchida
  • N. Uchikata
  • T. Uchiyama
  • T. Uehara
  • S. Ueki
  • K. Ueno
  • T. Ushiba
  • M. H. P. M. van Putten
  • H. Vocca
  • S. Wada
  • T. Wakamatsu
  • Y. Watanabe
  • W-R. Xu
  • T. Yamada
  • A. Yamamoto
  • K. Yamamoto
  • K. Yamamoto
  • S. Yamamoto
  • T. Yamamoto
  • K. Yokogawa
  • J. Yokoyama
  • T. Yokozawa
  • T. H. Yoon
  • T. Yoshioka
  • H. Yuzurihara
  • S. Zeidler
  • Z. -H. Zhu
  • 全て表示

3
1
開始ページ
35
終了ページ
40
記述言語
英語
掲載種別
DOI
10.1038/s41550-018-0658-y
出版者・発行元
NATURE PUBLISHING GROUP

The recent detections of gravitational waves (GWs) reported by LIGO/Virgo
collaborations have made significant impact on physics and astronomy. A global
network of GW detectors will play a key role to solve the unknown nature of the
sources in coordinated observations with astronomical telescopes and detectors.
Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitational
wave Telescope), a new GW detector with two 3-km baseline arms arranged in the
shape of an "L", located inside the Mt. Ikenoyama, Kamioka, Gifu, Japan.
KAGRA's design is similar to those of the second generations such as Advanced
LIGO/Virgo, but it will be operating at the cryogenic temperature with sapphire
mirrors. This low temperature feature is advantageous for improving the
sensitivity around 100 Hz and is considered as an important feature for the
third generation GW detector concept (e.g. Einstein Telescope of Europe or
Cosmic Explorer of USA). Hence, KAGRA is often called as a 2.5 generation GW
detector based on laser interferometry. The installation and commissioning of
KAGRA is underway and its cryogenic systems have been successfully tested in
May, 2018. KAGRA's first observation run is scheduled in late 2019, aiming to
join the third observation run (O3) of the advanced LIGO/Virgo network. In this
work, we describe a brief history of KAGRA and highlights of main feature. We
also discuss the prospects of GW observation with KAGRA in the era of O3. When
operating along with the existing GW detectors, KAGRA will be helpful to locate
a GW source more accurately and to determine the source parameters with higher
precision, providing information for follow-up observations of a GW trigger
candidate.

リンク情報
DOI
https://doi.org/10.1038/s41550-018-0658-y
arXiv
http://arxiv.org/abs/arXiv:1811.08079
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000455194000016&DestApp=WOS_CPL
URL
http://arxiv.org/abs/1811.08079v1
URL
http://arxiv.org/pdf/1811.08079v1 本文へのリンクあり
ID情報
  • DOI : 10.1038/s41550-018-0658-y
  • ISSN : 2397-3366
  • arXiv ID : arXiv:1811.08079
  • Web of Science ID : WOS:000455194000016

エクスポート
BibTeX RIS