論文

査読有り
2020年7月31日

The biophysical climate mitigation potential of boreal peatlands during the growing season

Environmental Research Letters
  • Manuel Helbig
  • James Michael Waddington
  • Pavel Alekseychik
  • Brian D Amiro
  • Mika Aurela
  • Alan G Barr
  • Thomas Andrew Black
  • Sean K Carey
  • Jiquan Chen
  • Jinshu Chi
  • Ankur R Desai
  • Allison Dunn
  • Eugenie S Euskirchen
  • Lawrence B Flanagan
  • Thomas Friborg
  • Michelle Garneau
  • Achim Grelle
  • Silvie Harder
  • Michal Heliasz
  • Elyn R Humphreys
  • Hiroki Ikawa
  • Pierre-Erik Isabelle
  • Hiroki Iwata
  • Rachhpal Jassal
  • Mika Korkiakoski
  • Juliya Kurbatova
  • Lars Kutzbach
  • Elena Lapshina
  • Anders M Lindroth
  • Mikaell Ottoson Löfvenius
  • Annalea Lohila
  • Ivan Mammarella
  • Philip Marsh
  • Paul A Moore
  • Trofim Maximov
  • Daniel F Nadeau
  • Erin M Nicholls
  • Mats B Nilsson
  • Takeshi Ohta
  • Matthias Peichl
  • Richard M. Petrone
  • Anatoly Prokushkin
  • William Leo Quinton
  • Nigel Roulet
  • Benjamin R.K. Runkle
  • Oliver Sonnentag
  • Ian B. Strachan
  • Pierre Taillardat
  • Eeva-Stiina Tuittila
  • Juha-Pekka Tuovinen
  • Jessica Turner
  • Masahito Ueyama
  • Andrej Varlagin
  • Timo Vesala
  • Martin Wilmking
  • Vyacheslav Zyrianov
  • 全て表示

15
10
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1088/1748-9326/abab34
出版者・発行元
IOP Publishing

Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests-the dominant boreal forest type-and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a similar to 20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 degrees C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (similar to 45 degrees N) and decrease toward the northern limit of the boreal biome (similar to 70 degrees N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.

リンク情報
DOI
https://doi.org/10.1088/1748-9326/abab34
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000578410600001&DestApp=WOS_CPL
URL
https://iopscience.iop.org/article/10.1088/1748-9326/abab34
URL
https://iopscience.iop.org/article/10.1088/1748-9326/abab34/pdf
ID情報
  • DOI : 10.1088/1748-9326/abab34
  • ISSN : 1748-9326
  • eISSN : 1748-9326
  • Web of Science ID : WOS:000578410600001

エクスポート
BibTeX RIS