ヒト膠芽腫細胞U-87における As^{II} とブファジエノライドの併用による殺細胞効果の増強

Enhanced cytotoxicity of arenite combinated with bufadienolides against human glioblastoma cell line U-87

〇袁 博 1 、李 婧美 1 、宫下 振 $-^2$ 、菊地 秀与 1 、玄 美燕 1 、松崎 広和 1 、岩田 直洋 1 、神内 伸也 1 、須永 克佳 1 、坂本 武史 1 、日比野 康英 1 、岡崎 真理 1

OBo Yuan¹, Jingmei Li¹, Shin-ich Miyashita², Hidetomo Kikuchi¹, Meiyan Xuan¹, Hirokazu Matsuzaki¹, Naohiro Iwata¹, Shinya Kamiuchi¹, Katsuyoshi Sunaga¹, Takeshi Sakamoto¹, Yasuhide Hibino¹, Mari Okazaki¹

- 1. 城西大院薬、2. 産総研
- 1. Grad. Sch. Pharmaceut. Sci., Josai Univ, 2. AIST

Novel therapeutic approaches are urgently needed to fight glioblastoma in view of its resistance to conventional therapies. Cytotoxicity of trivalent arsenic derivative (arsenite, As^{III}) combined with arenobufagin or gamabufotalin, two active bufadienolide compounds, was investigated in human U-87 glioblastoma cells. Synergistic cytotoxicity with upregulated intracellular arsenic levels was observed when treated with As^{III} combined with arenobufagin instead of gamabufotalin. Apoptosis and the activation of caspase-9/-8/-3 was induced by As^{III} and was further strengthened by arenobufagin. The magnitude of increase in the activities of caspase-9/-3 was much greater than that of caspase-8, suggesting that intrinsic pathway played a much more important role in the apoptosis. An increase in the number of necrotic cells along with enhanced LDH leakage and intensified G₂/M phase arrest was observed. A remarkable increase in the expression level of γ H2AX, a DNA damage marker, was induced by As^{III} plus arenobufagin. Concomitantly, the activation of autophagy was observed, suggesting that autophagic cell death associated with DNA damage was partially attributed to the cytotoxicity of As^{III} plus arenobufagin. Suppression of Notch signaling was confirmed in the combined regimen-treated cells, suggesting that inactivation of Jagged1/Notch signaling would probably contribute to the synergistic cytotoxic effect of As || plus arenobufagin. Given that both As || and arenobufagin are capable of penetrating into blood-brain barrier, our findings may provide fundamental insight into the clinical application of the combined regimen for glioblastoma.