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The retinoic acid receptor-related orphan receptor α (RORα) is involved in the regulation of several 
physiological processes, including development, metabolism, and circadian rhythm. RORα-deficient mice 
display profound atherosclerosis, in which hypoalphalipoproteinemia is reportedly associated with de-
creased plasma levels of high-density lipoprotein, increased levels of inflammatory cytokines, and ischemia/
reperfusion-induced damage. The recent characterization of endogenous ligands (including cholesterol, oxy-
sterols, provitamin D3, and their derivatives), mediators, and initiation complexes associated with the tran-
scriptional regulation of these orphan nuclear receptors has facilitated the development of synthetic ligands. 
These findings have also highlighted the potential of application of RORα as a therapeutic target for several 
diseases, including diabetes, dyslipidemia, and atherosclerosis. In this review, the current literature related to 
the structure and function of RORα, its genetic inter-individual differences, and its potential as a therapeutic 
target in atherosclerosis is discussed.
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1. INTRODUCTION

Lipid-soluble signaling molecules, including steroid hor-
mones, lipids, and fatty acids, regulate the expression of target 
genes at the transcriptional level via cytoplasmic or nuclear 
receptors.1) As these receptors act as lipophilic ligand-induced 
transcriptional regulators, they play a central role in the 
mechanism of action of these lipophilic signaling molecules.2) 
Steroid hormones were first recognized as being medi-
ated by nuclear receptors and the action of lipophilic ligand 
molecules.2) Following the cloning of nuclear receptors for 
estrogen and glucocorticoids in the 1980 s, nuclear receptors 
for progesterone, mineralocorticoids, thyroid hormone, and 
vitamin D were cloned.3,4) Based on their amino acid sequence 
homology, these nuclear receptors were defined as a highly 
homologous, structurally similar, and molecularly evolved su-
perfamily.2) Subsequently, homology screening was conducted 
using a synthetic DNA probe corresponding to five amino 
acid residues with extremely high homology in the DNA-
binding region. This process identified retinoic acid receptor α 
(RARα) and retinoid X receptor (RXR) with all-trans retinoic 
acid (RA) and its isomer 9-cis RA as ligands, respectively.5,6) 
Other orphan receptors, such as retinoic acid receptor-related 
orphan receptor α (RORα), were also identified with unknown 
ligands.7,8)

Nuclear receptors have a common structural organization; 
the N-terminal region (A/B domain) is highly variable and 
contains at least one constitutively activated activation func-
tion region 1 (AF-1), whereas the DNA-binding domain (DBD, 
C domain), a short motif responsible for DNA-binding speci-

ficity that contains two highly conserved zinc finger motifs, 
is conserved.9) Between the DBD and ligand-binding domain 
(LBD, E domain) is a less conserved region (D domain) that 
behaves as a flexible hinge between the C and E domains and 
contains the nuclear localization signal, which may overlap 
with the C domain. The characterization of the unliganded or 
liganded domains increases our understanding of the mecha-
nisms involved in ligand binding. The C-terminal region of 
the LBD is the ligand-dependent AF-2.1) Thus, by elucidating 
the commonality and diversity of the structure and function of 
nuclear receptors, a better understanding of physiology is ex-
pected. This may be applicable to the medical field, as ligands 
can be used to target nuclear receptors involved in diseases 
(Fig. 1A).

2. STRUCTURE, DISTRIBUTION, AND FUNCTION 
OF RORS

RORα, also called NR1F1 for orphan monomeric receptors 
of unknown ligands, is a member of the NR1F superfam-
ily of nuclear receptors, including receptors for thyroid and 
steroid hormones, retinoids, and vitamin D.10,11) The RORα 
gene is encoded on human chromosome 15q21–22 and mouse 
chromosome 9.12) It has three subtypes, each of which has a 
unique tissue-specific distribution; RORα is highly expressed 
in the brain, liver, thymus, heart, vessels, testes, and skin,10,13,14) 
whereas RORβ and RORγ are highly expressed in the brain and 
skeletal muscle, respectively.15,16) The tissue-specific distribution 
of ROR subtypes affects the development of these expressed tis-
sues.14) Owing to alternative promoter usage and exon splicing, 
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each ROR gene generates several isoforms that contain a com-
mon DBD and LBD, which differ only in their amino termini.10) 
To date, four RORα isoforms, RORα1–4, have been identified 
in humans, whereas only two isoforms, α1 and α4, have been 
reported in mice.17,18) The human RORβ gene generates only 
the RORβ1 isoform, whereas that of mice appears to express 
two isoforms, β1 and β2.15) Both human and mouse RORγ genes 
generate the γ1 and γ2 (also γt) isoforms.19,20)

Most isoforms have a distinct tissue-specific expression 
pattern, regulate different physiological processes, and af-
fect the expression of different target genes. For example, 
human RORα2 is located in the testis and skin, whereas 
human RORα3 is found exclusively in the testis.21,22) RORα1 
and RORα4 are prominently expressed in the mouse cer-
ebellum, whereas other mouse tissues predominantly express 
RORα4.17,18) Moreover, the expression of RORα4, but not 
RORα1, is highly induced by hypoxia-inducible factor (HIF)-1 
under hypoxic conditions in various cells.23,24) Conditions that 
mimic the effects of hypoxia, including exposure to cobalt 
chloride and the iron chelator deferoxamine, also enhance 
RORα4 expression.25) In addition, RORα1 and RORα4 have 
unique intracellular localization; RORα1 is translocated to 
the nucleus and although RORα4 is primarily translocated to 
the nucleus, it is also partially localized in the cytoplasm.26) 
Furthermore, the transcriptional regulation mechanism of 
Wnt/β-catenin signaling, depending on differences in the N-
terminal domain of the RORα1 and RORα4 isoforms, has 
been clarified.27,28) The N-terminal domain of RORα1 spe-
cifically recognizes and binds to β-catenin, resulting in tran-
scriptional activation via binding to the response elements of 
target genes by RORα1 through β-catenin as a coactivator.27) 
Meanwhile, transcriptional regulation by β-catenin with T cell 
factor (TCF)/lymphoid enhancer factor (LEF) complexes is 
suppressed via binding of RORα1 to β-catenin. In contrast, the 
N-terminal domain of RORα4 has no effect on β-catenin with 
TCF/LEF.28) Although the DBD and LBD are common, the 
transcriptional control function differs greatly depending on 
the difference in the N-terminal, and the role of each isoform 

differs.28) Although most RORα isoforms are under the control 
of different promoters, little is known about the transcriptional 
regulation of their tissue-specific expression (Fig. 1B).

Nuclear receptors activate or inactivate the transcription of 
primary target genes by binding to specific DNA sequences 
known as hormone-responsive elements, which are composed 
of 6-bp sequences from 5′-AGG TCA-3′ or 5′-AGA ACA-3′. 
These sequences are referred to as consensus half-site motifs 
and are arranged as direct, inverted, or everted repeats.29–31) 
As a monomer, nuclear receptor RORα binds to the ROR 
response elements (ROREs) containing a single core half-site 
motif RGGT CA (R; A or G) preceded by a 6-bp A/T-rich 
sequence10) (Fig. 2). RORα is based on one half-site sequence, 
and the presence of dual elements that overlap with other 
hormone response sequences containing two half-sites is ex-
pected.13,32–34) For instance, the RORE of the laminin B1 gene 
overlaps with that of the RA response elements (RAREs) and 
is transcriptionally activated by both RORα and RAR.12,13) In 
addition, the RORE of the CYP7B1 gene overlaps with liver X 
receptor (LXR) response elements (LXREs), resulting in the 
simultaneous transcriptional activation of LXR and repression 
of RORα; hence, the binding of RORα or LXR to the response 
elements functions as a competitor with each of the other 
receptors.32) The LXRE contains a direct repeat motif com-
prising two AGG TCA cores separated by four nucleotides.35) 
Furthermore, owing to the similarity in the binding sequences 
for peroxisome proliferator-activated receptor-γ (PPARγ) and 
RORα, RORα can modulate PPAR signaling by compet-
ing with PPARγ for PPAR response elements (PPREs).33,36) 
The PPRE contains a direct repeat motif comprising two 
AGG TCA cores separated by a single nucleotide.36) Recent 
global transcriptome studies have shown that RORα controls 
lipid homeostasis via the negative regulation of the transcrip-
tional activity of PPARγ, which mediates hepatic lipid me-
tabolism.33) Similarly, the reverse strand of ERBA (REV-ERB), 
which has an amino acid sequence similar to that of RORα, 
binds to ROREs.34) Although REV-ERB has been identified as 
an inactive monomeric receptor with DNA-binding ability, it 
lacks the capacity to activate transcription, instead function-
ing as a repressor of transcription34) (Fig. 2). Moreover, each 
nuclear receptor is dependent on specific DNA sequencing, 
whereas transcription is coordinated by DNA-binding affinity, 
expression level, and the presence or absence of a ligand.14,37)

3. LIGANDS AND MEDIATORS ACTING ON RORα

RORα was initially described as an orphan receptor and 
has long been considered a constitutive activator of transcrip-
tion in the absence of exogenous ligands.12) A recent study 
has crystallized the RORα LBD and revealed the presence of 
cholesterol and cholesterol sulfate in the ligand-binding pocket 
(Protein Data Bank codes: 1N83 and 1S0X).38,39) Further ex-
periments on purified RORα LBDs have shown the presence 
of ligands, such as cholesterol and 7-dehydrocholesterol (also 
provitamin D3), that represent the major ligands in the LBD.40) 
For instance, RORα LBD expressed in insect cells is in a 
liganded form with bound cholesterol, which stabilizes the 
receptor in an agonistic conformation.40) Furthermore, the oxi-
dized form of cholesterol acts as an inverse agonist.40,41) One 
of the 7-oxygenated sterols, 7α-hydroxycholesterol (7α-OHC), 
functions as a high-affinity ligand for RORα isoforms by di-

Fig. 1. Structure of RORα Isoforms, Members of the Nuclear Hormone 
Receptor Superfamily

A. Domain structure of the nuclear receptor. B. Structure of the human 
RORα isoforms. In their isoforms (Protein database accession numbers; RORα1; 
NP_599023, RORα2; NP_599022, RORα3; NP_002934, RORα4; NP_599024), the 
NH2-terminus of each RORα generated by alternative promoter and/or splicing is 
the isoform-specific region, and the COOH-terminus, including the DBD and LBD, 
is the isoform common region. The numbers on the right refer to the total number 
of amino acids in the RORα. RORα, retinoic acid receptor-related orphan receptor 
α; AF-1, activation function region 1; AF-2, activation function region 2; DBD, 
DNA-binding domain; LBD, ligand-binding domain.
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rectly binding to their LBDs, modulating coactivator binding, 
and suppressing the transcriptional activity of the receptors.41) 
7α-OHC serves as a key intermediate in bile acid metabolism, 
and has been shown to modulate the expression of ROR target 
genes.41) Additionally, 25-OHC functions as a low-affinity 
ligand for RORα.40) Interestingly, the expression of cholesterol 
25-hydroxylase, which produces 25-OHC from cholesterol, is 
suppressed by RORα-deficient conditions.42,43) RORα could 
sense 25-OHC and subsequently regulate the expression of 
cholesterol 25-hydroxylase, thereby regulating the synthesis of 
25-OHC.43) Similarly, 24S-OHC also serves as a high-affinity 
ligand for RORα.44) 24S-OHC, also known as cerebrosterol 
owing to its high level in the brain, plays an essential role 
as an intermediate in cholesterol elimination from the cen-
tral nervous system45) and functions as an inverse agonist of 
RORα, decreasing the capacity of RORα to recruit coactiva-
tors when bound to the target gene promoter.44) The expres-
sion of CYP39A1, which selectively metabolizes 24S-OHC, 
is induced by the binding of RORα to the promoter and first 
intron of CYP39A1.46) Thus, RORα is involved in the meta-
bolic regulation of its inverse agonist, 24S-OHC.46) Although 
these oxysterols act as inverse agonists of RORα, they are 
also agonists for LXRs and are involved in gene expression 
regulation.35,47) In addition, vitamin D hydroxy-metabolite, 
made from 7-dehydrocholesterol, acts as an inverse agonist 
of RORα and an agonist for vitamin D receptors (VDR).48,49) 
RORα may competitively bind to and activate ligands for 
VDRs and LXRs, and each of these nuclear receptors senses 
the concentration of common endogenous metabolites47,48,50) 
(Fig. 2). Therefore, it is presumed that transcription is mutu-
ally controlled; however, the complete underlying mechanism 
remains unclear.

Cholesterol depletion in osteosarcoma cells by statins, 

which are inhibitors of 3-hydroxy-3-methylglutaryl (HMG)-
CoA reductase, in low-density lipoprotein (LDL)-free serum 
significantly decreases the transcriptional activity of RORα, 
implying that cholesterol is an endogenous ligand rather than 
merely a structural cofactor.38) In addition, the statin-induced 
reduction in cholesterol levels in hepatocytes with active 
cholesterol synthesis causes RORα target gene expression to 
decrease owing to the attenuation of the RORα transcriptional 
activation in the ligand form.51) Moreover, the ability of RORα 
to activate transcription is attenuated following the suppres-
sion of cholesterol synthesis by azoles acting as inhibitors of 
lanosterol 14α-demethylase (CYP51).52) Mice with hepatocyte-
specific knockout of Cyp51 are characterized by the progres-
sive onset of liver injury with fibrosis.53) Endogenous ligands 
of RORγ, a subtype of RORα, are situated downstream of la-
nosterol and upstream of zymosterol in the cholesterol synthe-
sis pathway; the levels of these ligands are reduced by Cyp51 
knockout.53) The reduction in RORα and RORγ transcriptional 
activity is greater in Cyp51 knockout mice and is correlated 
with their downregulated amino and fatty acid metabolism 
via the transcriptional attenuation of RORα target genes.53) 
Therefore, RORα may also impact transcriptional regulatory 
ability through the action of cholesterol derivatives as ligands. 
However, how nuclear receptors sense differences in the 
concentrations of multiple metabolites and interact with each 
other to activate or suppress the expression of target genes in 
vivo remains to be determined.

The conformational changes that occur following agonist 
binding cause receptors to enter an activated state, which 
induces chromatin remodeling via histone acetylase activity 
and, in turn, facilitates the recruitment of coactivator com-
plexes that increase the transcription of the target gene.54) The 
recruitment of the corepressor complex induces chromatin 

Fig. 2. RORα Transcriptional Regulation System and Its Physiological Functions
RORα binds as a monomer to ROREs containing the RGGTCA (R; A or G) consensus motif preceded by an A/T-rich region. REV-ERB can compete with RORα for 

binding to ROREs. LXR and PPAR bind the LXRE and PPARE as overlaps to RORE, respectively. RORα interacts with coregulators as coactivators or corepressors to 
positively or negatively regulate gene transcription. Certain ligands (including cholesterol, oxysterols, provitamin D3, and their derivatives) can modulate RORα transcrip-
tional activity. RORα is critical in the regulation of several physiological functions and may have a role in various pathologies. RORα and its regulatory networks might 
serve as potential novel targets for therapeutic strategies to intervene in disease processes. RORα, retinoic acid receptor-related orphan receptor α; RORE, ROR response 
element; REV-ERB, reverse strand of ERBA; LXR, liver X receptor; LXRE, LXR response elements; PPAR, peroxisome proliferator-activated receptor; PPRE, PPAR 
response elements.
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compression as well as the suppression of gene expression 
through histone deacetylase activity.55) RORs interact with 
coactivators and corepressors, suggesting that they function 
as activators and repressors of gene transcription.14) During 
RORα-mediated transcriptional regulation, RORs recruit dif-
ferent coactivator complexes when bound to ROREs in the 
promoter region of different genes,56) which suggests that 
their promoter functions play important roles in determining 
which coactivators are recruited by RORs.57) The coregulators 
found within ROR protein complexes include the coactiva-
tors steroid receptor coactivator-1 (SRC-1, NCOA1), SRC-2 
(NCOA2, TIF2, GRIP1), SRC-3 (NCOA3), PPARG coactiva-
tor 1 alpha (PGC-1α, PPARGC1A), cAMP response element-
binding protein (CBP), p300, human immunodeficiency virus 
type 1 (HIV-1) Tat interactive protein (HTATIP, TIP60), and 
β-catenin with the following corepressors: nuclear receptor 
corepressor 1 (NCOR1, N-CoR), NCOR2 (SMRT), receptor 
interacting protein 140 (RIP140), Hairless (HR), cadherin 4 
(CDH4), and neuronal interacting factor X (NIX1)14,57–60) (Fig. 
2). Cell-specific interactions with specific coregulators may 
contribute to the molecular mechanism underlying the distinct 
physiological functions of RORα.57) Members of the p160 fam-
ily containing SRCs were among the first coregulators to be 
cloned, based on their ligand-dependent recruitment to the 
nuclear receptor LBD through three-helical LXXLL (X, any 
amino acid) motifs located in their N-terminal region, and 
conserved leucine-rich motifs in their C-terminal activation 
domain that mediate interactions with additional coregula-
tors.61) Moreover, ligands that affect the interaction between 
these nuclear receptors and coregulators are attracting atten-
tion as drug discovery targets for the treatment of various 
diseases.61) SRCs associate with nuclear receptors in a ligand-
dependent manner to enhance transcriptional activity via the 
stabilization of the basic transcriptional complex by binding 
indirectly to DNA and play important roles in a variety of 
physiological processes.61) The role of RORs in the regulation 
of glucose metabolism is characterized by the loss of SRC-2 in 
mice, leading to a phenotype similar to von Gierke’s disease, 
which is associated with severe hypoglycemia and abnormal 
glycogen accumulation in the liver.62) Furthermore, the phe-
notypes observed in global or liver-specific SRC-2 knockout 
mice include hypoglycemia in the fasted state and reduced 
expression of hepatic glucose 6-phosphatase (G6PC) in both 
fed and fasted states.62) SRC-2 regulates G6PC expression 
by coactivating RORα at an evolutionarily conserved RORE 
sequence of the proximal G6PC promoter.62,63) Thus, the in-
teraction of RORα with mediators and transcription factors is 
important in regulating the degree of gene expression.

4. PHENOTYPE OF RORα-DEFICIENT MICE

The staggerer (sg) mutation arose spontaneously in a stock 
of obese mice and is recognized by phenotypes characteristic 
of cerebellar lesions; the sg cerebellum is significantly smaller 
in obese mice than in control mice, containing fewer of each 
principal cell type.64) After 35 years of analysis, the sg muta-
tion has been identified by positional cloning as a putative null 
allele of RORα.17) Mutant mice contain a 6.4-kb intragenic 
deletion that removes the fifth exon, encoding the start of the 
LBD; loss of this exon predicts a frameshift in the mRNA, 
resulting in a premature stop codon. Reverse genetics analysis 

of RORα-null mice created by gene targeting produced phe-
notypes essentially identical to sg.65,66) RORα expression in 
the brains of adult mice is restricted to a few specific neuron 
classes, including the Purkinje cells of the cerebellum, and is 
temporally regulated during postnatal development.13,67) More-
over, the RORα gene is disrupted in sg mice, which show a 
cell autonomous defect in the development of Purkinje cells.17) 
Interestingly, further indications for a link between RORα 
and autism arose from a recent study demonstrating that mi-
croRNA-137, which has been implicated in autism and schizo-
phrenia, targets the 3ʹ-untranslated region (UTR) of RORα.68)

In other pathophysiological conditions, sg mice have 
enhanced susceptibility to atherosclerosis and hypoalphali-
poproteinemia, displaying accelerated vascular lesion de-
velopment in response to a proatherogenic diet.69) Sg mice 
also exhibit decreased fasting blood glucose levels, mildly 
improved glucose tolerance, increased insulin sensitivity, and 
RORα involvement in metabolic diseases.70) In addition to 
increased ischemia-induced angiogenesis in sg mice, RORα 
expression is observed in vascular cells, whereas RORα ex-
pression is decreased in atherosclerotic plaques.21,71,72) RORα 
also regulates gene expression in obesity-associated inflam-
mation; sg mice fed a high-fat diet exhibit reduced adipos-
ity and hepatic triglyceride levels compared with wild-type 
littermates and are resistant to the development of hepatic 
steatosis, adipose-associated inflammation, and insulin re-
sistance.73) Further, RORα regulates key physiological path-
ways, is involved in pathogenic processes, regulates lipid and 
glucose metabolism, and is believed to play a protective role 
against the development of atherosclerosis.14) Indeed, cerebral 
ischemia/reperfusion (I/R) injury is associated with greater 
cerebral infarct size, brain edema, and cerebral apoptosis in 
sg mice compared with those in wild-type mice. In contrast, 
this effect is reduced in transgenic mice with brain-specific 
RORα overexpression, compared to nontransgenic controls.74) 
Furthermore, sg mice subjected to myocardial I/R injury show 
a significantly increased myocardial infarct size, myocardial 
apoptosis, and exacerbated contractile dysfunction compared 
with wild-type mice.75) Moreover, mice with cardiomyocyte-
specific RORα overexpression are less vulnerable to myocar-
dial I/R injury than the control mice.75) In a recent study on 
human-induced pluripotent stem cell-derived cardiomyocytes 
infected in vitro with severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), RORα expression was reported 
to be upregulated, which was speculated to be a cardioprotec-
tive response to direct viral invasion.76)

Stenosis of blood vessels owing to atherosclerosis is a typi-
cal condition caused by modern unhealthy lifestyles (fat-rich, 
high-calorie diet, lack of exercise, and smoking). However, 
this condition also occurred in ancient human social groups.77) 
This phenomenon may be caused not only by environmental 
factors, such as unhealthy eating habits, but also by certain 
genetic factors.

5. RORα TARGET GENES

To identify atherosclerosis through metabolic disease-relat-
ed genes, it is important to perform a forward genetics search 
based on the pathological conditions of atherosclerosis and 
reverse genetics evaluation based on the functional deletion of 
a specific gene. Based on transcriptional regulation analysis 
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using an RORα functional deletion, target genes of RORα 
have been explored.

RORα regulates the circadian expression of several clock 
genes, including circadian locomotor output cycles kaput 
(CLOCK), aryl hydrocarbon receptor nuclear translocator-like 
protein 1 (ARNTL)/brain and muscle ARNT-like 1 (BMAL1), 
neuronal PAS domain protein 2 (NPAS2), and cryptochrome 
circadian regulator 1 (CRY1). Moreover, RORα competes 
with REV-ERBs for binding to their shared ROREs on cer-
tain clock genes, leading to a circadian pattern.78–80) There-
fore, RORα influences the period length and stability of the 
circadian rhythm.81,82) Increasing evidence regarding how 
the cholesterol/oxysterol pathways are intertwined with the 
circadian clock has been reported. The identified key contact 
points include different forms of the RORs, REV-ERBs, and 
LXRs.83,84) These receptors are regulated by sterols/oxysterols 
and the circadian clock, representing a complex interplay be-
tween sterol metabolism and the clock.83,84) Moreover, RORα 
binds to the ROREs of genes involved in lipid metabolism to 
regulate genes such as apolipoprotein A1 (APOA1), APOA5, 
and APOC3, the key regulators of sterol regulatory element-
binding protein-1c (SREBP1c), and the reverse cholesterol 
transporters, ATP binding cassette subfamily A member 1 
(ABCA1) and ABCG1.85–87)

Macrophages from RORα-deficient mice overexpress in-
terleukin (IL)-1β following lipopolysaccharide stimulation, 
suggesting an anti-inflammatory role for RORα.88) Moreover, 
RORα deletion in human monocytic cells causes an increase 
in the basal expression of a subset of nuclear factor-kappa B 
(NF-κB)-regulated anti-inflammatory genes, including IL-1β, 
IL-6, and tumor necrosis factor (TNF), both at the transcrip-
tional and translational levels.89) RORα is a negative regulator 
of the inflammatory response, functioning via NF-κB inhibi-
tion through NF-κB inhibitor α (IκBα) activation by RORα 
via an RORE in the IκBα promoter.90) Furthermore, RORα 
is involved in TNF and IL-6 production upon macrophage 
activation and plays a key role in M1/M2 polarization of mu-
rine Kupffer cells, which are liver-resident macrophages.91,92) 
Kupffer cells with RORα deletion have the proinflammatory 
M1 phenotype, as the shift to anti-inflammatory M2 requires 
RORα activation.92) Additionally, RORα reduces lipid droplets 
via the upregulation of neutral cholesterol ester hydrolase 1 
(NCEH1) in macrophages, suggesting that RORα functions to 
protect against atherosclerosis.93,94)

In brain endothelial cells, claudin domain containing 1 
(CLDND1), which is involved in tight junction formation, 
is regulated at the transcriptional level by RORα binding to 
cholesterol derivatives as ligands and the myeloid zinc finger 1 
transcription factor, as well as at the post-transcriptional level 
by microRNA-124.51,95–97) Moreover, decreased CLDND1 ex-
pression enhances vascular permeability, which consequently 
increases the risk of cerebellar hemorrhage.98,99)

Within the liver, RORα specifically functions as a positive 
modulator of genes encoding phase I and phase II proteins, 
which are involved in the metabolism of lipids, steroids, 
and xenobiotics, such as sterol 12α-hydroxylase (CYP8B1), 
sterol 7α-hydroxylase (CYP7B1 and CYP39A1), aroma-
tase (CYP19A1), and sulfotransferase family 2A member 1 
(SULT2A1); these enzymes catalyze the metabolism of oxy-
sterols, such as cytotoxic compounds.32,46,100–103) In addition, 
through the phosphorylation of its serine 100 residue, RORα 

activity has been integrated into the constitutive androstane 
receptor (CAR) and RXR heterodimer for the phenobarbital-
inducible CYP2B6 gene in the formation of the coregulator 
complex involved in metabolizing some xenobiotics, such as 
anticancer drugs.104,105) Various cholesterol hydroxylases con-
tribute to cholesterol metabolism in extrahepatic tissues by 
converting cellular cholesterol to circulating oxysterols, which 
regulate diverse physiological processes.32,46,93,106) SRC-2 func-
tions as a coactivator with RORα to modulate the expression 
of the essential gluconeogenesis genes G6PC and phospho-
enolpyruvate carboxykinase (PCK1), which are the rate-lim-
iting enzymes that control glucose release into plasma.62,107)

As above, research has been conducted with the aim of 
developing a new treatment for atherosclerosis by understand-
ing the RORα transcriptional network, which has an antiath-
erosclerotic effect. Specifically, a global search for ROREs as 
high-affinity RORα-binding sites involved in transcriptional 
regulation within the promoter region of human genes and 
gene expression analyses involving both loss-of-function and 
gain-of-function have been performed, identifying target 
genes associated with antiatherosclerosis.46,93,95,107)

6. DRUG TREATMENT OF DISEASES WITH RORα 
SYNTHETIC LIGANDS

Transcriptional conjugating factors in the cell nucleus bind 
to nuclear receptors in a ligand binding-dependent manner.55) 
The transcriptional conjugation inhibitor (corepressor) that 
controls transcription binds to the unbound state of the ligand 
and dissociates owing to ligand binding, after which the tran-
scriptional conjugation activator (coactivator) is acquired.108) 
The role of LXR agonists and cholesterol derivatives in the 
modulation of RORα activity has been discussed in the con-
text of its metabolic role in several pathways. For example, the 
LXR agonist T0901317, a benzenesulfonamide derivative, sup-
presses the ability of RORα chimeric forms to transactivate 
gene expression in a heterologous reporter assay.109) Moreover, 
the LXR agonist modulates and suppresses the activity of 
gluconeogenesis-associated RORα target genes in an RORE-
dependent manner via the SRC-2 coactivator in von Gierke’s 
disease.62) These studies underscore the regulatory crosstalk 
that may occur between LXR and ROR signaling, showing 
that natural products possess overlapping receptor specific-
ity that opposingly regulates each nuclear receptor-dependent 
pathway.37) In addition, the amide derivative SR1078, from the 
T0901317 scaffold, modulates RORα activity and increases 
coactivator recruitment in a dose-dependent manner.110) 
RORα activation via SR1078 induces M2 polarization through 
Krüppel-like factor 4 (KLF4) gene regulation in macrophages, 
effectively protecting against nonalcoholic steatohepatitis 
(NASH).92) This activation also promotes the removal of ac-
cumulated cholesterol, which is the cause of atherosclerosis, 
by regulating lipid metabolism-related genes.46,92,93) SR1078 
ameliorates renal dysfunction and damage in a renal I/R 
injury mouse model; thus, RORα is a potential endogenous 
protector against renal I/R injury.111) Moreover, treatment of 
an autistic mouse model with SR1078 reduces repetitive be-
havior.112) The thiourea derivative JC1-40, which is a RORα 
agonist, protects against oxidative stress through induction of 
the antioxidant enzymes, superoxide dismutase 2 (SOD2) and 
glutathione peroxidase 1 (GPX1) and attenuates the methio-
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nine-choline deficient diet-induced NASH in mice.113) The se-
lective and specific RORα inverse agonist, SR3335, suppresses 
gluconeogenesis-associated RORα target gene expression and 
decreases blood glucose levels in a diet-induced obesity mouse 
model.114) The inverse agonist SR1001 suppresses RORα and 
RORγt, attenuates Th17 differentiation and insulitis by inhibit-
ing IL-17A production in a mouse model of type 1 diabetes. 
SR1001 also attenuates ROR target genes involved in hepatic 
gluconeogenesis and prevents hyperglycemia.107,115,116) Finally, 
RS-2982 is an RORα agonist that increases the expression of 
microRNA-122 as an RORα target in mouse livers. Mice treat-
ed with RS-2982 and fed a high-fat or atherogenic diet showed 
reduced hepatic lipotoxicity, liver fibrosis, and body weight 
compared to mice administered the vehicle.117) Hence, the 
regulation of RORα activity may be a therapeutic strategy for 
treating several conditions, including atherosclerosis, NASH, 
type 2 diabetes, autoimmune disorders, and autism. In addi-
tion, gene regulation and polymorphisms of human RORα are 
associated with the development of many conditions, including 
type 2 diabetes,118) multiple sclerosis,119) cerebellar ataxia,120) 
autism,121) bipolar disorder,122) Alzheimer’s disease,123) and the 
severity of coronavirus disease 2019.76) Changes in the func-
tion, RNA stability, and target gene expression of RORα have 
been reported owing to various polymorphisms in the struc-
ture, 3ʹ-UTR, and response sequences of RORα, respectively. 
Mutations in these nucleotide sequences may also affect indi-
vidual differences in human diseases.

7. CONCLUSION

In summary, RORα is involved in the regulation of several 
physiological processes, including development, metabolism, 
and circadian rhythm. Furthermore, RORα is an important 
regulator of plasma cholesterol levels and is involved in lipid 
homeostasis. For example, apolipoprotein expression increases 
high-density lipoprotein (HDL) levels and CYP expression 
activates oxysterol metabolism by RORα activation. RORα-
deficient mice are more likely to develop atherosclerosis 
through lowered HDL levels, increased inflammatory cytokine 
expression, and I/R-induced damage. The transcriptional ac-
tivity of RORα is promoted by the endogenous ligand choles-
terol derivatives, which promote the formation of transcription 
initiation complexes. However, RORα transcriptional activa-
tion is attenuated when intracellular cholesterol is reduced by 
lipid-lowering drugs that inhibit cholesterol synthesis, such as 
statins. Research has been conducted with the aim of develop-
ing a new treatment for atherosclerosis by understanding the 
RORα transcriptional network, which has an anti-atheroscle-
rotic effect. Thus, the recent characterization of endogenous 
ligands, mediators, and initiation complexes associated with 
the transcriptional regulation of these nuclear receptors has fa-
cilitated the development of synthetic ligands and highlighted 
the potential of application of RORα as a therapeutic target for 
several diseases. However, how nuclear receptors sense differ-
ences in the concentrations of multiple metabolite ligands and 
interact with each other to activate or suppress target gene ex-
pression in vivo remains to be determined. This review sheds 
light on the current literature related to the structure and func-
tion of RORα, its genetic inter-individual differences, and its 
potential as a therapeutic target in atherosclerosis.
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