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The multivariate t-distribution with multiple degrees of freedom 

 

Abstract: A multivariate t-distribution is introduced such that each element of a normal 

vector is scaled by using a chi-square that is independent of the chi-squares for the 

remaining elements of the vector with possibly distinct degrees of freedom. The integral and 

series expressions of the probability density function are given. The absolute values of the 

covariances/correlations and Mardia’s multivariate measure of kurtosis are shown to be 

smaller than those for the corresponding usual multivariate t with a common chi-square. An 

extended multivariate t with common and unique chi-squares is also proposed, which takes 

a form like factor analysis. 

 

Keywords: Student t, independent chi-squares, series expression, Mardia’s multivariate 

kurtosis, factor analysis, multivariate gamma. 

 

   



2 

 

1. Introduction 

Student’s t-distribution is one of the non-normal distributions that have been most 

intensively investigated by researchers in spite of the non-existence of higher-order 

moments under finite degrees of freedom. Another intractable aspect is associated with the 

various definitions of the multivariate versions (see e.g., Kotz & Nadarajah, 2004, Chapters 

4 and 5). Currently, the most familiar multivariate t-distribution (see Kotz & Nadarajah, 

2004, Equation (1.1)) can be traced back to Cornish (1954) (see also Gupta, 2003, p. 360). 

The p-dimensional vector Z following this distribution is denoted by St( , , )Z μ Σ , 

whose probability density function (pdf) at Z z  is 

( )/2T 1

/2 1/2

{( ) / 2} ( ) ( )
( | , , ) 1

( ) ( / 2) | |

p

p p

p
t




  

     
    

z μ Σ z μ
z μ Σ

Σ , 

where   is the degrees of freedom (df), which typically takes positive integers but can be 

positive real values; μ  and 
1/2Σ  are the location and scale parameters, respectively with 

1/2Σ  being the symmetric matrix-square-root of positive definite Σ ; and ( )   is the 

gamma function. 

The above distribution when p = 1 gives the pdf of the univariate t: 

( 1)/22
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(1 / 2, / 2)
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where 
2  Σ  when p = 1 and  ( , )    is the beta function. It is well known that 

variable Z following the univariate t denoted by 2St( , , )Z     is derived when 

( ) / /Z X Y     ,                            (1) 

where X follows the normal distribution with mean   and variance 2  i.e.,

2 2
1N ( , ) N( , )X     ; and Y follows the chi-square with   df independent of X. 

denoted by 2 ( )Y   . 
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It is known that the pdf of the above multivariate t for random vector Z is obtained 

when Z and X are replaced by Z and 
T

1( , ..., ) N ( , )p pX XX μ Σ , respectively with 

unchanged 2 ( )Y    independent of X as 

( ) / /Y   Z μ X μ . 

It is also known that its pdf is given by the mixture of the precision matrix i.e., 
1Σ  of the 

multivariate normal with the gamma weight (Stuart & Ort, 1994, Example 5.6; Bishop, 

2006, Equation 2.161; Forbes & Wraith, 2014, Equation (2); Babić, Ley, & Veredas, 2019, 

Equation (5); Kirkby, Nguyen & Nguyen, 2019, Equation (9); 2021, Equation (3.1)). Since 

the mixture expression is typically used to show the pdf in many cases without referring to 

the equation ( ) / /Y   Z μ X μ , the following is summarized for ease of reference, 

where the proof with other proofs for theorems and corollaries, when necessary, will be 

given in the appendix. 

Lemma 1 Let ( | , )p x μ Σ  be the pdf of X = x when N ( , )pX μ Σ ; and 

( | , )g y    be the pdf of Y = y whenＹis gamma distributed with the shape and rate 

parameters   and  , respectively. Then, the pdf of St( , , )Z μ Σ  and its mixture 

expressions 

0
{ | , / ( )} ( | / 2, / 2)d (0 )p cy g y c y c  


   z μ Σ  

with c being an arbitrary constant, are given from ( ) / /Y   Z μ X μ  with 

associated assumptions. 

It is found that the difference of the mixture and explicit pdf expressions is how to use 

the Jacobian / 2( / ) py   in the variable transformation from X to Z. That is, in the former 

case the Jacobian is used to construct a modified normal pdf before the arbitrary constant c 

is introduced while in the latter case it is used to have a modified gamma to be integrated 

out. Note that when c = 1, the chi-square weight i.e., 2( | / 2,1 / 2) ( | )g y g y


    is 

unchanged while 1 /Σ  in the modified ( | , / )p y z μ Σ  is the scaled precision 
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matrix in the mixture expression. When c  , { | , / ( )}p cy z μ Σ  becomes 

( | , )p y z μ Σ  giving the unscaled precision 1Σ  while ( | / 2, / 2)g y    is a scaled 

chi-square or the gamma density with the modified rate parameter / 2 , which seems to 

be usually used in the mixture expression as in the references given earlier among infinitely 

many cases using c. 

Another indeterminacy is due to the transformation of variable Y. For instance, when 

*Y Y  is used, *Y  is chi-distributed with unchanged distribution of 

*( ) / / ( ) / ( / )Y Y     Z μ X μ X μ . More generally, an arbitrary 1  -th 

power of Y ( , 0)       can be used. In other words, *Y  is defined such that 

* *( )Y Y   follows the chi-square with   df . Ogasawara (2021c) defined the 

power-gamma distribution whose pdf is 

 

 

( 1) 1

Power-

1

| |
( | , , ) exp

( )

| |
exp

( )

(0 , 0 , 0 , , 0).

y y
g y y

y
y

y

   


 


    


  


   

 





 


 


             

 

This is the distribution when  -th power of Y follows the gamma with the shape and rate 

parameters   and  , respectively. Note that the chi-square with   df is equal to the 

gamma when / 2   and 1 / 2  . That is, the power-gamma distributed *Y  with the 

pdf Power- ( | / 2,1 / 2, )g y    can be used to have the multivariate t-distribution such that 

*( ) / /Y    Z μ X μ  

In the chi-distributed case, 2  . When 2   , we have the inverse-chi distributed *Y  

with 
*( )Y   Z μ X μ , which gives a convenient property to obtain moments of Z 

since *Y  and X are independent (see Kollo, Käärik & Selart 2021; Ogasawara, 2021c). 

The power gamma with various powers can also be used in the mixture expression as well 

as various scale parameters using c. 

Although the pdf of St( , , )μ Σ  gives a closed-form and transparent expression, we 
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have an intractable property. That is, when Σ  is diagonal or ( 1,..., )iX i p  are 

independently distributed under normality, it can be shown that ( 1,..., )iZ i p  are 

uncorrelated, but mutually dependent due to the common chi-square Y used in 

( ) / /Y   Z μ X μ  (see e.g., Jones, 2002a). 

 

2. The multivariate t-distribution with independent chi-squares 

The usual multivariate t-distribution St( , , )μ Σ  was defined using a single common 

chi-square. On the other hand a modified multivariate t is defined using independent 

chi-squares as follows: 

Definition 1 A random p-vector Z is said to follow the multivariate t-distribution with 

independent chi-squares, when we use a multivariate normal vector 

T
1( , ..., ) N ( , )p pX XX μ Σ  and p independent chi-squared variables  

2 ( ) ( 1,...., )i iY i p    in 
T

1( ,..., )pY YY  independent of X with possibly distinct 

df’s 
T

1( , ..., )p ν  such that 

T
1 1 1 1{( ) / / ,..., ( ) / / }p p p pX Y X Y      Z μ . 

This multivariate t is denoted by St( , , )Z μ Σ ν . 

It is found that when Σ  is diagonal, the marginal distributions in St( , , )μ Σ ν  

become independent, which is not attained by the usual St( , , )Z μ Σ  with   being a 

scalar. Shaw and Lee (2008, Equation (2.6)) considered a similar distribution in the 

bivariate case. Forbes and Wraith (2014, Equation (8)) gave a model using independent 

normal iX ’s as well as independent iY ’s as 

T
1 1 1{( ) / ,..., ( ) / }p p pX Y X Y    Z μ B , 

where B is a fixed matrix which is similar to our model, but is different in that their model 

reduces to the linear combinations of independent univariate t’s with possibly distinct df’s. 

Theorem 1 The integral and expectation expressions of the pdf of St( , , )Z μ Σ ν  

at Z = z are given by 
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T 1

/2 1/2
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where 

/2

/2 1/2 /21

2 1

| | 2 ( / 2)i

p
p

p p i
i i

C
  

    
  

Σ
, 1

1
p

pu uνu  , 

11/2 1 1/2diag{( ) } diag{( ) } p

       zΨ z μ ν Σ z μ ν I  ; 

1/2 1/2 1/2 T
1( ,..., )p   ν ;   indicates Hadamard or elementwise product; pI  is the 

p p  identity matrix; p1  is the 1p   vector of 1’s; and A and B indicate the R pairs of 

the lower and upper endpoints, respectively for the partial product moments of U under 

normality with sectional truncation in the case of a single interval for selection i.e., R = 1 

(see Ogasawara, 2021b): 

1

1 1

( | , )d ( | , )d

=E{ ; , ; ( , ..., ), ( , ..., )}.

r

r

R

p pr

R R

 




 

 
B bν ν

z zA a

ν
z

u u 0 Ψ u u u 0 Ψ u

u 0 Ψ A a a B b b
 

Theorem 1 can be used to have the pdf at Z = z using e.g., a numerical integral. Let 

T 1exp( / 2)d
   ν

z0
u u Ψ u u . Then, it is found that   is the normalizer of a 

special case of the multivariate basic parabolic cylinder (bpc) distribution for 1p  random 

vector U introduced by Ogasawara (2021c), whose pdf when U = u is 

1 T 1exp( / 2)  ν
zu u Ψ u . The multivariate bpc is a multivariate extension of the 

univariate bpc distributions of the first and second kinds (Ogasawara, 2021a, Definitions 1 

and 2). The pdf of the general case of the multivariate bpc is 

T 1

T 1

exp{ ( ) ( ) / 2}

exp{ ( ) ( ) / 2}d





  

  

ν

ν

0

u u d C u d

t t d C t d t
 , 

where d and C are fixed quantities of appropriate sizes. It is seen that in the case of 
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Theorem 1, d = 0 and  zC Ψ . An alternative expression of the pdf in Theorem 1 is 

derived as follows: 

Theorem 2 A series expression of the pdf in Theorem 1 is given by 

T 1exp( / 2)dpC
  ν

z0
u u Ψ u u  

/2 1/2 ( 1)/21

*

1

1 1

| | ( / 2)( )

1 2 1
,

2 !

i

gh

p

p iii
i i

u
gh

p i i
i gg hh

g h gh

u

u

   

 
 




 

    
  

               



  

z

z

u 0 z z

Σ

  

where 
gh z  is the (g, h)th element of 

1 1/2 1 1/2diag{( ) } diag{( ) } p
      zΨ z μ ν Σ z μ ν I   

( , 1,..., )g h p ; 
12 1,

1
*

0 0 1 1

( ) ( ); ( )
p p

p p

i gh gi hi
u u g h g

u u  


 

     

        
u 0




 

( );gh gi hi gi
g h

u   


   is the Kronecker delta; and g h is defined similarly to 

.
g h  

The series expression of Theorem 2 is simpler than that of the general case due to d = 0. 

We have no parabolic cylinder function employed in the series expression since the function 

becomes 1 when its argument is 0 due to d = 0. Theorem 2 can be used to have the pdf of Z 

= z by the numerical method, where   in the infinite series 
12 1,0 0

( ) ( )
p pu u 

 

  

    
u 0




 

is replaced by a finite integer, which is increased until the value of the pdf is unchanged or 

the difference becomes within a reasonably small positive value. 

Corollary 1 The pdf at Z = z of the multivariate t with independent chi-squares is 

expressed by the multiple mixtures of the precision matrix of the multivariate normal density 

for Z using p independent chi-squared or variously gamma-distributed variables: 
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T
1( ,..., ) , 0 ( 1,..., ),p ic c c i p    c  

where ic ’s are arbitrary fixed constants. 

Though the result of Corollary 1 is insightful, the actual computation is obtained by 

those in Theorems 1 and 2 using numerical integral or approximations of the infinite series 

by finite ones, respectively. The next results are immediate consequences of Lemma 1 and 

Corollary 1. 

Corollary 2 The mixture expression of the pdf at Z = z of St( , , )Z μ Σ  and that of 

St( , , )Z μ Σ ν  under sectional truncation using R pairs of selection points A and B 

defined in Theorem 1, which are denoted by ( | , , ; , )pt z μ Σ A B  and ( | , , ; , )pt z μ Σ ν A B , 

respectively, are 

0
( | , , ; , ) { | , / ( ); , } ( | / 2, / 2)d (0 )p pt cy g y c y c   


   z μ Σ A B z μ Σ A B , 

where 

{ | , / ( )}
{ | , / ( ); , }

{ | , / ( )}d

p
p

p

cy
cy

cy

 
 

 



B

A

z μ Σ
z μ Σ A B

x μ Σ x
 

and; 

 
1/ 2 1/2

1

T
1

( | , , ; , ) { | , diag ( / ) diag ( / ); , }

( | / 2, / 2) d

( , ..., ) , 0 ( 1, ..., ),

p p

p

i i ii

p i

t

g y c

c c c i p





  







    




0
z μ Σ ν A B z μ c y ν Σ c y ν A B
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where 



9 

 

1/ 2 1/2

1/2 1/2

1/2 1/2

{ | , diag ( / ) diag ( / ); , }

{ | , diag ( / ) diag ( / )}
,

{ | , diag ( / ) diag ( / )}d

p

p
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B

A

z μ c y ν Σ c y ν A B

z μ c y ν Σ c y ν

x μ c y ν Σ c y ν x

 

 

 
 

respectively. 

Note that Kirkby et al. (2021, Theorem 3.1) used a special case of the result of

( | , , ; , )pt z μ Σ A B  under double truncation i.e., 1A a  and 1B b  when R = 1 and 

c  . 

Theorem 3 The product moments of the multivariate t with independent chi-squares 

are given by 

1

/ 2

1 / 21

{( ) / 2}
E( | , , ) E( | , , )

2 ( / 2)

( 0,1, ...; , 1, ..., ),

i
p

i

k
pkk i i i

p ki
i

i i i

k
Z Z

k k i p

 






 
 



  

k kZ μ Σ ν μ Σ ν μ
 

where E( | , )k kμ X μ Σ  is the k*-th order p-variate product moment of N ( , )pX μ Σ  

with *

1

p

ii
k k


 . 

The mixture expression of the above result under sectional truncation denoted by 

E( | , , ; , )kZ μ Σ ν A B  is given by 

 , , , , 1
E( | , , ; , ) ( | / 2, / 2) d

p

i i ii
g y c




 k k

y c ν A B0
Z μ Σ ν A B μ y , 

where 

1/2 1/2
, , , ,

T
1

{ | , diag ( / ) diag ( / ); , }d

( , ..., ) , 0 ( 1,..., ).

p

p ic c c i p

  

    


Bk k

y c ν A B A
μ z z μ c y ν Σ c y ν A B z

c

 
 

In Theorem 3, 
kμ  may be obtained by e.g., using the moment generating function 

T TM ( )=exp{ ( / 2)}X t t μ t Σt  of N ( , )pX μ Σ . For , , , ,
k
y c ν A Bμ , see Ogasawara 

(2021b). 

Corollary 3 Let 
1 1

T T T T T
1 2 1 1 2 1( , ) , ( ,..., ) , ( ,..., )p p pZ Z Z Z  Z Z Z Z Z  

1 1 2( 1,..., 1; )p p p p p    . Partition 
T T T
1 2( , )X X X , 

T T T
1 2( , )μ μ μ , 
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11 12

21 22

   
 

Σ ΣΣ Σ Σ  and 
T T T
1 2( , )ν ν ν  as for T T T

1 2( , )Z Z Z . Then, the jp -variate 

moments of jZ  when St( , , )Z μ Σ ν  are equal to those when 

St( , , ) ( 1, 2)j j jj j j Z μ Σ ν . 

The covariance and correlation of iZ  and ( , 1,..., ; )jZ i j p i j   are 

{( 1) / 2}{( 1) / 2}
cov( , | )

2 ( / 2) ( / 2)

( 1, 1; , 1,..., ; )

ij i j ji
i j

i j

i j

Z Z

i j p i j

   
 

 

  


 

   

ν
 

and 

{( 1) / 2} 2{( 1) / 2} 2
cor( , | )

2 ( / 2) ( / 2)

( 2, 2; , 1,..., ; ),

j jij i i
i j

i j

i j

Z Z

i j p i j

   
 

 

    


 

   

ν
 

where /ij ij ii jj    . 

 

3. Some comparisons of St( , , )μ Σ ν  with St( , , )μ Σ  and numerical illustrations 

3.1 Covariances and kurtoses 

It is of interest to compare the results of Corollary 3 to those of St( , , )μ Σ . For ease 

of comparison, let 
T

0 0 0( ,..., )v v ν ν  in St( , , )μ Σ ν . Then, Corollary 3 gives 

2
2

0 0 0 0
0 2

00

0

{( 1) / 2} {( 1) / 2}
cov( , | )

2 ( / 2)2 ( / 2)

( 1; , 1,..., ; )

i j ij ijZ Z

i j p i j

    




    
  

  
  

ν
 

and 

2
0 0

0 2
0

0

{( 1) / 2}( 2)
cor( , | )

2 ( / 2)

( 2; , 1,..., ; ).

i j ijZ Z

i j p i j

 




  



  

ν
 

On the other hand, the corresponding results for St( , , )μ Σ  are 
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2 2cov( , | ) E{( / ) | ( )}

{( 2) / 2}
( 2; , 1,..., ; )

2 ( / 2) 2

i j ij

ij ij

Z Z Y Y

i j p i j

    

    
 



 
    

 


 

and 

cor( , | ) /
2 2 2

( 2; , 1,..., ; ).

i j ij ii jj ijZ Z

i j p i j

      
  



 
  

  
 

The last pleasantly simple result cor( , | ) cor( , | )i j i j ijZ Z X X  Σ  is known as a 

general property which holds for elliptical distributions (see e.g., Muirhead, 1982, p. 34). 

The last result is also found to be a special case of the following general case. 

Lemma 2 Let Z be a random variable independent of X and Y with E( ) E( ) 0X Y  , 

which are possibly correlated. Then, the correlation coefficient of ZX and ZY is equal to 

that of X and Y when they exist. 

In Lemma 2, the condition E( ) E( ) 0X Y   is necessary. That is, in the non-central 

case i.e., / /Y Z X  rather than ( ) / /Y   Z μ X μ  when N ( , )pX μ Σ , 

Lemma 2 does not hold unless μ 0 . For the central case, we have the following 

inequalities. 

Result 1 When 0v v , 

0

2
2

2

| cov( , | ) | | cov( , | ) |

{( 1) / 2}
| | | | var{ / | ( )} 0

2 2 ( / 2)

i j i j p

ij ij

Z Z Z Z

Y Y

 

      
 

  

  
      

v v 1

  

and 

0

2

| cor( , | ) | | cor( , | ) |

{( 1) / 2}
| | 1 0

( / 2) {( 2) / 2}

( 2; , 1,..., ; ).

i j i j p

ij

Z Z Z Z

i j p i j

 


 



  

  
      

  

v v 1

 

The equalities hold if and only if 0ij  . 



12 

 

Next, Mardia’s (1970, Equation (3.5)) multivariate non-excess kurtosis 2, p  is 

considered. Note that Mardia’s (1970, Equation (2.19)) multivariate analogue of squared 

skewness is zero. 

Result 2 Using 
T

0 0 0( ,..., )v v ν ν  in St( , , )μ Σ ν  as before, we obtain 

T 1 2
2, 0 0

2 2

1 0

0

( | ) E[{( ) cov ( )( )} | ]

6( )
( 2)

4

( 4).

p

iip
ii

i

p p



 








  

  






Z v Z μ Z Z μ v

 

The corresponding result of St( , , )μ Σ  is 

T 1 2
2,

2 2

2,
1

2 2

2, 2,
1

( 2)( 2)
( | ) E[{( ) cov ( )( )} | ]

4

6( )
( | ) ( 2)

4

6( )
( ) ( ) ( 4).

4

p

iip
ii

p p
i

iip
ii

p p
i

p p

p p

  


  


   








 
   



   


   






Z Z μ Z Z μ

Z 1

X X

 

The factor 6 / ( 4)   in the second term of 2, ( | )p Z v  is the excess kurtosis of 

the usual univariate t, which is obtained by 11
111 /   when p = 1 in the above result 

with ( 2) 3p p    being the non-excess kurtosis under univariate normality. The 

inequality 2, 2,( | ) ( | )p p p   Z Z 1  is expected due to the independent chi-squares used 

in 2, ( | )p p Z 1  rather than a common chi-square. The second equality for 2, ( | )p Z  

shows its positive excess kurtosis with 2, 2,( | ) / ( )p p  Z X ( 2) / ( 4) 1      as 

well as that of 2, 0( | )p Z v , which is again a special case of the general result: 

Lemma 3 Let Y be a random variable independent of arbitrarily distributed X with 

E( ) X μ . Define *( )Y  Z X μ μ . Then, 

4 2 2
2, 2, 2,( ) ( )E( ) / E ( ) ( )p p pY Y   Z X X , 

where 2 2E ( ) {E( )}   , when 2, ( )p  ’s exist. The equality in the inequality holds if and 
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only if 2var( ) 0Y  . 

Note that the equality in the inequality can happen even when var( ) 0Y   as in the 

2-point symmetric distribution about zero with 2var( ) 0Y  . 

 

3.2 Numerical illustrations 

Differences of the pdf’s of St( , , )μ Σ  and St( , , )μ Σ ν  are numerically illustrated 

in this subsection. While St( , , )μ Σ  has the pdf of closed form, the corresponding 

expressions of St( , , )μ Σ ν  are given by the integral and series in Theorems 1 and 2, 

respectively. The latter series is generally ( 1) / 2p p  -fold, which is the number of 

non-duplicated off-diagonal elements of Σ , where the number is reduced by the number of 

zero ij ’s if any. Though this number soon becomes very large as p increases, the 

computation is quite reasonable when p is relatively small e.g., p = 2 and 3. Note that when 

p = 2 giving the bivariate case, the series is uni-fold. 

In actual computation, the infinite series is replaced by a finite one. Our rule is as 

follows. When the sum of current absolute four differences of the series divided by the 

newest value of the series is less than or equal to a constant, computation is stopped. The 

four differences are used considering that consecutive equal two values in similar situations 

(see e.g., Pearson, Olver & Porter, 2015) can happen before convergence. The value ‘eps’ of 

1e-6 = 10-6 or 0 is used in bivariate cases. Note that eps = 0 indicates the largest accuracy 

under machine precision employed. For the integral expression, the R-function ‘cubintegrate’ 

using the method ‘hcubature’ in R-package ‘cubature version 2.04’ (Narasimhan, Koller, 

Johnson, Hahn, Bouvier, Kiêu & Gaure, 2019) is used with the default arguments. 

For comparison of the integral and series expressions, the bivariate cases of 

St( , , )μ Σ ν  with μ 0 , T T T(6, 6) , (6, 12) , (12, 12)ν , 12 0, 0.5, 0.8   

( 11 22 1   ) and T T T T( 2, 2) , ( 2,1) , (1, 1) , (1, 2)    z  are used. Over the 

3 3 4 36    pairs of the pdf’s by the integral and series expressions, the summary 

statistics of the pdf’s by the series when eps = 0 are unchanged by those when eps = 10-6 up 

to the third decimal places both as min = 6.262e-5, median = 1.270e-2, mean = 2.717e-2 and 
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max = 1.304e-1. The user cpu times for the two methods with eps = 0 and 10-6 including the 

common numerical integral are the same i.e., 0.55 seconds up to the second place using intel 

Core: 7-6700 CPU@3.40GHz with the default double precision of the R-language. The 

absolute differences of interest between the pdf’d by the series and the corresponding 

numerical integral when eps = 10-6 give min = 1.230e-10, median = 2.952e-9, mean = 

4.847e-8 and max = 4.193e-7 while when eps = 0, the corresponding absolute differences 

yield min = 1.222e-10, median = 2.754e-9, mean = 4.848e-8 and max = 4.198e-7, which are 

almost the same as those when eps = 10-6 although when eps = 10-6, the required numbers of 

terms in the series i.e., the maximum values of 12u  until convergence over the 36 cases 

give min = 0, median = 16, mean = 15.33 and max = 41, which are much smaller than the 

corresponding values when eps = 0 i.e., min = 0, median = 28.5, mean = 28.0 and max = 81. 

When we look at the last set of results, eps = 10-6 may be the better choice. However, recall 

that eps = 10-6 does not save the cpu time up to the second place over eps = 0. Over all, the 

series expressions of the pdf of St( , , )μ Σ ν  with eps = 10-6 or 0, seem to give reasonable 

results as long as in similar situations as above. 

Based on these results, comparisons of the bivariate pdf’s of St( , , )μ Σ  with 

6, 9, 30   and St( , , )μ Σ ν  with T T T(6, 6) , (2, 16) , (30, 30)ν  are made using the 

series expression with eps = 0 for St( , , )μ Σ ν , where 9   in St( , , )μ Σ  is the mean of 

1 2   and 2 16  . Note that Student t with 2 df has a finite mean and an infinite 

variance (for this distribution, see Jones, 2002b). The 30 df in   and ν  is employed to 

give cases similar to normal variables in a practical sense. The same values of μ  and Σ  

as before are used. 

Each of Figures 1 to 3 shows 3 pairs of the contour plots when 12 0, 0.5, 0.8   from 

left to right under different conditions of   and ν  over the figures. In Figure 1, 

T(6, 6)ν  when 12 0   seems to yield a relatively squared shape over that of 6  . It 

is of interest to find that when 12 0.8  , the contour of T(6, 6)ν  has valleys in the 

north-west and south-east slopes. When we look at the apexes of the contours, they give 

unsmooth shapes e.g., an octangle in the case of 12 0   and T(6, 6)ν , which is due to 
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an approximation using equally spaced 231  points in the grid of 1 3 (0.2) 3Z    and 

2 3 (0.2) 3Z   . In Figure 2, the three pdfs of different df’s i.e., T(2, 16)ν  are not 

exchangeable with respect to 1Z  and 2Z  while all the 15 remaining pdf’s are 

exchangeable, which is due to 11 22   in St( , , )μ Σ  and 1 2   as well as 11 22   

in St( , , )μ Σ ν  each when 1 2  . Figure 3 gives the cases with 30   or 

T(30, 30)ν . It is seen that the valleys found in the pdf’s when T(6, 6)ν , and 

T(2, 16)ν  in Figures 1 and 2, respectively each with 12 0.8   disappear. Three pairs 

of the pdf’s in Figure 3 are almost indistinguishable. This corresponds to the summary 

statistics of the absolute differences of the pdf’s at the 231  points. For instance, when 

12 0.8   in Figure 2, they are min = 1.4e-7, median = 2.1e-3, mean = 6.1e-3 and max = 

4.4e-2 while the corresponding values in Figure 3 are min = 0.0, median = 3.0e-4, mean = 

9.6e-4 and max = 5.7e-3. These values indicate the convergence to the common normal 

density of N ( , )p μ Σ  when the df’s in St( , , )μ Σ  and St( , , )μ Σ ν  go to infinity. 

 

4. The multivariate t-distribution with patterned chi-squares 

The bivariate/multivariate t-distributions with common and uncommon chi-squares 

have been given by Bulgren, Dykstra and Hewett (1974, Equation (1.1)), Jones (2002a, 

Equation (2)), and Shaw and Lee (2006, Equation (3.6); 2008, Equations (2.1) and (2.6)) 

(for reviews, see Nadarajah & Kotz, 2004; Nadarajah & Dey, 2005). The following 

multivariate t is a generalized one including St( , , )μ Σ  i.e., the usual multivariate t, 

St( , , )μ Σ ν  introduced in Section 2 and the distributions given by the above authors as 

special cases. Note that in Jones (2002a), an uncorrelated normal vector with 

common/uncommon chi-squares is considered. 

Definition 2 A random p-vector Z is defined to follow the multivariate t-distribution 

with patterned chi-squares using a multivariate normal vector 
T

1( , ..., )pX XX  

N ( , )p μ Σ ; a p q  matrix Λ  for a 0/1 pattern; q independent chi-squared variables 

T
1( ,..., )qF FF  with possibly distinct df’s 

T
1( , ..., )qn nn , whose partial sums are 
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used for 
T

1( ,..., )pY YY  as Y ΛF ; and 

T
1 1 1 1{( ) / / , ..., ( ) / / }p p p pX Y X Y      Z μ , 

where 
T

1( , ..., )p  ν Λn . This multivariate t is denoted by St( , , , )Z μ Σ Λ n . 

 

Using our notation, Jones’ (2002a, Equation (2)) bivariate t is given by 

T
1 1 1 2 1 2 1 2{ / / , / ( ) / ( )}X F n X F F n n  Z  with 2 2N ( , )X 0 I , 

when   1

2

1 0
1 1

n
n

   
 

Λn . Jones (2002a, Equations (12) and (13)) suggested multivariate t 

distributions: 

T
1 1 1 2 1 2 1 2 1 1{ / / , / ( ) / ( ) , ..., / ( ... ) / ( ... )}p p pX F n X F F n n X F F n n      Z  

and T
1 1 1 2 1 2 1 2 1 1{ / / , / ( ) / ( ) , ..., / ( ) / ( )}p p pX F n X F F n n X F F n n    Z  

each with N ( , )p pX 0 I . It is found that these two models are derived when 

1

2

1 00 0
1 10 0

1 1 1 1 p

n
n

n

  
     

      

Λn







 and 

1

2

1 0 0 0
1 1 0 0

1 0 0 1 p

n
n

n

  
     

      

Λn







, respectively. Jones (2002a, 

p.170) also suggested adding independent iY ’s for Z in the square roots of the 

denominators of the above equations. These modifications can be easily employed by 

adapting Λ  and n . 

Note that Y ΛF  is similar to the factor analysis model, where Λ  is a factor 

pattern/loading matrix and F is the vector of common and unique factors. It is seen that 

Jones’ first multivariate model has 1p   common factors (chi-squares) 1 1, ..., pF F   and 

a single unique factor pF  while the second model has a single common factor 1F  and 

1p  unique factors 2 , ..., pF F  yielding a one-factor model in factor analysis. Note that in 

our case the elements of Λ  are restricted to 0 or 1 to form univariate marginal 

t-distributions. 

Theorem 4 The integral expression of the pdf of St( , , , )Z μ Σ Λ n  at z is given by 
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where 

  /2/2 1/2 1 1

2 1
1 /

(2 ) | | 2 ( / 2)i

q
p q

q i np i i
i

C
n


  


 Σ

 and 

11/2 1 1/2 1 1diag{( ) } diag{( ) } ( )p

          z zΩ z μ ν Σ z μ ν Ψ I  . 

It is found that the pdf is not given by the normalizer of the multivariate bpc. Some 

numerical method is required for actual computation. 

Corollary 4 The pdf of St( , , , )Z μ Σ Λ n  at z is expressed by the multiple 

mixtures of the precision matrix of the multivariate normal density using q independent 

chi-squared or variously gamma-distributed variables: 

 

 

2

1/2 1/2

1

1/2 1/ 2

1

T
1

{ | , diag ( / ) diag ( / )} ( | ) d

[ | , diag { ( ) / } diag { ( ) / }]

( | / 2, / 2) d

( ,..., ) , 0 ( 1,..., ),

q

p i ii

p

q

i i ii

q i

g f n

g f n c

c c c i q






  


  







    






0

0

z μ Λf ν Σ Λf ν f

z μ Λ c f ν Σ Λ c f ν

f

c

 
. 

where ic ’s are arbitrary constants. 

While the integral expression in Theorem 4 was complicated, the corresponding 

mixture in Corollary 3 is simple and transparent though for the actual computation of the 

latter, some numerical method is required. 

As addressed earlier in Jones’ model 

1

2

1 0 0 0
1 1 0 0

1 0 0 1 p

n
n

n

  
     

      

Λn







, which is a special 

case of the model of Definition 2, the number of variables ( 1, ..., )iY i p  is the same as 

that for ( 1, ..., )if i p . A model more similar to the one-factor model is given by 
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0

1

1 1 0 0 0
1 0 1 0 0

1 0 0 0 1 p

n
n

n

  
     

      

Λn







, 

where ( 0,1, ..., )iF i p  are used with 0F  for a single “common factor” while 

(1, ..., )iF p  for p “unique factors”. It is to be noted that the dimension size of 

( 0,1, ..., )iF i p  is inflated by 1 over the observable variables ( 1, ..., )iY i p , which is 

a property in the latent variable model like factor analysis while the dimension size in Jones’ 

model is unchanged as in the principal component model when considering minor 

components as well as principal ones. The above model like the one-factor model 

(one-factor model for short) has a property: when ( 1, ..., )iF i p  are missing, we have 

St( , , )μ Σ  while when 0F  is omitted, St( , , )μ Σ ν  with independent chi-squares 

follows. That is, the one-factor model is situated between these two models. Note also that 

Jones’ above model is obtained when 1F  is removed in the one-factor model. 

Alternative expressions of Corollary 4 for the one-factor model are given as follows: 

Corollary 5 Let 
* T T T

0 1 0( , , ..., ) ( , )pf f f f f f . The pdf of St( , , , )Z μ Σ Λ n  

at z for the one-factor model is expressed by the multiple mixtures of the precision matrix of 

the multivariate normal density using p + 1 independent chi-squared or variously 

gamma-distributed variables: 

 

 

2

1/2 * 1/2 * *

0

1/2 1/2
0 0 0 0

*

0

{ | , diag ( / ) diag ( / )} ( | ) d

| , diag {( ) / } diag {( ) / }

( | / 2, / 2) d

p

p i ii

p p p

p

i i ii

g f n

c f c f

g f n c
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T
1

{ | , diag ( / ) diag ( / )}
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( ,..., ) , 0 ( 0, 1,..., ),

p
pf

p
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p i

g y f n c g f n c f
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where 
0 0 0

( )d ( )d
pf f f

  
    1

y y ; and ic ’s are arbitrary constants. 

The last expression of Corollary 5 is associated with the following result. 

Result 3 In the one-factor model, the joint density of 0i iY F F   at 

( 1,..., )iy i p  is 

 

 

2 2

T
0

0

min( )

0 0 0 010

T

( )/2

0

min( ) ( /2 ) 1 ( /2 ) 1 0
0 0 010

( | ) ( | )d

exp( / 2)

2 ( / 2)

( 1)
( ) exp d .

2

p

i

p

i ii

p

pn

ii

pn n
ii

g y f n g f n f

n

p f
f y f f

 





 









    
 







y

1 n

y

1 y

 

where 1min( ) min{ , ..., }py yy  and T
1( , ..., )pn nn . 

The expression in Result 3 taking a form of convolution for the dependent chi-squares 

( 1,..., )iY i p  is obtained by the variable transformation from 1( , ..., )pF F TF  to 

1( , ..., )pY Y TY  with unchanged common 0F  and unit Jacobian (for the remaining part 

of the proof see the appendix). Alternatively, it is immediately derived by noting the local 

(conditional) independence of ( 1, ..., )iY i p  when 0F  is given, as was used in 

Corollary 5. Local independence is a typical assumption employed in latent variable models 

e.g., the item response model with a random variable for the ability parameter (see e.g., 

Bock & Aitkin, 1981) and the exploratory factor analysis model under normality (see e.g., 

Ogasawara, 2016). 

The joint distribution of ( 1,..., )iY i p  in Result 3 is seen as a multivariate 

chi-square with multiple df’s. It is well known that the Wishart is a multivariate version of 

the chi-square, where both distributions have single df’s. Furman (2008, Definition 2.1) 

gave the multivariate distribution corresponding to Result 3 using p + 1 independently 

distributed variables. A variation of Result 3 is the case of Jones’ one-factor like model with 

1 0Y F  and 0 ( 2, ..., )i iY F F i p   , which gives the joint density without integral 
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A generalized version of Result 3 may be obtained for the model of Definition 2 with 

patterned chi-squares. In this case, when the number q of independent chi-squares is greater 

than p as in the one-factor model, generally the ( )q p -fold multiple integral with the 

range of integral giving 0 ( 1,..., )iy i p   is required while when q p , no integral is 

used. An example of the latter case of q = p is found in Jones’ (2002a) another multivariate t 

with 
1

( 1, ..., )
i

i jj
Y F i p


   as mentioned earlier, where only pF  is the “unique 

factor” with the remaining ( 1, ..., 1)iF i p   being the “common factors”. It is seen that 

the joint distribution of ( 1,..., )iY i p  in this model is a special case of the multivariate 

gamma given by Mathai and Moschoupoulos (1992, Theorem 1.1), where independent p 

gammas are replaced by independent p chi-squares 

 

Appendix 

Proof of Lemma 1 

The pdf of the joint distribution of X and Y is given by 

( | , ) ( | / 2,1 / 2)p g y x μ Σ . Use the variable transformation 

( ) / /Y   Z μ X μ  with unchanged Y. Noting that ( ) /y   x μ z μ  and 

the Jacobian is 
/2

1
d /d ( / )

p p
i ii

x z y 


 , the pdf of Z is given from the joint pdf of Z 

and Y, when Y is integrated out: 

/2

0
{( ) / | , } ( | / 2,1 / 2)( / ) dp

p y g y y y   


  z μ μ μ Σ  
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where the variable transformation * /y y c  is used. Redefining *y  as y gives the 

mixture expression of the pdf of Z. 

On the other hand, the actual expression of the pdf is given by the above intermediate 

result as 

/2

0

T 1

/2 1/20

/2

( / | , ) ( | / 2,1 / 2)( / ) d

1 ( ) ( / )( )
exp

(2 ) | | 2

( | / 2,1 / 2)( / ) d

p
p

p

p

y g y y y

y

g y y y

   




 











  
  

 






z μ μ Σ

z μ Σ z μ

Σ  

T 1

/2 1/20

( /2 ) 1 /2

/2

1 ( ) ( / )( )
exp

(2 ) | | 2

( / )
exp d

2 ( / 2) 2

p

p

y

y y y
y















  
  

 

     


z μ Σ z μ

Σ
 

( ) / 2
T 1

/ 2 /2 1/ 2

( ) / 2
( ) / 2 1 T 1

0

T 1

{( ) / 2} 1 ( ) ( )
1

(2 ) 2 ( / 2) | | 2

1 ( ) ( )
1

{( ) / 2} 2

1 ( ) ( )
exp 1 d

2

p

p

p
p

p

y

p

y y








  

 



 



  



             

            
        
   



z μ Σ z μ

Σ

z μ Σ z μ

z μ Σ z μ

 



22 

 

( ) / 2
T 1

/2 / 2 1/2

( ) / 2T 1

/2 1/ 2

{( ) / 2} 1 ( ) ( )
1

(2 ) 2 ( / 2) | | 2

{( ) / 2} ( ) ( )
1 ,

( ) ( / 2) | |

p

p

p

p

p

p








  


  

 

 

             

    
    

z μ Σ z μ

Σ

z μ Σ z μ

Σ

 

which is the required result. 

 

Proof of Theorem 1 

The pdf of the joint distribution of X and Y is 
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  is the pdf of 2 ( ) ( 1, ...., )i iY i p   . Define 

1/2 1/2 1/2diag ( / ) diag ( )diag ( ) Y ν Y ν , where 
1/2 1/2 1/2

1diag ( ) diag( ,..., )pY Y  Y  

and 
1/2 1/2 1/2

1diag ( ) diag( ,..., )p ν . Use the variable transformation from X to 

1/2diag ( / )( )  Z Y ν X μ μ  with unchanged Y and the Jacobian 

1 1

d

d

p p
i i

i ii i

x y

z  

  . Then, noting that 
1/2diag ( / )( )  x μ y ν z μ  with 

1/2 1/2 1diag ( / ) {diag ( / )} y ν y ν , the pdf of the joint distribution of Z and Y 

becomes 
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The pdf of Z is given by the above result, when Y is integrated out over its distribution. Let 
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. Use the variable transformations 

( 1,..., )i iU Y i p   with T
1( ,..., )pU UU  and the other notations defined similarly. 

Then, the pdf of Z is given as 
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1/2 1/2 1/2 T

1( ,..., )py yy . The expression using the expectation is given by the 

definition of ( | )p   . 
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Proof of Theorem 2 

Use the variable transformations:
2 / 2ii
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Σ , the required 

result follows. 
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Proofs of Corollary 1 

Proof 1 In the proof of Theorem 1, moving the Jacobian forward, the pdf becomes 
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where 

1/2 1/2 1 1/2 1 1/2{diag ( / ) diag ( / )} diag ( / ) diag ( / )   y ν Σ y ν y ν Σ y ν , 

is the precision matrix in 
1/2 1/2N { ,diag ( / ) diag ( / )}p

 μ y ν Σ y ν . 

Noting that 2 ( | ) ( | / 2,1 / 2) ( 1, ..., )i i i ig y g y i p


   and using the variable 

transformations 
* / (0 ; 1,..., )i i i iy y c c i p      as in Lemma 1, the redefinition of 

*
iy  as ( 1, ..., )iy i p  gives the remaining result. 

Proof 2 When ( 1, ..., )i iY y i p   are given,

T
1 1 1 1{( ) / / , ..., ( ) / / }p p p pX y X y      Z μ  is found to be a scaled X μ , 

where each i iX   is multiplied by 1 / / ( 1, ..., )i iy i p  , Then, the pdf of the 

conditional distribution of Z given y becomes 

1/2 1/2{ | , diag ( / ) diag ( / )}p
 z μ y ν Σ y ν  
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Since independent 2 ( ) ( 1, ..., )i iY i p    are also independent of X, we obtain the pdf 

 2

1/2 1/2

1
{ | , diag ( / ) diag ( / )} ( | ) d

p

p i ii
g y


 
  

0 z μ y ν Σ y ν y , 

giving the first result. The remaining result is given as in Proof 1. 

 

Proof of Theorem 3 

Recall that 

T
1 1 1 1{( ) / / , ..., ( ) / / }p p p pX Y X Y      Z μ , 

where 2 ( ) ( 1, ...., )i iY i p    independent of X. Employ the variable transformations 

* 1 / ( 1, ...., )i iY Y i p  . As addressed earlier, *
iY  follows the inverse-chi distribution 

with i  df denoted by * 1( ) ( 1,...., )i iY i p   . Then, we have 

* * T
1 1 1 1{( ) , ..., ( ) }p p p pX Y X Y      Z μ . 

Since *
iY ’s are independent of X, 

* /21

1
E( ) E( | , ) E{ | ( )}i i

p k k
i i ii

Y   


 k kZ X μ Σ , 

where * 1E{ | ( )}ik
i iY    is the ik -th order raw moment of * 1 ( )i iY   , which is 

* 1
/2

{( ) / 2}
E{ | ( )}

2 ( / 2)
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(see Kollo et al., 2021, Lemma 1). These results give the first required one. 

The remaining result of the mixture expression under sectional truncation is given by 

Corollary 2. 

 

Proof of Corollary 3 

The first result is due to the equality of the distribution of N ( , )
jj p j jjX μ Σ  

( 1, 2)j   and the corresponding marginal one of N ( , )pX μ Σ . The remaining results 

are given as follows. Noting that E( | , , ) Z μ Σ ν μ  and using Theorem 3, we have 
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Theorem 3 shows that the variances of iZ  and jZ  are equal to those for the usual 

univariate t (see e.g., Johnson, Kotz & Balakrishnan, 1995, Equation 28.7a) or can also be 

obtained from Theorem 3 as 
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which gives 
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Proof of Lemma 2 

2

2 2

cov( , ) cov( , )E( )
cor( , )

var( ) var( ) var( )E( ) var( )E( )

cov( , )
cor( , ).

var( ) var( )
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XZ YZ X Z Y Z

X Y
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Proof of Result 1 

The inequality for covariances is easily obtained, giving the proof for correlations. The 

second proof for correlations without using the inequality for covariances is given as 
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follows: 
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where the inequality is due to the convex property of the gamma function with 
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when its argument is positive. 

 

Proof of Result 2 
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where 
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1 1,

( ) ( )
p p p p

i j i j j i



   

      is the sum of 2p p  terms with i j . Consequently, we 
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For the corresponding result of St( , , )μ Σ , define 
* */Y Y Y    . Then, 

we obtain 
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Using the above results, we have 

2

2, 2,

2 2

1

( )
2

( | ) ( | )

2 3( )
( 2) 1 ( 2) 2

4 4

2 2
( 2) ( 2) { +2( ) }

4 4

p p p

iip
ii

i

p p
ii jj ij

ii jj
i j

p p p p

p p p p

   

 
 

    
 









         
 

        





Z Z 1

 



30 

 

2( )
22

{ +2( ) } 0,
4

p p
ii jj ij

ii jj
i j

    






 
   

where 0 ( 1,..., )ii i p    are used for the last inequality. 

 

Proof of Lemma 3 

By definition 
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Proof of Theorem 4 

The pdf of the joint distribution of X and F is 

21
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X x μ Σ

x μ Σ x μ

Σ  

Recalling the notation 1/2 1/2 1/2diag ( / ) diag ( )diag ( ) Y ν Y ν  employed earlier, use 

the variable transformation from X to 1/2diag ( / )( )  Z Y ν X μ μ  

1/ 2diag ( / )( )  ΛF ν X μ μ  with unchanged F and the Jacobian 

T

1 1 1

d

d

p p p
i i i

i i ii i i

x y

z    

    λ f
, 

where 
T
iλ  is the i-th row of ( 1,..., )i pΛ . Then, noting that

1/ 2diag ( / )( )  x μ Λf ν z μ , the pdf of the joint distribution of Z and F becomes 
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The pdf of Z is given by the above result, when F is integrated out over its support. Define 
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and use the variable transformation ( 1,..., )i iU F i q   with T
1( ,..., )qU UU . Then, 

the pdf of Z is given as 
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Proof of Corollary 4 

From an equation of the proof of Theorem 4, moving the Jacobian forward, the pdf 

becomes 
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The expression using ic ’s is given in a way similar to that in Corollary 1. 

 

Proof of Result 3 
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 Figure 1. Density contours of the bivariate t−distributions
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 Figure 2. Density contours of the bivariate t−distributions

 with common (upper) / independent (lower) chi−squares 

(Z1 = the horizontal axis, Z2 = the vertical axis, cov = σ12)
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 Figure 3. Density contours of the bivariate t−distributions

 with common (upper) / independent (lower) chi−squares 

(Z1 = the horizontal axis, Z2 = the vertical axis, cov = σ12)

V
iew

 publication stats
V

iew
 publication stats

https://www.researchgate.net/publication/360012628

