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The density of the sample correlations under elliptical symmetry with or without the 

truncated variance-ratio 

 

Abstract: An expression of the joint probability density function (pdf) of the sample 

correlation matrix when increasing the number of variables sequentially under multivariate 

normality is obtained, which also holds for the elliptical distributions (elliptical symmetry). 

The pdf of the sample correlation coefficient, when the associated sample variance-ratio is 

variously truncated, is given under bivariate elliptical symmetry with some moments. It is 

derived that the joint pdf of the sample variance-ratios and correlation matrix under 

multivariate elliptical symmetry with possible truncation for the variance-ratios is 

unchanged irrespective of distinct elliptical distributions. A general condition for 

transformed sample variances and covariances to have unchanged pdf under elliptical 

symmetry is given. 

 

Keywords: stripe truncation, Wishart distribution, elliptical distribution, weighted 

hypergeometric function, intra correlation. 
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1. Introduction 

The distribution of the sample correlation coefficient denoted by R under bivariate 

normality was given by Fisher (1915, p. 516) using a differential expression with the 

bivariate Wishart density. Currently, there are many expressions of the distribution (see 

Johnson, Kotz & Balakrishnan, 1995, Chapter 32, Section 2). It has been known that the 

distribution of the sample correlation matrix under null multi-variate normality or 

uncorrelated normality is also robust under elliptical symmetry (Muirhead, 1982, Theorem 

5.1.3). Fisher (1962) discussed the joint distribution of the sample correlation matrix under 

non-null normality especially under the tri-variate case. Anderson and Fang (1990, Theorem 

4), and Ali and Joarder (1991) showed that the distribution of the sample correlation matrix 

holds under elliptical symmetry i.e., the elliptically contoured distribution. Joarder and Ali 

(1992, Theorem 3.1) gave the probability density function (pdf) of the sample correlation 

matrix under non-null multivariate normality, which holds under elliptical symmetry. 

When a single Wishart observation based on N independent normal vectors is truncated 

due to e.g., the high or low values of the associated sample variances, the distribution of R 

was derived by Ogasawara (2022), which does not hold under elliptical symmetry since the 

distribution of the sample variances depends on the fourth cumulants of the associated N 

random vectors. However, Ogasawara (2022) also showed that the null distribution of the 

sample correlation matrix under normality with truncated associated sample-variances is 

equal to that without truncation and consequently holds under null elliptical symmetry. 

Recently, Joarder (2013, Theorem 5.1) showed that the distribution of the sample 

variance-ratio is the same over the distributions under non-null bivariate elliptical symmetry. 

Note that there are two sample variances for a single correlation coefficient while we have a 

single variance-ratio or its reciprocal. Consequently, it is convenient to deal with the 

variance ratio rather than two sample variances for truncation of Wishart observations. 

Omar, Joarder and Riaz (2015) gave applications of the variance ratio in quality control. 

The first purpose of this paper is to have an explicit sequential expression by increasing 

the number of variables for the distribution of the sample correlation matrix under non-null 

elliptical symmetry without truncation, which is different from the corresponding 

expression by Joarder (2013). The second purpose is to derive the distribution of R under 
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bivariate elliptical symmetry when the sample variance-ratio is truncated in various ways. 

The joint distribution of the sample variance-ratios and correlation matrix under 

multivariate elliptical symmetry is also derived. The remainder of this paper is organized as 

follows. In Section 2, the result for the first purpose is given, followed by associated 

remarks in Section 3. The results for the second purpose are obtained in Section 4. 

 

2. The density of the sample correlation matrix without truncation under elliptical 

symmetry 

Suppose that a p p  positive definite random matrix { } 0ijv V  is Wishart 

distributed as denoted by W ( , )p nV Σ  with n degrees of freedom, where 0Σ  is a 

scale matrix. Then, pdf of the Wishart distribution is given by 

1 ( 1)/ 2

/2 /2

exp{ tr( ) / 2} | |
( | , )

2 | | ( / 2)

n p

p np n
p

w n
n

  



Σ V V

V Σ
Σ

 

where ( 1)/4

1

1
( )

2

pp p
p i

i
t t 



     
 

  is the multivariate gamma function (Anderson, 

2003, Definition 7.2.1, Subsection 7.2, Equation (19); see also DLMF, 2021, Section 35.3, 

https://dlmf.nist.gov/35.3); and V  is used also as a realization of V  for simplicity of 

notation. 

Consider the change of variables: 

{ }ijv V DRD , 

where 1/2 1/2
11diag( ,..., )ppv vD  and { }ijrR  with 1/2/ ( )ij ij ii jjr v v v  and 

1 ( , 1,..., )iir i j p   is the sample correlation matrix. Let T
11 21v( ) ( , ,..., )ppv v v v V  

be a { ( 1) / 2} 1p p    vector, where v( )  is the vectorizing operator taking the 

non-duplicated elements of a symmetric matrix in parentheses. Similarly, define a 

{ ( 1) / 2} 1p p    vector T
21 31 1,vb( ) ( , ,..., )p pr r r  r R  with vb( )  being the 

vectorizing operator taking the sub- or infra-diagonal elements i.e., those below the main 

diagonals of a square matrix. The change of variables is seen as that from v  to 

T T
11( ,..., , )ppv vu r  with unchanged 11, ..., ppv v . It is reasonable to denote the distribution 
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of u  by W ( , )p nu Σ  after introducing an appropriate Jacobian with the support 0R  

as well as 0 ( 1,..., )iiv i p    . Let 1/2 1/2 1/2 1/2
11 11{ } diag( ,..., ) diag( ,..., )ij pp pp     Σ Ρ , 

where { }ijΡ  with 1 ( , 1,..., )ii i j p    is the population correlation matrix. Since ijr  

is scale-free, it can be shown that the distribution of r or R does not depend on the sizes of 

ii ’s. Consequently, assume that 0 Σ Ρ  using unit population variances without loss 

of generality as long as the distribution of r is of interest. Then, we employ the notation 

W ( , ) W ( , )p pn nu P ρ , where vb( )ρ Ρ . 

Lemma 1. Let T T
11( ,..., , ) W ( , )pp pv v nu r ρ  with n > 1 and 0Ρ . Then, an 

integral expression of the marginal joint pdf of r or R is 

(1,..., )
( 1)/2 1/2 ( 2)/2

( | , ) ( | , )

| | exp d ,
2

p p

iii p
n p nii

p i ii ii ii

f n f n

v
C g v v v

  



 
   

 
0

r ρ R ρ

R
 

where /2 /21 / 2 | | ( / 2)np n
p pC n Ρ  is the normalizing constant for the Wishart shown 

earlier when Σ Ρ , 1 { }ij Ρ ; , 1 , 1 1, 1( ,..., , , ..., , , ..., )i i i i ip i i ip i i ppg g r r v v      

1/2

1

p ij
ij jjj i

r v
 

 ( 1,..., )i p , 0pg  ; 
0 0

( ) ( )
  
    0

 ; and 
(1,..., )

( )
i p

  is a special 

product symbol with the i-th factor to be located in the i-th position from left in the product. 

Proof. Since the Jacobian is ( 1)/2
11d ( ) dp

ppv v v u , the pdf of u  is written as 

1 ( 1)/2 ( 1)/2
11( | , ) exp{ tr( ) / 2} | | ( )n p p

p p ppw n C v v    u ρ Ρ DRD DRD  . 

Then, the marginal pdf of r or R is given as follows. 

   
1 ( 1)/2 ( 1)/2

11 110 0
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1 1 1
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(1,..., )
( 1)/2 1/2 ( 2)/2| | exp d
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v
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0

R , 

which gives the requited result. Q.E.D. 

Theorem 1. When p = 2 to 4, the marginal joint pdf’s of r under the elliptical 

distribution are 

(i) p = 2 

1

1

22 2 /2 2 ( 3)/2
12 12 1 12 12

2 12 12
0 1

2 (1 ) (1 ) (2 )
( | , )

( 1) 2 !

kn n n

k

r n k r
f r n

n k

 


  



         
 , 

where 2 2( ) { ( )}     , which is well documented (e.g., Anderson, 1958, 2003, Theorem 

4.2.2; Muirhead, 1982, Equation (11), Section 5.1.3). 

(ii) p = 3 

1 2
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where 
1 2 1 2, 0 0 0

( ) ( )
k k k k

  

  

    . 

(iii) p = 4 

1 1 11 2
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Proof. It is known that the pdf of r under normality holds under the elliptical 

distribution (for the bivariate case, see Ali & Joarder, 1991, Theorem; for the p-variate case, 

Joarder & Ali, 1992, Theorem 3.1). Then, the pdf’s are derived under normality. 

(i) p = 2: In Lemma 1, the first integral with respect to 11v  is given as 

1 1
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Using this result, the integral in Lemma 1 up to 22v  becomes 
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In the above result, when p = 2, we have 1 11 1 111 1/2
13

( ) 0
p k m k mj

j jjj
r v  


  and 2 2

2 0k kg  , 

which are defined to be 1 only when 1 11 0k m   and 2 0k   otherwise 0 due to the 

properties of the binominal and exponential expansions, respectively. Consequently, when p 

= 2, the above integral becomes simplified: 
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Using the above expression we obtain 
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In the above result, 1/2 ( 2)
2 ( / 2) {( 1) / 2} ( / 2) 2 ( 1)nn n n n           is used with 

the Legendre duplication formula 2 1 1/2(2 ) 2 ( ) { (1 / 2)}zz z z       (see Erdélyi, 1953a, 

Section 1.2, Equation (15); DLMF, 2021, Equation 5.5.5, https://dlmf.nist.gov/5.5.E5). 

(ii) p = 3: The integral in Lemma 1 up to 33v  is obtained as 



8 

 

1 2 11

1

1 2 11

1 2 11

2 1 11

(1,2,3)
1/2 ( 2)/2

121 2 11
12

( )/2 ( )/211 22
, 0 0 1 11 2 11

1 1/2
2 130

exp d
2

( 1) ( )
2 2

( / 2) ( / 2) ( )! ! !

( )

iii
nii

i ii ii ii

k k m
k

n k n k m
k k m

pk k mj
j jjj

v
g v v v

n k n k m
r

k m k m

g r v





 



 




  
 

 


 
  

 
          

   






 



0

33
1/2 ( 2)/233

3 33 33 33exp d
2

nv
g v v v

  
  
 



 

1 2 3

1 1 11 2

3 21 221 2 11

1 2 3 11 21 22

11 21 22

3 21 221 2 11

( )/2( )/2 ( ) /211 22 33
, , 0 0 0 0

12 13 23 1
12 13 23 1

( 1)
2 2 2

( / 2) ( / 2) ( / 2)

( ) ( ) ( ) (

k k k
k k m k

n k m mn k n k m
k k k m m m

m m m j
j

n k m mn k n k m

r r r r v

  

   

 


    
   

                 
     



   
1 11 21 2 22

3

1/2 2 1/2
24 4

3
1 11 21 2 22 11 21 22

) ( )
.

( )!( )! ! ! !

p pk m m k mj
jj j jjj j k

r v
g

k m m k m m m m

  
 

  
 

 

As before, when p = 3, the above integral vanishes unless 1 11 21 0k m m   , 2 22 0k m   

and 3 0k  , which gives 
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yielding the required result. 

(iii) p = 4: The integral up to 44v  is derived as 
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As before when p = 4, the above integral vanishes unless 1 11 21 31 0k m m m    , 
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2
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Then, the required result follows. Q.E.D. 

Theorem 2. The marginal joint pdf of r under the p-variate elliptical distribution is 
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( 1)

...
/ ( / 2)

2

p p p

p

p p p p p

i

p

n p
p

k m m k m m kk k m k
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where 0 0 ( 0,1)jm j  . 



10 

 

Proof. The derivation is shown by induction. The results of the integral up to 44v  are 

given in Theorem 1. Assume that the integral up to q in Lemma 1 holds as shown below. 

Then, the result up to 1, 1q qv    is given as follows: 

1 11 2,1 2 22 2,2 11 1 11 2
1

1 11 21 22 1,1 1,2 1. 1
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The numerator of the above integrand is expanded as 

1 11 1,1 1 1. 1
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j jj q j jjj q j q

k m m
pm m k m mq jq

q q q j jjj q
qm

q

r v r v

k m m
r v r vm

k

 

 

   



   
   

  
  

    




     
 



 

 




1

, 1 , 1 1 1. 1 , 1

, 1

/21, 1 1, 1/21. 1
1, 1 1, 1 1,2

, 10

( ) ( ) .
q

q q q q q q q q q

q q

k
pm m k m mq q q jq q

q q q q q j jjj q
q qm

m
r v r vm  


     



    
     



 
 
 

 

 

The factor qk

qg  in the integrand becomes 
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The remaining factor in the integrand is also expanded: 
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2
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Then, the integral becomes 
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Note that in the above result, the integral becomes 
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and when q + 1 = p, the whole above result vanishes unless 1 11 1 0, ,qk m m     

1 1, 1 , 1 0q q q q qk m m      , 0q qqk m   and 1 0qk   . Among the expanded factorials for  

1 11 1,1 1 1, 1

1 , 1

... q q q q q

q q q qq

k m m k m k
m m m

   



        
     
     

 , those of the numerator are canceled and 

the half set of the factorials in the denominator become 0! = 1 due to 1 11 1... 0,qk m m   

…, 1 1, 1 , 1 0q q q q qk m m       and 0q qqk m   leaving only 1 , 1! ! !q q q qqm m m . Then, we 

have 
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which gives the required result. Q.E.D. 

The results of Theorem 1 can be seen as corollaries of Theorem 2. However, to have the 

relationship to the known result in the bivariate case and the initial condition(s) of the 

induction and to illustrate the sequential structure explicitly in the cases with small p’s of 

practical importance, they are given as a theorem prior to Theorem 2 for the general 

p-variate cases. 

 

3. Remarks on Theorems 1 and 2 

The results of Theorems 1 and 2 show that they are given by ( 1)p  -fold infinite series 

along with their associated {( 1)( 2) / 2}p p  -fold nested series, which soon become 

excessively complicated when p becomes large. Joarder and Ali (1992, pp. 1958-1962) gave 

the results corresponding to those in Theorem 2 using different methods and expressions. 

Their results use a single infinite series with nested series and looks simpler than those in 

Theorem 2. However, two sets of expressions are equivalent or comparable in that our 

expressions can be summarized in a single infinite series when necessary. For instance, 
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when p = 3, define 12 1 2k k k  . Then we have 

1 12 1

1 2 11 12 1 11

1 2 1 2 11 1 12 1 12 11
, 0 0 0 0 0

( , , , ) ( , , , )
k k k

k k m k k m

t k k k k m t k k k k m
 

    

       , 

where 1 2 12 11( , , , )t k k k m  is a function of the four arguments when 12 1 2k k k   is 

temporarily seen as an independent variable. 

Similar series expansions are available by change of variables in integration. Recall that 

the integral expression in Lemma 1 with respect to iiv  is also given by 

1/2 ( 1,..., )i iiv v i p  : 

(1,..., )
( 1)/2 1/ 2 ( 2)/2

2(1,..., )
( 1)/2 1

( | , )

| | exp d
2

| | 2 exp d ,
2

p

iii p
n p nii

p i ii ii ii

iii p
n p ni

p i i i i

f n

v
C g v v v

v
C g v v v





  

  

 
   

 
 

   
 





0

0

r ρ

R

R

 

where the first integral with respect to 1v  becomes 

2 11
1

11
/(4 )2 1 11 /2 11

1 1 1 1 1 10
exp d ( ) ( ) ( / )

2
gn n

nv g v v v n e D g  
  



 
    
 

  

(Erdélyi, 1954, Section 6.3, Equation (13); Zwillinger, 2015, Section 3.462, Equation 1), 

where ( )nD   is the parabolic cylinder function using the traditional Whittaker notation 

(Erdélyi, 1953b, Chapter 8; Magnus, Oberhettinger & Soni, 1966, Chapter VIII; Zwillinger, 

2015, Sections 9.24-9.25; DLMF, 2021, Chapter 12), whose series expression is given by 

2
2 2

/2 /4
1 1 1 1

1 2 1 3
( ) 2 ; ; ; ; ,

{(1 ) / 2} 2 2 2 ( / 2) 2 2 2
z z z z

D z e F F


   
 

                    
 

where 

1 1
0

( )
( ; ; )

( ) !

k
k

k k

a z
F a b z

b k





                              

is the Kummer confluent hypergeometric function (Winkelbauer, 2014, Equation (6); 

Zwillinger, 2015, Section 9.210, Equation 1; DLMF, 2021, Chapter 13); and

( ) ( 1) ( 1)ka a a a k     is the rising or ascending factorial using the Pochhammer 
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symbol when k is a non-negative integer with 0( ) 1 ( 0)a a   otherwise 

( ) ( ) / ( ) ( 0, 0)ka a k a a k      . 

Using the series expression, we obtain 

2 11
1

11
2 1
1 1 1 1 10

/(4 )11 /2 11
1

11 /2

112 2
11 1

1 1 1 111 11

exp d
2

( ) ( ) ( / )

(2 ) ( )

2 /1 1 3
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v g v v v
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n n





 



 
 

 






 
  
 

 

 

               



 

It is intriguing to use this expression since ( )nD   and 1 1( )F   are known functions with 

positive variable 2 11
1 / (2 )g   in 1 1( )F  , expecting stable convergence. However, 

1 1/2 1
1 1 12 2

p pj j
j jj j jj j

g r v r v 
 

    is a function of ( 2,..., )iv i p , which will be 

variables for integration in the subsequent stages. Consequently, term-by-term integration in 

1 1( )F   will again be required unless some simplification is derived. 

The positive variable used in 1 1( )F  for the integral with respect to iv ’s can similarly 

be employed using iiv ’s, when desired, by considering even and odd terms as 

1 1

1

1 1 1 1

1

11 1/2 ( 2)/2
11 1 11 11 110

( 2)/2
11 1 11

11 110
0 1

2 ( 2 2)/2 2 1 ( 2 1)/2
11 1 11 1 11

11 110
0 1 1

1 1

exp( / 2)exp( ) d
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1

1/ !.k


 

Closed form formulas for the product moments of r or raw moments of | |R  (the 

scatter coefficient) are not given as applications of the main results, which are open 

problems. The integrals in Theorem 2 are given sequentially in element-wise methods 

yielding multiple series. Recently, the Holonomic gradient method to have the 

Fisher-Bingham integral was developed (see Nakayama et al., 2011), which is seen as a 

multivariate counterpart of the scaled parabolic cylinder function using an integral 

expression. This method has been applied to the distributions of statistics associated with 

the Wishart (Hashiguchi et al, 2013; Shimizu & Hashiguchi, 2019). Mura et al. (2019) 

showed the Holonomic property of the distribution of the sample correlation coefficient in 

the bivariate Wishart based on the formula of Hotelling (1953, Equation (25)) using the 

Gauss hypergeometric series (Abramowitz & Stegun, 1964/2014, Section 15.1; Zwillinger, 

2015, Sections 9.1; Hankin, 2016; DLMF, 2021, Section 15.2 (i)). This finding suggests a 

similar property in the p-variate case and an efficient method to have the infinite series with 

a matrix argument (see also Pham-Gia & Choulakian, 2014; Pham-Gia & Thanh, 2016). 

 

4. The density of the sample correlation coefficient with the truncated variance-ratio 

under elliptical symmetry 

Let 
i.i.d.

T
1 2 2( , ) N ( , ) ( 1, ..., )j jX X j Nμ Σ  with 11 1 2

2 1 22

   
   
   
 

Σ  and 

1/ 2 ( 1, 2).i ii i    Define 
2

1 1 111

2
2 2 221

( ) /

( ) /

N

jj

N

jj

X X
H

X X
















 with 
1

/ ( 1, 2)
N

i ijj
X X N i


  , 

which is the ratio of the scaled or standardized sample variances or the ratio of two 
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correlated chi-squared variables each with 1n N   degrees of freedom. The 

corresponding unscaled ratio is denoted by 
2

1 11
11 222

2 21

( )
/

( )

N

ji
N

ji

X X
H H

X X
 




 





. 

We consider H  whose realization is denoted by h . Suppose that an observation is 

truncated/selected such that only when 
1
{ }

K

kk
h I


 , the observation is selected otherwise 

truncated, where kI ’s are non-overlapping intervals satisfying 

[ , )k k kI a b  with 1 1[ , ), 0 ... ( 1,..., )k k k K KI a b a b a b k K          

and K being the number of the intervals. When 1K   with 1 10 a b     or 

1 10 a b    , H  is singly upper- or lower-truncated, respectively while when 1K   

with 1 10 a b    , H  is doubly truncated. When 2K   with 

1 1 2 20 a b a b      , H  is inner-truncated with the two tails being selected. These 

cases occur e.g., when the observation is discarded if H  is too small or too large due to its 

possible irregularity. When truncation does not occur irrespective of the value of H , 

1K   with 1 10 a b     is employed. This truncation is similar to stripe truncation for 

univariate cases (Ogasawara, 2021a). Then, H  is said to be stripely truncated in this paper. 

Theorem 3. Suppose that the scaled variance-ratio H  is stripely truncated as above. 

Then, the pdf of the sample correlation coefficient under elliptical symmetry is 

 2 ( 3)/2 / ( )
11 22 1 0 W /( )( | , , , ; , ) (1 ) ; ; 2 ; B ( , ), 0,1,...n

R Rf r n C r F n r n j j    
  b 1 b

a 1 aa b , 

where 

 
2

2 / ( )
1 0 W /( )

2 ( 1)B( / 2, / 2)

( 1) / 2;; 4 ; B ( , 2 ), 0,1, ...

n

R

n n n
C

F n n j j 









 b 1 b
a 1 a

 

is the normalizing constant; *
1 0 W

0

{ ;; ; ( )} ( ) ( ) / !j
j

j

F c z w c z w d j j




   is a weighted 

hypergeometric function with *d  being a constant or the weighted negative binomial 

expansion when the weight for the j-th term is / ( ) *
/ ( )( ) B ( , )jw d j n d j

 b 1 b
a 1 a  (if the weight is 1, 

1 0W ( ;; ;1)F c x  becomes the usual hypergeometric function or the negative binomial 

expansion 1 0 0
( ; ; ) ( ) / !j

jj
F c x c x j




 ); 
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* * * *
/( ) *
/ ( )

1

B ( , ) B , , B , ,
1 2 2 1 2 2

K
k k

k k k

b an d j n d j n d j n d j
n d j

b a





                   
b 1 b

a 1 a  

and 1 1

0
B( , , ) (1 ) d

x p qx p q t t t    is the incomplete beta function. 

Proof. It is known that the pdf of H  under normality holds under elliptical symmetry 

(Joarder, 2013, Theorem 5.1) as in the case of the sample correlation coefficient R as 

mentioned earlier (Ali & Joarder, 1991, Theorem). Although the joint distribution of H  

and R under normality has not explicitly been shown to hold under elliptical symmetry, an 

intermediate result of Theorem 5.1 of Joarder (2013, Equation (5.3)) shows that the joint pdf 

under elliptical symmetry does not depend on specific forms of elliptical distributions, 

which indicates the robustness of the pdf under normality. Then, we can use the bivariate 

Wishart distribution without loss of generality. The Wishart density when p = 2 with n 

degrees of freedom is 

1 ( 1)/2

2 /2 /2

1 ( 3)/2

/2
2

1 ( 3)/2

/2

exp{ tr( ) / 2} | |
( | , )

2 | | ( / 2)

exp{ tr( ) / 2} | |

2 | | ( / 2)

exp{ tr( ) / 2} | |
.

4 | | ( 1)

n p

np n
p

n

n n

n

n

w n
n

n

n

  

 

 














 

Σ V V
V Σ

Σ

Σ V V

Σ

Σ V V

Σ

 

We use the change of (mathematical) variables from 
T

11 22 12( , , )v v vv  to 

T
11 22( , , )u u ru ,where 

T
11 11 22 22 1 2 1 2( , , )u u u u r   v  with the Jacobian 

3/2 3/2
11 22 1 2d du u v u  and 

1/2 ( 1, 2)i iiu u i  . Then, the pdf at u becomes 

( 3)/2 2 ( 3)/ 2 3/2 3/2
11 22 11 22 11 22 1 2

2 11 22 /2

11 22 1 2
2

( 2)/2 2 ( 3)/2
11 22 11 22 1 2

2 /2 2

( ) (1 )
( | , , , )

4 | | ( 1)

2
exp

2(1 )

( ) (1 ) 2
exp ,

4 (1 ) ( 1) 2(1 )

n n

n

n n

n

u u r u u
w n

n

u u ru u

u u r u u ru u

n

     






  

 

 




 

  
  

 
   

  
    

u
Σ

 

which is algebraically equal to the known one (see e.g., Joarder, 2013, Equation (4.2)). 

Employ the variable transformation from 11u  to 11 22/h u u  with unchanged 22u  and 
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r, where the Jacobian is 11 22d du u h . Then, the pdf of T( , )H RH  at T( , )h rh  

becomes 

( 2)/2 2 ( 3)/2 1/2
1

2 11 22 22 22 222 /2 20

(1 ) 1 2
( | , , , ) exp d

4 (1 ) ( 1) 2(1 )

n n
n

n

h r h rh
w n u u u

n

  
  

       
      

h . 

Using the transformation 
1/2

22 2

1 2

1

h rh
z u




 



 with the Jacobian 

2

22 1/2

1
d d

1 2
u z

h rh







 
, we have 

( 2)/2 2 ( 3)/2 2 1/2
1

2 11 22 2 /2 0

2 2 /2 2 ( 3)/2 ( 2)/2 1/2

(1 ) (1 ) 2
( | , , , ) 1 exp( / 2)d

4 (1 ) ( 1)(1 ) 1

2 (1 ) ( 1)(1 ) 2
1 ,

(1 ) 1

nn n n
n

n n

nn n n n

n

h r rh
w n z z z

n h h

n r h rh

h h
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which is the joint pdf of H  and R without truncation 

Since H  is stripely truncated by assumption, the normalizing constant is derived by 

integrating the above pdf with respect to h  and r under truncation for H . Define 
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We start with integrating r using the binomial expansion: 
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Since the above integrand is an odd function, the odd terms vanish. Then, noting that 
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where B( , )   is the beta function, we obtain 
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where the Legendre duplication formula and inverse binomial expansion are used. Then, the 

pdf of untruncated H  becomes 
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One of the remaining tasks is to have the integral 11 22( | , , , )Hf h n    with respect to 

h  under stripe truncation. Define 
1
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where the incomplete beta function 
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used. Then, the reciprocal of the normalizing constant is 
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The remaining task is to have 
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which gives 
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Using the above results, we obtain the pdf of R with the stripely truncated variance-ratio: 
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which is the required result. Q.E.D. 

Remark 1. Weighted hypergeometric functions similar to the weighted binomial 

expansion shown earlier are used by Ogasawara, (2021b, Equation (4) and (7)) when the 

unweighted cases are the Kummer confluent and Gauss hypergeometric functions. 

Remark 2. The pdf of H  i.e., 11 22( | , , , )Hf h n    shown earlier under elliptical 

symmetry is known (Joarder, 2013, Theorem 5.1), which can also be derived from the pdf 

of 1/2H  under normality (Bose, 1935, Equations (4.2) and (5.1); Finney, 1938, p. 191) 

using the Jacobian 1/2 1/2d ( / 2)dh h h . The pleasantly simple expression of the normalizer 

2 /2(1 ) / B( / 2, / 2)n n n  in 11 22( | , , , )Hf h n    was given by Bose (1935). Consequently, 

to have the normalizer for the pdf of R under the truncated variance-ratio, we can start with 

the known 11 22( | , , , )Hf h n   . However, the derivation does not seem to be well 

documented except Bose (1935) who used an associated result by Pearson (1925, Equation 

(viii)). As expected, it was found using a different self-contained method in the proof of 

Theorem 3 that the expression 2 /2(1 ) / B( / 2, / 2)n n n  by Bose (1935) is correct. 

Remark 3. The random variable 
2 2

1 1 2 11 1

11 22

( ) / ( )

/

N N

j ji i
X X X X

H
 

 
 

    depends on the 

population value 11/22 11 22/    unless 11 22   as noted by Bose (1935, Equation (5.1)). 

So, the truncation by the variance ratio is assumed to be performed by some hypothesis 
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about 11/22 , which is weaker than those for 11  and 22 . 

Remark 4. In the proof of Theorem 3, the reciprocal of the normalizing constant for the 

pdf of R with truncated H  is given by 
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which is the reduced probability due to truncation (the truncated probability for short). 

Corollary 1. Define *0 / (1 ) 1k k ka a a     and *0 / (1 ) 1 ( 1, ..., )k k kb b b k K     . 

Suppose that the intervals for selection using *
ka  and *

kb  denoted by * * *[ , )k k kI a b  give the 

pattern such that *
kI ’s from 0 to 1/2 are the same as those from 1/2 to 1 when reflected 

about 1/2 by exchanging the roles of selection and truncation (skew-symmetric truncation 

for short). The pdf of R given by Theorem 3 under the skew-symmetric truncation is equal to 

that without truncation. 

Proof. In the pdf 
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Since the integrand of the incomplete beta function 2 1

0
B( | , ) ( ) d

x qx q q t t t   with equal 

parameters is symmetric about 1/2, the skew-symmetric truncation pattern gives 
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/ ( ) *B ( , 2 ) B ( , 2 )n j n j

 b 1 b b
a 1 a a  in the pdf’s are the halves of the corresponding ones without 

truncation. Since the equal proportional constants are canceled in the pdf when using the 

factors without truncation, we have the required result. Q.E.D. 

When K = 1, cases with the skew-symmetric truncation pattern are given only by 
* * *
1 1 1[ , ) [0,1 / 2)I a b  1 1 1( [ , ) [0, 1))I a b   under upper truncation and *

1 [1 / 2, 1)I 

1( [1, ))I    under lower truncation. When K = 2, the cases satisfying the pattern are 

obtained by *
1 1[0, ) ( [0, / (1 )))I c I c c    and *

2 2[1 ,1) ( [(1 ) / , )) (0 1 / 2)I c I c c c       . 

Note that these cases are subject to upper and inner truncation. The cases with exchanged 

truncation and selection intervals also satisfy the skew-symmetric pattern under lower and 

inner truncation. Two of these cases will be numerically illustrated later. 

Lemma 2. Under elliptical symmetry with possible truncation for the variance-ratio, we 

have 
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Proof. Using the pdf of R under the condition, the first set of moments is 
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Similarly, for the second set of the moments, we obtain 
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The above results give the required expressions. Q.E.D. 

Theorem 4. Under the same condition as in Lemma 2, we have 
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Proof. Using the results of Lemma 2, the required expressions follow. Q.E.D. 

 

5. Numerical illustrations of the moments of the sample correlation coefficient with the 

truncated variance-ratio 

In this section, we show numerical illustrations of the theoretical and simulated 

moments of the sample correlation coefficient with the truncated variance-ratio. The 

moments subject to the truncation of the variance-ratio (truncated moments) given in 

Theorem 4 are exact ones. Consequently, the simulated truncated moments are unnecessary 

as long as the formulas are correct. However, the formulas include infinite series, which are 

approximated by finite ones in actual computation. Then, theoretical and corresponding 

simulated moments are shown in this section. Since the pdf of R is the same under arbitrary 

bivariate elliptical symmetry, the bivariate normal distribution is used for the simulation. 

Table 1 summarizes 11 examples used in the numerical illustrations. The unit 

population values 11 22 1    are used throughout the illustrations. Four truncation types 

i.e., “untruncated”, “lower”, “double”, “inner” and “lower-inner” are employed. Since the 

two variables 1 jX  and 2 ( 1,..., )jX j N  are exchangeable under bivariate elliptical 

symmetry, single upper-truncation is not used. The pairs of symmetric limit values (3/2, 2/3) 

and (3/4, 4/3) of the intervals for selection are used for double and lower-inner truncation. 
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Ex. (Example) 1 without truncation is for comparison. Ex. 4 and 11 with the truncated 

probability * 1 / 2   satisfy the pattern of the skew-symmetric truncation defined in 

Corollary 1 when K = 1 and 2, respectively, giving the same pdf’s as the corresponding 

untruncated cases. 

Tables 2 and 3 give the simulated and theoretical values of the mean, variance, 

skewness and excess kurtosis of R when  = 0.3 and 0.7, respectively each with n = 20 and 

50. The asymptotic value of *  is given using 

T T 2 1
11 22 11 22avar( ) avar( / ) (1, 1)acov{( , ) / }(1, 1) 4(1 )H v v v v n n        

under normality with the usual normal approximation: 

 * 1/2 1/2

1

[( 1) / {avar( )} ] [( 1) / {avar( )} ]
K

k k
k

b H a H


      

where ( )   is the cumulative distribution function (cdf) for the standard normal. When 

1 0a   i.e., with no lower-tail truncation, 1a    is used for the normal approximation, 

which gives slightly better results. The simulations are performed using randomly generated 

105 sets of 1N n   observations under bivariate normality. From the 105 sets, H ’s 

satisfying the selection patterns are chosen. The proportions of H ’s to the generated 105 

sets give the simulated * ’s in the tables. The simulated moments/cumulants in the tables 

are given by the selected H ’s. 

The simulated and the corresponding theoretical values in Table 2 are reasonably close 

to each other. Some of the asymptotic values of *  show relatively poor approximations as 

seen in Ex. 11. It is found that the simulated and theoretical values of the mean under 

various types of truncation are rather close to those without truncation. The small absolute 

values of the negative biases are found, where the smallest simulated/theoretical biases are 

given by Ex. 8 under double truncation though the differences are small. It is of interest to 

find that the untruncated case does not give the best results. The SD’s are found to be 

similar among the 11 examples with the smallest theoretical SD’s given again by Ex. 8. The 

negative similar sk’s and small absolute values of kt’s are found for the 11 examples. Note 

also that the boldfaced theoretical values of the moments and cumulants in Ex. 4 and 11 are 

equal to those of Ex. 1 without truncation, which is expected from Corollary 1. 
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Table 3 give the results when  = 0.7. Tendencies similar to those in Table 2 are found 

in Table 3 except that the absolute values of sk’s and kt’s are much larger than those in 

Table 2, which is expected since the upper bound of R is 1, which tends to be closer to the 

sample values when  = 0.7 than  = 0.3. It is of interest to find the smallest 

simulated/theoretical biases and SD’s are again found in Ex. 8. The substantial discrepancy 

of the simulated and theoretical kt’s i.e., .7983 and .5535, respectively are seen when n = 50 

in Ex. 6, which is partially explained by the small proportion (2.48%) of sets of observations 

used for simulated values among 105 generated sets. 

Remark 5. The results of the numerical illustrations are impressive in two points. 

Firstly, the truncated moments are almost the same as the untruncated values, which is 

found even in the extreme case of Ex. 6 when  = 0.7 and n = 50 with as small as * = 

0.0243 i.e., selecting only the small upper-tail of the distribution of H . This finding yields 

the conjecture shown in the next section. The second point is based on the small differences 

of the moments among the various truncations. The smallest bias and SD are given by Ex. 8 

with double truncation. When the variance-ratio is far off the unit value, the sample 

variances can be outliers. It is reassuring to find that when excluding such relatively 

irregular cases, the distribution of R is improved though the amount of improvement is 

small. 

 

6. A conjecture on the asymptotic moments of the sample correlation coefficient with 

the truncation of the variance-ratio 

So far, the values of ka  and ( 1,..., )kb k K  which do not depend on n have been 

used. This is reasonable as long as a fixed n is considered as in the numerical illustrations. 

However, when the asymptotic behavior of R with n being increased is considered, this 

gives degenerate or meaningless results. This is because the cdf 1/2[( 1) / {avar( )} ]kb H   

as used earlier in the asymptotic *  goes to 1 or 0 depending on 1kb   or 1kb  , 

respectively when n    since 1avar( ) ( )H O n  . When 1kb  , the cdf = 1/2 is 

unchanged. Similar results for ka  are obtained. Then, when n   , we have limiting 

untruncated or always-truncating degenerate cases including the cases of the unchanged cdf 
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= 1/2 yielding the untruncated case due to Corollary 1. 

As in Ogasawara (2022) , 1/2{avar( )} 1k kb b H   and 1/2{avar( )} 1k ka a H 

( 1,..., )k K , where kb  and ka  do not depend on n, may be used when the asymptotic 

behavior of R is considered in the case of 11 22/ 1   . In this case, 

1/2[( 1) / {avar( )} ] ( )k kb H b     is unchanged irrespective of n and similarly for ka . 

Then, it can be shown that the asymptotic *  when using kb  and ka  approaches the 

exact *  when n   . Ogasawara (2022) called this asymptotic *  as the 

asymptotically constant truncated probability. 

It is known that the asymptotic bias of R under normality (and consequently under 

elliptical symmetry) without truncation is of order 1( )O n  (Ghosh, 1966, Equation (3); 

Muirhead, 1982, Section 5.1.3, Equation (21)). When stripe truncation each for two sample 

variances is considered under bivariate normality, Ogasawara (2022) conjectured that the 

asymptotic bias of R under the condition of the asymptotically constant truncated 

probability is also of order 1( )O n  due to simulated and partially theoretical results. In the 

case of the variance ratio, considering the existence of the truncated cases with the same 

pdf’s as those of the untruncated cases shown in Corollary 1 and the numerical results given 

earlier, we have the following conjecture. 

Conjecture 1. The asymptotic bias, variance, third and fourth cumulants for R of orders 
1( )O n , 1( )O n , 2( )O n  and 3( )O n , respectively with the stripely-truncated 

variance-ratio under elliptical symmetry satisfying the condition of the asymptotically 

constant truncated probability are the same as those in the untruncated case. 

 

7. Some extended results for the joint pdf of the transformed sample variances and 

covariances under elliptical symmetry 

In this section, we show that the joint pdf of the sample variance-ratios and correlation 

matrix under multivariate normality is robust under elliptical symmetry. Suppose that N 

random p-dimensional vectors ( 1,..., )i i NX  with 1( ) ( ,..., )Np N X X X  follow the 

elliptical distribution with the joint pdf 
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 /2 T 1
, 1

( ) | | ( ) ( )
NN

N p i ii
f K g 


  X x Λ x μ Λ x μ  with 1( ) ( , ..., )Np N x x x , 

where ,N pK  is the normalizing constant; Λ  is a scale matrix; and μ  is a location 

parameter vector. Let * T

1
{ } ( )( )

N

ij k kk
V


   V X X X X  with 

1
/

N

kk
N


X X . Define 

the ( 1) 1p    vector of the unscaled variance-ratios 

T
1 1( ,..., )pH H H  with / ( 1, ..., 1)i ii ppH V V i p   . 

and the random correlation matrix 
* { }ijRR  with 1/2/ ( ) ( , 1,..., )ij ij ii jjR V V V i j p  . 

Similarly, define the scaled or standardized sample variance-ratios 

T
1 1( ,..., )pH H H  with 

2

1

2
/ 1

( ) /

( ) /

N

ik i iii k
i N

ii pp pk p ppk

X XH
H

X X


 






 





 and 

/ / ( 1, ..., 1)ii pp ii pp i p     . 

Theorem 5. (i) The joint distribution of H  and *R  (or * *vb( )r R ) does not 

depend on the forms of ( )g   or the normalizing constants in elliptical distributions, whose 

joint pdf of H  and *R  at h  and r , respectively is 

 T *T

1T /2 ( 1)/2 ( 2 )/2 1 /2

( , ) 1

( / 2)
{( , )} | | | | {tr( )}

( / 2)

pT n n p n np
i hi

p

np
f h

n

     




 H r

h r Λ R Λ R . 

where 1/2 1/2diag( ,1) diag( ,1)h R h R h  and 1/2 1/2 1/2
1 1diag( ,1) diag( ,..., ,1)ph h h . 

(ii) The joint pdf of H  and *R  at h  and r , respectively is 

 T *T

( 1)/2
1T ( 2 )/2 1 /2

/2( , ) 1

( / 2) | |
{( , )} {tr( )}

( / 2) | |

n p
pT n np

i hn i
p

np
f h

n

 
   





 H r

R
h r Ρ R

Ρ
, 

where Ρ  is the population correlation matrix; 

1/2 1/2diag( ,1) diag( ,1)h R h R h  and 1/2 1/2 1/2
1 1diag( ,1) diag( ,..., ,1)ph h h . 

The pdf T *T

T

( , )
{( , )}Tf

H r
h r  holds under arbitrary elliptical symmetry as in the case of 

T *T

T

( , )
{( , )}Tf

H r
h r  and is scale-free. 

Proof. Let 1n N   as before. Then, Sutradhar and Ali (1998, Theorem 2.1) showed 

that the pdf of *V  at T

1
{ } ( )( )

N

ij i ii
v


   V x x x x  with 

1
/

N

ii
N


x x  is 

*

/2 ( 1)/2 1
, ,( ) | | | | {tr( )}n n p

n p n pf C g   
V

V Λ V Λ V , 
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where /2
, , / ( / 2)np

n p n p pC K n   is the normalizing constant (Sutradhar & Ali, 1998, 

Equation (2.6)); ( / 2)p n  is the p-variate gamma function defined earlier; and , { }n pg   is 

a function which depends on the form of ( )g   as well as n and p. 

Consider the change of variables from *V  to *R  with unchanged 11 , ..., ppV V . Let R  

and { }ijvV  be mathematical variables, which are also used as realizations of *R  and 

* { }ijVV , respectively. Note that the Jacobian is 

   ( 1)/2 T T ( 1)/2
111 1

d d{v( )} d d ( ,..., , ) d
p pp p

ii pp iii i
v v v v 

 
    V V v r u , 

as used in Section 2, where d d d{vb( )} r R R  with v( )  and vb( )  being vectorizing 

operators defined earlier. Then, we have the pdf of *T T
11( ,..., , )ppV VU r  with * *vb( )r R  

at u: 

 /2 ( 1)/2 ( 2 )/2 1
, ,1

( ) | | | | {tr( )}
pn n p n

n p ii n pi
f C v g    


 U u Λ R Λ DRD , 

where 1/2 1/2
11diag( ,..., )ppv vD  as used earlier. 

We employ the second change of variables from 11 1, 1, ..., p pV V    to T
1 1( ,..., )pH H H  

with unchanged ppV  and *R  (or *r ), where the Jacobian is 

T 1 T
11 1, 1 1 1d( ,..., ) d( ,..., )p

p p pp pv v v h h
    1dp

ppv  h . Then, the pdf of * T *T T( , , )ppVH H r  at 

* T T T( , , )ppvh h r  becomes 

 

 

*

1* /2 ( 1)/2 ( 2) /2 {( 2 ) /2} 1
, 1

1 1/2 1/2
,

1/2 ( 1)/2 ( 2 )/2 ( 2) /2 1
, ,1

( ) | | | |

[ tr{ diag( ,1) diag( ,1)}]

| | | | { tr( )}.

pn n p n n p p
n p i ppi

n p pp

pn n p n np
n p i pp n p pp hi

f C h v

g v

C h v g v

      




     












H
h Λ R

Λ h R h

Λ R Λ R

 

Let *

1 *

,
tr( )

h
pp hp

W V 
R

Λ R . Then, the third change of variable is from 

* T * T( , , )T
ppVH H r  to ** T *T T( , , )pYH H r  with 1 *tr( )p pp hY V  Λ R  and the Jacobian 

1d {1 / tr( )}dpp h pv y Λ R , yielding the pdf at ** T T T( , , )pyh h r : 

 **

1** /2 ( 1)/2 ( 2 )/2 1 /2 ( 2) /2
, ,1

( ) | | | | {tr( )} ( )
pn n p n np np

n p i h p n p pi
f C h y g y

      


 H
h Λ R Λ R . 

In order to have the joint distribution of T
1 1( ,..., )pH H H  and *R , the above pdf is 
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integrated with respect to py . It is known that 

/2 ( 2 )/2
, ,0

( ) d ( / 2)np np
n p p n p p pK y g y y np

     

(Muirhead, 1982, Theorem 1.5.5, Equation (11); Joarder & Ali, 1992, Lemma 2.1). 

Recalling that /2
, , / ( / 2)np

n p n p pC K n  , we obtain 

 
 

T *T

T

( , )

1/2 ( 1)/2 ( 2 )/2 1 /2 ( 2 )/2
, ,1 0

1/2 ( 1)/2 ( 2 )/2 1 /2

1

{( , )}

| | | | {tr( )} ( ) d

( / 2)
| | | | {tr( )} ,

( / 2)

T

pn n p n np np
n p i h p n p p pi

pn n p n np
i hi

p

f

C h y g y y

np
h

n

      


     








 



H r
h r

Λ R Λ R

Λ R Λ R

. 

which does not depend on the forms of ( )g   or the normalizing constants ,n pK ’s in 

elliptical distributions. 

Next, we derive the joint pdf of the scaled or standardized variance-ratios 

T
1 1( ,..., )pH H H  with 

2
111

2
/ 1

( ) /
( 1, ..., 1)

( ) /

N

ik ii k
i N

ii pp pk p ppk

X XH
H i p

X X


 






   





. 

and correlation matrix. Using the Jacobian  1

/1
d d

p

ii ppi



 H H , we obtain the joint pdf 

of H  and *R  at h  and r , respectively: 

   

 

T *T

T

( , )

1 1( 2 )/2
/ / 11 1 ( 1)/2 ( 2 )/2 1 1 /2

1/2 /2

1

( 1)/2
1 ( 2 )/2 1 /2

/2 1

{( , )}

( / 2)
| | { tr( )}

( / 2) | |

( / 2) | |
{tr( )} ,

( / 2) | |

T

p pn
ii pp ii pp pi i n p n np

i ppp hin n
p iii

n p
p n np

i hn i
p

f

np
h

n

np
h

n

 




 
       




 
   












 






H r
h r

R Ρ R
Ρ

R
Ρ R

Ρ

. 

which is also found to be robust under arbitrary elliptical symmetry and scale-free as 

expected. These results give the required expressions. Q.E.D. 

In the pdf’s of H ( H ) and *R  derived by Theorem 5, the vanishing ,n pK  is expected 

since the random part in each of the pdf is common to elliptical distributions and gives a 

partial support of the pdf’s. Theorem 5 gives the following obvious properties. 

Corollary 2. The marginal distributions of the following random quantities hold under 

arbitrary elliptical symmetry. 

(i) H , H  and their functions given by integrating R over the range 0R  in the joint 
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pdf’s, 

(ii) *R  and its functions given by integrating ( )h h  over the range with possible 

truncation for H ( H ). 

Although it is difficult to have the closed-forms of the integrals in Corollary 2 except 

when p = 2 as obtained earlier, the result in (ii) indicates an alternative integral formula to 

have the pdf of *R  derived in Theorems 1 and 2. In this case, note that the number of 

variables to be integrated is smaller than those in Theorems 1 and 2 by 1 since ppv  is 

already integrated out. 

Remark 6. Examples of Corollary 2 given by functions of H are (i) the sample 

intraclass correlation coefficient defined by 
T T *

1 1
ICC

1 1

tr( ) ( +...+ +1)
ˆ

( 1)tr( ) ( 1)( +...+ +1)
p p p h p p

p

h h

p p h h
 



 
 

 
1 V1 V 1 R 1

V
 with p1  being the 1p   vector of 1’s 

i.e., the ratio of the mean of the off-diagonal elements of V to that of the diagonal elements 

(see Coffman, Maydeu-Olivares & Arnau, 2008, Equation (7)), which is different from the 

historical definitions of Harris (1913) and Fisher (1970, Chapter VII); and (ii) the sample 

alpha coefficient 

T *
1 1

ICC ICCT T * T

( +...+ +1)tr( ) tr( )
ˆ ˆ ˆ1

1 1
p h p p

p p p h p p p

h hp p p

p p
             

1 R 1V V

1 V1 1 R 1 1 V1
 

(the ratio of the mean of the off-diagonal elements of V to that of all of the elements, which 

should not be confused with the sample truncated probability *̂  used earlier and has been 

used in psychometrics, education, survey researches, accounting and so on; see Ogasawara, 

2006 and the references therein; Smith, 2015, Chapter 9) and the sample standardized alpha 

T *
ˆ 1

1 p p

p p

p
 

     1 R 1
 

(see Hayashi & Kamata, 2005, Equation (3); Ogasawara, 2006, Equation (32)). The exact 

distributions of ICĈ  and ̂  under normality were derived by Kistner and Muller (2004, 

Theorem 1). Then, it is found that these distributions hold under arbitrary elliptical 

symmetry. 

Consider the distribution for the random matrix * { }ijVV T

1
( )( )

N

k kk
   X X X X  



33 

 

as in Theorem 5 under elliptical symmetry. Redefine the * 1p   vector T
1 *( ,..., )pU UU  

with * ( 1) / 2p p p  , which was used in the proof of Theorem 5, such that 

* *{v( )} ( ) U U V U v  is a bijective differential function of *V  with the Jacobian 

generically written by 

d d{v( )} d ( )dJ  V V v u u  with ( ) 0J u . 

Then, recalling that *

/2 ( 1)/2 1
, ,( ) | | | | {tr( )}n n p

n p n pf C g   
V

V Λ V Λ V , the pdf of U  is given 

by 
/2 ( 1)/2 1

, ,( ) | | | ( ) | ( ) [tr{ ( )}]n n p
n p n pf C J g   U u Λ V u u Λ V u , 

where ( )V u  is a matrix function of u. Suppose that ( )V u  satisfies the following 

condition referred to as “separability”: 

* ( *) ( *)( ) ( )p p pu  V u V u , 

where T
( *) 1 * 1( ,..., )p pu u u , ( *) ( *)( )p p V u  is a function of ( *)pu  and the last element 

*pu  in u is chosen without loss of generality under separability. Then, we have the 

following general result. 

Theorem 6. The marginal joint distribution of ( *)pU  does not depend on the forms of 

, [ ]n pg   or the normalizing constant ,n pK  for the original elliptically distributed X in 

/2
, , / ( / 2)np

n p n p pC K n  . The pdf is given by 

( * ) ( *)

/2 ( 1)/2 1 /2
( *) ( *) ( *) ( *) ( *) ( *)

( )

( / 2)
| | | ( ) | ( )[tr{ ( )}] ,

( / 2)

p p

n n p np
p p p p p p

p

f

np
J

n

 

    
     





U u

Λ V u u Λ V u
 

where ( *) ( *)
( *) ( *) ( *) ( *)T

( *)

( )
( ) det , ( )p p

p p p p
p

J  
   



      

v u
u v u

u
 and ( *) ( *)( )p p v u  

( *) ( *)v{ ( )}p p  V u . 

Proof. The separable condition * ( *) ( *)( ) ( )p p pu  V u V u  is also written as

* ( *) ( *)( ) { ( )}p p pu  v u v u . Then, the Jacobian becomes 
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( 1) /2
* T

( *) ( *)( 1) /2 * 1
* * ( *) ( *)T
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( 2)/2
* ( *) ( *)

( )
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( ).

n p p
p

p pn p p p
p p p p

p

np
p p p
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u u

u J
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u

v u
v u
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u

 

Employ the variable transformation from *pU  to  *

1 *
* ( *) ( *)tr{ ( )}p p pp

Y U 
  Λ V U , which 

gives 

( * ) ( *)

/2 ( 1)/2 ( 2)/ 2 1
, ( *) ( *) ( *) ( *) * , * ( *) ( *) *0

/2 ( 1)/2 1 /2
, ( *) ( *) ( *) ( *) ( *) ( *)

(
*

( )

| | | ( ) | ( ) [ tr{ ( )}]d

| | | ( ) | ( )[tr{ ( )}]

p p

n n p np
n p p p p p p n p p p p p

n n p np
n p p p p p p p

np
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U u
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2)/2
, * *0

/2 ( 1)/2 1 / 2
( *) ( *) ( *) ( *) ( *) ( *)

( )d

( / 2)
| | | ( ) | ( )[tr{ ( )}] ,

( / 2)

n p p p

n n p np
p p p p p p

p

g y y

np
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Λ V u u Λ V u

 

where /2 ( 2)/2
, * , * *0

( ) d ( / 2)np np
n p p n p p pK y g y y np

     is used as in Theorem 5. The last result 

gives the required expression. Q.E.D. 

Remark 7. Note that Theorem 5 is a special case of Theorem 6 when 
*T T

1 1( ,..., , )pp pV H H U r  and *p ppU V  satisfying the separable condition: 

1 1/2 1/2
* ( *) ( *)( ) ( ) diag( ,1) diag( ,1)p p p ppu v 

  V u V u Λ h R h  

with *p ppu v . 

An application of Theorem 6 other than that of Theorem 5 is given by principal 

component analysis (PCA): 

T T
* 1 * * 1

ˆ ˆˆ ˆˆ ˆ ˆ ˆ( ) diag( / ,..., / ) diag( ,..., )p p p p p pU U U U   


 V U W W W W  

where * tr( )p pU U


  V , Ŵ  is the matrix of sample component weights or loadings 

based on the spectral decomposition T
1 1
ˆ ˆ ˆ ˆˆ ˆ ˆ( , ,..., ) diag( ,..., )p p    V V W W W , 

T Tˆ ˆ ˆ ˆ
p W W WW I , pI  is the p p  identity matrix and * 1

ˆ ˆ ˆ ˆ ˆ/ / ( ... )i i p i pU         

( 1,..., )i p  are the sample relative contributions of the p components (for other 

formulations of PCA see Ogasawara, 2000). Theorem 6 shows that the joint distribution of 
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Ŵ  and ˆ ( 1,..., )i i p   in PCA holds under arbitrary elliptical symmetry. 
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 Table 1. Eleven examples and their truncation of the variance-ratio ( )H H  

                          The numbers of intervals  The selection points 
Example No.  Truncation type      for selection (K)       A      B   

1  untruncated  1  0 Inf 
2  lower  1  2/3 Inf 
3  *  1  3/4 Inf 
4  *  1  1 Inf 
5  *  1  4/3 Inf 
6  *  1  3/2 Inf 
7  double  1  2/3 3/2 
8  *  1  3/4 4/3 
9  inner  2  0 2/3 

 3/2 Inf 
10  *  2  0 3/4 

 4/3 Inf 
11  lower-inner  2  2/3 1 

 3/2 Inf 

 Note. 
1 12 2

11 22 1 1 2 21 1
( ) / ( ) / ( )

n n

j jj j
H H V V X X X X

 

 
     ; lower = lower-tail 

 truncated, double = doubly truncated, inner = inner-truncated, lower-inner = 
 lower and inner truncated, Inf = ; ‘*’ indicates ‘the same as above’. 
 
  



 

 

 
Table 2. Simulated and theoretical values of the moments/cumulants of the sample correlation 
coefficient with the truncated probability *  when  = 0.3 (the number of generated (not selected) 
sample covariance matrices = 105) 
 
 
Ex. No. 

 
    Mean         SD          sk            kt      
 Sim.   Th.    Sim.  Th.    Sim.   Th.    Sim.   Th. 

*  
The truncated probability  

    Sim.    Th.    Asy. 
   = 0.3,  n = 20  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

 .2927 .2932 .2060 .2058 -.3694 -.3648 -.0024 -.0334 
 .2942 .2952 .2060 .2055 -.3725 -.3672 -.0000 -.0299 
 .2946 .2951 .2060 .2055 -.3734 -.3672 .0033 -.0300 
 .2927 .2932 .2061 .2058 -.3685 -.3648 -.0108 -.0334 
 .2868 .2875 .2069 .2065 -.3485 -.3575 -.0760 -.0431 
 .2833 .2839 .2068 .2070 -.3432 -.3529 -.0765 -.0491 
 .2971 .2982 .2057 .2050 -.3806 -.3708 .0228 -.0244 
 .2987 .2990 .2054 .2049 -.3863 -.3719 .0476 -.0230 
 .2845 .2839 .2063 .2070 -.3497 -.3529 -.0439 -.0491 
 .2868 .2875 .2064 .2065 -.3535 -.3575 -.0470 -.0431 
 .2918 .2932 .2063 .2058 -.3660 -.3648 -.0180 -.0334 

 1 1 1 
 .8239 .8250 .7827 
 .7468 .7468 .7211 
 .5000 .5 .5000 
 .2546 .2532 .2173 
 .1764 .1750 .1206 
 .6475 .6500 .6621 
 .4922 .4936 .5038 
 .3525 .3500 .3379 
 .5078 .5064 .4962 
 .5004 .5 .4033 

   = 0.3,  n = 50  
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

 .2970 .2973 .1294 .1293 -.2413 -.2448 -.0181 -.0007 
 .2974 .2978 .1293 .1292 -.2409 -.2453 -.0151 -.0002 
 .2977 .2980 .1291 .1292 -.2425 -.2454 -.0129 -.0000 
 .2971 .2973 .1292 .1293 -.2327 -.2448 -.0031 -.0007 
 .2928 .2928 .1295 .1297 -.2399 -.2411 .0017 -.0043 
 .2903 .2895 .1293 .1300 -.2401 -.2384 .0251 -.0068 
 .2979 .2985 .1293 .1292 -.2411 -.2457 -.0184 .0003 
 .2987 .2991 .1290 .1291 -.2430 -.2462 -.0161 .0008 
 .2910 .2895 .1297 .1300 -.2426 -.2384 -.0176 -.0068 
 .2928 .2928 .1302 .1297 -.2361 -.2411 -.0238 -.0043 
 .2966 .2973 .1294 .1293 -.2488 -.2448 -.0216 -.0007 

 1 1 1 
 .9310 .9317 .8917 
 .8550 .8551 .8229 
 .4994 .5 .5000 
 .1456 .1449 .1083 
 .0691 .0683 .0319 
 .8619 .8634 .8597 
 .7094 .7102 .7146 
 .1381 .1366 .1403 
 .2907 .2898 .2854 
 .5006 .5 .4236 

Note. SD = standard deviation, sk = skewness, kt = excess kurtosis, *  (the truncated probability) = 
the reduced probability due to truncation; Sim. = simulated values, Th. = theoretical values, Asy. = 
asymptotic values. 
 
  



 

 

 
Table 3. Simulated and theoretical values of the moments/cumulants of the sample correlation 
coefficient with the truncated probability *  when  = 0.7 (the number of generated (not selected) 
sample covariance matrices = 105) 
 
 
Ex. No. 

 
    Mean        SD          sk             kt      
 Sim.  Th.    Sim.   Th.    Sim.   Th.    Sim.   Th. 

*  
 The truncated probability  

   Sim.    Th.    Asy. 
   = 0.7,  n = 20  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

 .6904 .6907 .1219 .1218 -.9532 -.9543 1.4637 1.4431 
 .6928 .6931 .1210 .1208 -.9594 -.9557 1.4953 1.4517 
 .6933 .6934 .1209 .1208 -.9654 -.9569 1.5312 1.4557 
 .6902 .6907 .1223 .1218 -.9701 -.9543 1.5152 1.4431 
 .6785 .6789 .1253 .1257 -.9544 -.9356 1.5094 1.3700 
 .6722 .6708 .1275 .1281 -.9580 -.9220 1.5717 1.3193 
 .6957 .6962 .1198 .1195 -.9555 -.9559 1.4643 1.4573 
 .6978 .6979 .1192 .1189 -.9650 -.9585 1.5233 1.4679 
 .6714 .6708 .1275 .1281 -.9250 -.9220 1.3975 1.3193 
 .6783 .6789 .1253 .1257 -.9270 -.9356 1.3599 1.3700 
 .6910 .6907 .1214 .1218 -.9523 -.9543 1.5118 1.4431 

 1 1 1 
 .8917 .8921 .8517 
 .8118 .8116 .7831 
 .5025 .5 .5000 
 .1879 .1884 .1483 
 .1079 .1079 .0587 
 .7838 .7842 .7930 
 .6239 .6232 .6348 
 .2162 .2158 .2070 
 .3761 .3768 .3652 
 .4970 .5 .4104 

   = 0.7,  n = 50  
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

 .6964 .6964 .0743 .0741 -.6207 -.6002 .6780 .5901 
 .6967 .6968 .0742 .0739 -.6232 -.5998 .6869 .5895 
 .6971 .6972 .0741 .0739 -.6266 -.6002 .6936 .5904 
 .6964 .6964 .0743 .0741 -.6303 -.6002 .6988 .5901 
 .6874 .6868 .0773 .0760 -.5819 -.5920 .5881 .5698 
 .6800 .6794 .0793 .0775 -.6587 -.5851 .7983 .5535 
 .6972 .6972 .0740 .0738 -.6203 -.5993 .6770 .5886 
 .6980 .6982 .0737 .0736 -.6291 -.5998 .7022 .5900 
 .6805 .6794 .0780 .0775 -.5936 -.5851 .6333 .5535 
 .6876 .6868 .0765 .0760 -.5689 -.5920 .5665 .5698 
 .6962 .6964 .0744 .0741 -.6214 -.6002 .6924 .5901 

 1 1 1 
 .9753 .9757 .9506 
 .9203 .9204 .8921 
 .5039 .5 .5000 
 .0820 .0796 .0494 
 .0248 .0243 .0067 
 .9505 .9514 .9439 
 .8383 .8408 .8426 
 .0495 .0486 .0561 
 .1617 .1592 .1574 
 .4962 .5 .4572 

Note. SD = standard deviation, sk = skewness, kt = excess kurtosis, *  (the truncated probability) = 
the reduced probability due to truncation; Sim. = simulated values, Th. = theoretical values, Asy. = 
asymptotic values. 
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