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The multivariate power-gamma distribution 

 

Abstract: Moments and the moment generating function of the univariate power-gamma 

distribution are obtained. This distribution was proposed elsewhere when a power of a 

variable follows the gamma distribution. The moments yield those of the marginal 

distributions of the multivariate power-gamma distribution introduced in this paper. The 

multivariate power-gamma distribution is based on the multivariate gamma distribution 

when each variable follows the distribution of the sum of independent gammas with a 

similar pattern found in factor analysis. Then, power transformations of the variables give 

the multivariate power-gamma. The probability density function (pdf) of the distribution is 

derived using integral or series expressions. The one-factor models with some restrictions 

yield simplified pdf’s. 

 

Keywords: multivariate gamma, power-gamma, moments, factor analysis, one-factor model, 

series expression. 
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1. Introduction 

It is well-known that the gamma distribution has a variety of special cases e.g., the 

exponential and chi-squares with positive integers or real values for the degrees of freedom 

(df) corresponding to the shape parameter (Johnson, Kotz & Balakrishnan, 1994, Chapter 

17). Transformations of gamma distributed variables e.g., the inverse gamma are also used. 

Among them the inverse chi-square, chi and inverse chi are relatively well-known as 

transformations of the chi-square. Especially, the inverse chi is recently focused on due to 

the convenience to yield the t-distribution by the product of a scaled inverse chi and an 

independent standard normal (Kollo, Käärik & Selart, 2021; Ogasawara, 2021). 

The above transformations are seen as special cases of power transformations of the 

gamma. The power-gamma distribution was introduced by Ogasawara (2021) as a special 

case of the Amoroso (1925) distribution, whose probability density function (pdf; see 

Crooks, 2015, Equation (1)) is 

1

Amoroso

if if

| / |
( | , , , ) exp

( )

( 0; 0; R, 0; 0; R, 0).

x a x a
g x a

x a x a

    
  

      

                  
        

 

Let Y be power-gamma distributed, which is denoted by Power- ( , , )Y    . Then, 
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The power-gamma is also seen as a reparametrization of Stacy’s (1962) generalized gamma, 

which takes the pdf using our notation: 
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It is seen that the power gamma has an extension of the non-zero real power over the 
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positive power of the generalized gamma. Note that *  in (2) is a scale parameter while 

*( 1 / )   in (1) is the rate parameter when 1  . 

It is found that special cases of the power-gamma are usual gamma ( 1  ), inverse 

gamma ( 1   ) and members of the power chi-square subfamily e.g., chi-square 

( / 2, 1 / 2, 1      ), inverse chi-square ( / 2, 1 / 2, 1       ), chi 

( / 2, 1 / 2, 2      ) and inverse chi ( / 2, 1 / 2, 2       ) with   being a 

typically integer-valued df. Other special cases are half-normal 

( 2 21 / 2, 1 / (2 ), 0 , 2          ; a special case of the scaled chi), basic power 

half-normal ( 2 21 / 2, 1 / (2 ), 0        ), exponential ( 1, 1   ), power 

exponential ( 1  ; for the Box-Cox power exponential, see Rigby & Stasinopoulos, 2004; 

Voudouris, Gilchrist, Rigby, Sedgwick & Stasinopoulos, 2012) and a parametrization of the 

Weibull ( 0   ). The basic power half-normal proposed above is seen as a 

reparametrization of a similar case given by Gómez and Bolfarine (2015). For Box–Cox 

symmetric or more generally elliptical distributions including power transformations, see 

Ferrari and Fumes (2017), and Morán-Vásquez and Ferrari (2019). For an associated review, 

see Johnson, Kotz and Balakrishnan (1994, Subsection 8.7). 

Bivariate and multivariate extensions of the gamma distribution have also been given in 

various forms (Kotz, Balakrishnan & Johnson, 2000, Chapter 48). Among the extensions 

satisfying marginal gammas, Cherian (1941) gave a bivariate gamma with a form of the 

sums of a single common gamma and a unique independent one with equal scale parameters. 

The common and unique independent gammas in this form correspond to the common and 

unique factors in the one-factor model of exploratory factor analysis (EFA; for FA, see e.g., 

Harman, 1976, Chapter 2; Bollen, 1989, pp. 226-232). 

One of the properties of FA including latent variables is the inflation of the 

dimensionality of associated variables. In the Cherian bivariate gamma, the number of 

independent gammas is 3, which is given by the single common gamma and two unique 

gammas and is larger than the number of two manifest or observable gammas. In the 

one-factor model of EFA with p observable variables, we have a single common factor and 

p unique factors, yielding an inflation of the dimensionality by 1 as in the Cherian model. 
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Principal component analysis (PCA) is used with similar purposes as FA. However, PCA is 

not a latent variable model since the number of components including minor ones is equal to 

that of observable ones yielding no inflation of dimensionality. 

The Cherian bivariate gamma has been extended to the multivariate cases by 

Ramabhadran (1951) when independent exponentially distributed variables are used, and by 

Prékopa and Szántai (1978) for various patterns for sums of independent gammas 

corresponding to various patterns of factor loadings in FA (see also Kotz et al., 2000, 

Chapter 48, Section 2.2). Mathai and Moschopoulos (1991, Definition 1) gave a 

multivariate gamma of the one-factor type. Recently, Furman (2008, Theorem 3.1) showed 

a multivariate gamma with p fully or partially common gammas and a single unique gamma 

for p observable variables, where the pattern of the “ladder type” corresponding to that of 

the factor loading/pattern matrix in FA is employed. 

In order to have e.g., the pdf and moment generating function (mgf) in the multivariate 

gammas of the FA type, some method of dimension reduction using single or multiple 

integrals for partialing out extra gamma(s) is required, which is called “trivariate reduction” 

or “variables-in-common method” in the bivariate case (Balakrishnan & Lai, 2009, Chapter 

7) and “multivariate reduction” for general cases (Furman, 2008, Section 2). 

The multivariate gammas using the same number of independent gammas as that for 

observable variables was given by Mathai and Moschopoulos (1992, Theorem 1.1), which is 

seen as a PCA type model. When one of the two independent “unique” gammas is omitted 

in the Cherian model, the bivariate gamma of the PCA type is obtained, where the single 

common factor becomes equal to one of the two observable variables with no trivariate 

reduction required. One of the limitations of models of the PCA type is the 

unexchangeability of observable variables, which is easily found in the bivariate gamma of 

this type mentioned above. On the other hand, an advantage for the PCA type is that the 

vector of independent chi-squares is reconstructed from that of observable gammas with the 

inverse of a square matrix corresponding to the factor pattern matrix in FA. 

The purpose of this paper is to introduce the multivariate power-gamma distribution 

with some properties using the multivariate gammas of the FA type. The remainder of this 

paper is organized as follows. In Section 2, moments of the univariate power-gamma are 
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shown. Section 3 gives the multivariate power-gamma of the FA type with some properties. 

In Section 4, three special cases of the one-factor models are dealt with, where series or 

closed expressions of the pdf’s are derived with numerical illustrations for bivariate cases. 

 

2. Moments of the power gamma distribution 

The pdf of the power-gamma defined in (1) gives the following properties. 

Result 1. Let Power- ( , , )Y    . Then, we have 
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where ( ) { ( )}j j     ; and sk( )  and kt( )  are the skewness and excess kurtosis of a 

random quantity in parentheses, respectively. The mgf is given by a series form: 
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which gives the second derivation of /
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E( )
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 when k is a positive integer, 

as shown earlier. The mgf does not exist when 0  , which is known in the case of the 

inverse gamma i.e., 1   . 

When 1 / ( 1, 2,...)m m   , the distribution of Power- ( , , )Y     reduces to 

that of mY X , where X  is gamma distributed with the shape and rate parameters   

and  , respectively, which is denoted by Gamma( , )X   . Then, Result 1 or a known 

property of the gamma gives 
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where ( ) ( ) / ( ) ( 1) ( 1) ( 1, 2,...)j j j j               with 0( ) 1   is 

the rising or ascending factorial using the Pochhammer notation, which yields the following 

results. 

Result 2. Let Power- ( , , 1 / ) ( 1, 2, ...)Y m m     . Then, we have 
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where ( ) {( ) }j j
m m   . 

When m = 1, we see that Result 2 with 1( )   and similar simplified expressions 

gives the well-documented results of the usual gamma: 
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which are also obtained from the cumulant generating function (cgf) giving the j-th one: 

0( | 1) d ln 1 / d | ( 1)! / ( 1, 2,...)j j j
j t

t
Y t j j    

 

 
       

 
. 

Though Result 2 was presented when m is a positive integer, it is found that the 

expressions of Result 2 hold if an extended definition of ( )m  is employed as follows. 

Result 3. Let Power- ( , , 1 / ) (0 )Y m m       . Define 
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( ) ( ) / ( )m m       with a positive real number m. Then, Result 2 holds when the 

positive integer m is seen as a positive real number. 

Further, consider the case of a negative real number   or equivalently a negative real 

m. Recall that Result 1 gives 

/

{ ( / )} ( )
E( ) , 0 ( / )

( ) ( )
k

k km

k km
Y k km

     
   

   
     

 
, 

which holds as long as the condition 0 ( / )k km       is satisfied irrespective of 

0k   , 1 / 0m     or both. 

The case of both negative k and m is trivial in that 
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, 

which reduces to the case of both positive k and m, and always exists. 

Result 4. Let Power- ( , , 1 / ) ( 0)Y m m     . When m < 0, define 

( ) ( ) / ( )m m       in the same expression as positive m in Result 3, we have 

( )
E( ) , 0 ( / )k km

km
Y k km

   


     . 

The case with 1m     reduces to the inverse gamma. Then, Result 4 gives the 

moments when k is a positive integer as: 
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Recall that for positive integer k, ( ) ( 1) ( 1)k k       , while ( ) k   is the 

reciprocal of the descending factorial ( 1)( 2) ( )k     . When 1   , the role of 

  becomes a scale parameter, yielding k  in the numerator of the above expression, 

which was located in the denominator when   was a rate parameter or the reciprocal of a 

scale parameter for 1  . 

 

3. The multivariate power-gamma distribution of the FA type 
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In this section, based on the multivariate gamma distribution of the FA type, the 

multivariate power-gamma of the FA type is defined. 

Definition 1. Let 

1* T
1 0( ,..., ) ( ) ( , 0, 1,..., )p

p p i iY Y i p          Y ΛF Λ I F , 

where 0Λ  is a (1 2 1)pp q q n      matrix consisting of 0 or 1; 
T

1( ,..., )p qF F F  

is a random vector whose p + q elements are independently gamma distributed as

Gamma( , ) ( 1,..., )i iF i p q    ; i  and   are the shape and rate parameters, 

respectively with   common to the p + q gammas; pI  is the p p  identity matrix; and 

it is assumed that each column of 0Λ  has at least two 1’s. The form 

* T T T
0 1( , ) Y ΛF Λ F F  is seen as a FA model, where 

T
0 1( ,..., )qF FF  and 

T
1 1( ,..., )q p qF F F  are the vectors of common and unique factors, respectively; and Λ  

is the factor loading/pattern matrix. Then, 
T

1( ,..., )pY YY  is said to have the multivariate 

power-gamma distribution of the “FA type”, which is denoted by 

T T
1 1Power- ( , , ) Power- { ( ,..., ) , , ( ,..., ) }p p p q p       Y Λα γ Λ . 

In Definition 1, 2 1p n   for the upper limit of q is due to the 0/1 pattern of 0Λ  

excluding the single column of all zeroes, and n columns of a single 1 corresponding to 

unique factors. 

Lemma 1.  Define 
T
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Then, the moment generating function (mgf) of *Y  is 
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Proof. The mgf of *Y  is given from that of F : 
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Since * Y ΛF , the mgf of *Y  is 
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which gives the required result. Q.E.D. 

A special case of Lemma 1 in the case of the one-factor model including location 

parameters was given by Mathai and Moschopoulos (1991, Equation (2)). 

Result 5. Lemma 1 gives the following. 

(i) Let 
T
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where 1{ }  is the indicator function. Then, it is found that the marginal distributions are 

gamma: 

* T
( )Gamma( , ) Gamma( , ) ( 1,..., )i

i i i iY Y i p     λ α . 

The above result is expected since *
iY  is the sum of independent gammas with the same 

rate parameters, whose number of variables and the sum of their shape parameters are 

T
i p qλ 1  and T

iλ α , respectively. 

(ii) Let 
T

0 1( ,..., )q α  and 
T

1 1( ,..., )q p q  α . Then, the mean and variance 

of *
iY , and the covariance matrix of *Y  are 
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* * 2
( ) ( )

* T 2 T 2
0 0 0 1
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The last result of *cov( )Y  shows a typical covariance structure of the orthogonal FA 

model, where 2
0diag( ) / α  and 2

1diag( ) / α  are the covariance matrices of q 

orthogonal common factors and p unique factors, respectively. 

(iii) The k-th order moments (k = 1, 2,…) of *
iY  is given by *M ( )

Y
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Lemma 1 or more easily by *M ( )
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where the extended notation defined by ( ) ( ) ( )( ) ( ) / ( )i k i ik      with possibly 

negative real value k introduced in Result 4 is used. 

The cumulant generating function for *
iY  is given by 
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The 1( ,..., )rk k th product cumulant of *( 1,..., ; 2,..., )iY i r r p   is given by 
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where the results for the first r variables are given without loss of generality excluding the 

case of r = 1. As expected, the last result shows that the cross product cumulants depend 

only on those of the common factors (compare the above results with the corresponding 

ones of Mathai and Moschopoulos, 1992, Section 3 and Furman, 2008, Section 3). 

The distribution of * Y ΛF  is a special case of Power- ( , , )p  Λα γ  when 

pγ 1 , where p1  is the 1p   vector of 1’s. Then, *Y  is said to have the multivariate 

gamma-distribution of the FA type: 

* Power- ( , , ) ( , )p p p   Y Λα 1 Λα . 

The multivariate power chi-square distribution is defined as a special case of the 

multivariate power-gamma as 

2Power- ( , , ) Power- ( / 2, 1 / 2, ) Power- ( , )p p p    Λα γ Λn γ Λn γ  

with T
1( ,..., )p qn n n , which is obtained when 

gamma( , ) gamma( / 2,1 / 2)i i iF n   ( 1,..., )i p q   

i.e., iF  is chi-square distributed with in  degrees of freedom (df), denoted by 

2 ( )i iF n . Note that * T 2 T( )i i iY  λ F λ n , which gives the definition of the 

multivariate chi-square of the FA type: 

* 2 2Power- ( , ) ( )p p p Y Λn 1 Λn . 

Typically, in ’s are positive integers though positive real values can also be used. 

Recall the definitions 
T

0 1( ,..., )q α  and 
T

1 1( ,..., )q p q  α  with the 

corresponding notations 0F  and 1F . Recall also that jλ  is the j-th column of 
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0 ( 1,..., )j qΛ . Let 
T

0 0q  1 α , 
T

1p  1 α ,
T

0 1( ,..., )i i iq  λ  ( 1, ..., )i p , and 

* T *
py  1 y . 

Lemma 2. The pdf of 
* ( , )p Y Λα  of the FA type at * *Y y  is 
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Proof. The FA model gives 

* T T
0 0 ( 1,..., )i i i q iY F i p   λ F λ F . 

Consider the joint distribution of F and use the variable transformation from 1F  to 

*
0 0 1  Y ΛF Λ F F  with unchanged 0F  and the unit Jacobian. Let ( | , )i ig f  


 be 

the pdf of Gamma( , )i iF    at ( 1,..., )i iF f i p q   . Noting that 0F  and the 

elements of *
0 0 1 Y Λ F F  are independently distributed, the pdf of *Y  is obtained by 

integrating out 0F : 
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where *
0 0

0( )d


y Λ f
f  indicates the multiple integral with respect to the elements of 

T
0 1( ,..., )qf ff  over the region *

0 0y Λ f  i.e., 
* T

0 01
{ }

q

i ii
y 

 λ f . Using 
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the previous result becomes 
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Q.E.D. 

Among the FA type models, consider the one-factor model with q = 1, 0 pΛ 1 , 

0 0 1( )p p F  ΛF Λ I F 1 F  and 0 1p Λα 1 α , 

where 
T T T

0 1 0 1( , ) ( , ,..., )pF F F F F F  and 
T T T

0 1 0 1( , ) ( , ,..., )p    α α  with 

0 1, ,..., p    redefined. 

Lemma 3. The pdf of 
*

0 1( , )p p  Y 1 α  of the one-factor type at * *Y y  is 

  * 00

*
, 0 1

1* 1min{ } * 0
0 010

0
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( | , )
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Proof. The one-factor model gives 

* T
0 ( 1,..., )i i iY F F i p   λ F . 

Consider the joint distribution of F and use the variable transformation from 1F  to 
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*
0 1p F  Y ΛF 1 F  with unchanged 0F  and the unit Jacobian. Let 0 0( | , )g f  


 be 

the pdf of 0 0gamma( , )F    at 0 0F f . Noting that 0F  and the elements of 

*
0 1p F Y 1 F  are independently distributed, the pdf of *Y  is obtained by integrating 

out 0F : 
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Q.E.D. 

Mathai and Moschopoulos (1991, Section 5) gave an expression for a model 

essentially equivalent to that in Lemma 3 with no integral though they use (p + 1)-fold 

infinite series. 

Result 6. The pdf of 
* T *

pY  1 Y  with 
*

0 1( , )p p  Y 1 α  of the one-factor 

type at 
* * T *

pY y   1 y  when * *Y y  is 

*

*0
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0 1
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0 0 0 00
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where 
* * *

1min{ } min{ ,..., }py yy  and 
1 1

0
( | , ) (1 ) d

c a bc a b t t t     (0 1)c   is 

the incomplete beta function. 
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Proof. Noting that T * T
0 1Gamma( , )p ppf 1 Y 1 α , as in Lemma 4, we have: 
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T
1 0 * T
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Define *
0 0 /e pf y  with *

0 0d / d /f e y p . Then, the above integral becomes 
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   y  

which gives the required result. Q.E.D. 

In Result 6, note that T *
0 1 ...p ppf f f   1 Y  is gamma distributed, whereas 

T *
1 0...p pf f pf   1 Y  is not gamma since the latter is a linear combination of 

independent gammas with equal scales rather than their sum unless p = 1. 

Theorem 1. The pdf of multivariate power-gamma distributed 
T

1( ,..., )pY YY  at 

T
1( ,..., )py y Y y  with 1* T

1( ,..., )p

py yy  when 1* T
1( ,..., )p

pY Y Y

( , )p  Λα  of the FA type is 
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Proof. Noting that the Jacobian of the variable transformation from *Y  to Y  is 

1*

1 1
d / d | | i

p p

i i i ii i
y y y 

 
  , Lemma 2 gives the required pdf. Q.E.D. 

Corollary 1. The pdf of multivariate power-gamma distributed 
T

1( ,..., )pY YY  at 

T
1( ,..., )py y Y y  with 1* T

1( ,..., )p

py yy  when 1* T
1( ,..., )p

pY Y Y

0 1( , )p p  1 α  of the one-factor type is 
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Proof. Using the same Jacobian as in Theorem 1, Lemma 3 gives the required pdf. 

Q.E.D. 

Recall that T
iλ  is the i-th row of Λ  in the FA type model with the definition of 

T
( )i i  λ α  ( 1,.., )i p . 

Theorem 2. The k-th order moment with k being possibly non-integer and/or negative 

value for the marginal distribution of power-gamma distributed iY  when 

*
( )Gamma( , )i

i i iY Y      ( 1,..., )i p  in the FA type model is 

/
/E( ) ( ) / , 0 ( / ) ( 0, 1,..., )i

i

kk
i k i iY k i p

         . 

Proof. Note that ( )Power- ( , , ) ( 0)i i i iY      . Using the extended notation 

( ) 1/ ( ) ( ) ( )( ) { (1 / )} / ( ) ( 0 (1 / ) )
ii i i i i i            for possibly non-integer and/or 

negative i  and k, Result 4 gives the required result. Q.E.D. 

Lemma 4. The product moment of multivariate power-gamma distributed 
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T
1( ,..., )pY YY  at 

T
1( ,..., )py y Y y  with 1* T

1( ,..., )p

py yy  when 

1* T
1( ,..., )p

pY Y Y ( , )p  Λα  of the FA type is 
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Proof. By definition. 
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Employ the variable transformation from y to *y  with the Jacobian 

*{(1/ ) 1}*

1 1
d /d |1 / | i

p p

i i i ii i
y y y  

 
  . Then, the above result becomes 
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Q.E.D. 

The result of Lemma 4 is expected since the variable transformation used in the proof 

restores the original gammas. 

Theorem 3. The 1( , ..., )-pk k th  product moment and cumulant of 1, ..., pY Y  are 

equal to the corresponding 1 1( / , ..., / )-p pk k th   ones of 
* *

1 , ..., pY Y . When 
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*/ ( 1,..., )i i ik k i p    are positive integers, the cumulants are given by Result 5 (iii) 

when ik  is replaced by * ( 1,..., )ik i p . 

Theorem 3 is not trivial in that ik  and i  can be real-valued and/or negative as long 

as the condition is satisfied. 

 

4. Special cases of the one-factor model and numerical illustrations 

In this section, three special cases of the one-factor model are shown with their 

simplified properties. The first special case has a restriction of integer-valued shape 

parameters for unique factors i.e., ( 1,..., )iF i p  with an unconstrained single common 

factor 0F . 

Lemma 5. The pdf of 
*

0 1( , )p p  Y 1 α  of the one-factor model at * *Y y , 

when the elements of 
T

1 1( ,..., )p α  are all positive integers, is 
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Proof. When 1, ..., p   are positive integers, the pdf derived in Lemma 3 for the 

one-factor model can be expanded as 
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Q.E.D. 

When 2i   in the case of Lemma 5, iF  is 1 / 2  times chi-distributed. The 

second special case is given when 1 ( 1,..., )i i p   . That is, all the unique factors are 

1 /   times exponentially distributed. 

Lemma 6. The pdf of 
*

0 1( , )p p  Y 1 α  of the one-factor model at * *Y y , 

when the elements of 
T

1 1( ,..., )p α  are all one i.e., 1 pα 1 , is 
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Proof. When the additional condition of 1 pα 1  in Lemma 5 is imposed, the 

requited result follows. Alternatively, the result is directly obtained from the above integral 

expression. Q.E.D. 

As mentioned earlier, Ramabhadran (1951) dealt with the case of 0 1   with 

1   as well as 1 pα 1 , which indicates that all the p + 1 common/unique factors are 

exponentially distributed. Then, consider a scaled Ramabhadran’s case with 0    . 

Lemma 7. The pdf of 
*

0 1( , )p p  Y 1 α  of the one-factor model at * *Y y , 
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when the elements of 
T T T

0 1 0 1( , ) ( , ,..., )p    α α  are all one, is 
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Proof. When the condition of 0  is added in Lemma 6, we have 
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which is also given from the expression 

*min{ }
1 *

0 00
exp( ) exp{ ( 1) }dp y p f f  

 
y

. 

 Q.E.D. 

Lemmas 5, 6 and 7 yield the following results. 

Theorem 4. (i) The pdf of multivariate power-gamma distributed 
T

1( ,..., )pY YY  

at 
T

1( ,..., )py y Y y  with 1* T
1( ,..., )p

py yy  when 1* T
1( ,..., )p

pY Y Y

0 1( , )p p  1 α  of the one-factor model with the elements of 
T

1 1( ,..., )p α  

being all positive integers, is 
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(ii) In the above case, if the additional condition of 1 pα 1  is employed, we have 
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(iii) When all the elements of 
T

0 1( , , ..., )p  α  are one, we obtain 
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Before presenting numerical illustrations, we provide the following properties for 

clarity. 

Result 7. Consider 
* * * T

1 0 1( ,..., ) ( , )p p pY Y    Y 1 α  i.e., variables before 

power transformation for the one-factor model. 
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(ii) When 0  goes to +0, 0F  approaches the one-point distribution of zero in probability 

with *Y  approaching p independent gammas. When 1 α 0 , *( 1,..., )iY i p  approach 

the identical gamma 0( , )  . 

(iii) * *cov(1 / , ) 0i iY Y   when the covariance exists. This property is confirmed as 
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cov(1 / , ) 1 E(1 / )E( )

( 1) ( 1) 1
1 1 0

( ) ( ) 1 1

( 1).
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Result 7 (i) of positive covariances smaller than the associated variances is a limitation 

of the model in applications as noted by Prékopa and Szántai (1978), which can be relaxed 

by considering the sum of gammas with different scale parameters as in the usual FA model 

or linear combinations of equal-scale gammas. However, these relaxations generally yield 

non-gamma distributed marginals with complicated pdf’s (see Mathai, 1982; Moschopoulos, 
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1985). The obvious properties of Result 7 (ii) show that the one-factor model is situated 

between those of a single gamma and independent p gammas. The negative covariance of 

Result 7 (iii) is expected since *1 / iY  is a decreasing function in the support. 

Numerical illustrations of the pdf’s of the bivariate power-gammas when the 

one-factor models of Lemmas 6 and 7 hold are shown in Figures 1 and 2, respectively. In 

Figure 1 with a single common gamma, 0 0.2   is used with two unique independent 

exponentials, which gives * *
1 2 0 0cor( , ) / ( 1) 1 / 6Y Y     , while in Figure 2 with three 

independent common/unique exponentials, we always have * *
1 2cor( , ) 1 / 2Y Y  . Three pairs 

of powers T T T( 2, 1) , ( 2, 2) , (2, 2)   γ  are used for transformation in the figures. The 

first case of T( 2, 1)  γ  gives two decreasing transformations of the original gammas 

while the second case of T( 2, 2) γ  yields a decreasing and an increasing transforms as 

in Result 7 (ii). The rate parameter 0.8   is used for all the cases. The pdf’s are shown 

by a mesh with 230  points of 0 (0.1)3 ( 1, 2)iY i   using finite approximations of the 

series expression in Lemma 6. As suggested by Result 7 (iii), in Figure 1, the relatively less 

correlated *
iY ’s by construction are found to be conveyed to the corresponding transformed 

ones. In Figure 2, increased correlations are shown in the transformed variables. 
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 Figure 1. Density plots of the bivariate power−gamma distributions

 with a common gamma and unique exponentials 

(Y1 = the horizontal axis, Y2 = the vertical axis for upper plots, β = 0.8 )
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 Figure 2. Density plots of the bivariate power−gamma distributions

 with common and unique exponentials 

(Y1 = the horizontal axis, Y2 = the vertical axis for upper plots, β = 0.8 )
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