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On some known derivations and new ones for the Wishart distribution: A didactic 

 

Abstract: The proofs of the probability density function (pdf) of the Wishart distribution 

tend to be complicated with geometric viewpoints, tedious Jacobians and not self-contained 

algebra. In this paper, some known proofs and simple new ones for uncorrelated and 

correlated cases are provided with didactic explanations. For the new derivation of the 

uncorrelated case, an elementary direct derivation of the distribution of the Bartlett-

decomposed matrix is provided. In the derivation of the correlated case from the 

uncorrelated one, simple methods including a new one are shown. 

 

Keywords: Jacobian, multivariate normality, probability density function (pdf), triangular 

matrix, Bartlett decomposition. 
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1. Introduction 

The Wishart distribution has been often used for the matrix of the squares and cross 

products of random vectors. Though the distribution is given under multivariate normality, 

the distribution has various extensions e.g., the inverted distribution (Anderson, 2003, 

Section 7.7), singular cases (Srivastava, 2003; Bodnar & Okhrin, 2008; Mathai & Provost, 

2022), complex-valued ones (Srivastava & Khatri, 1979, Section 3.7), those with multiple 

degrees of freedom (df) (Ogasawara, 2022a), the joint distributions of the Wishart matrix 

and normal vectors (Yonenaga, 2022) and cases under arbitrary distributions (Srivastava & 

Khatri, 1979, Lemma 3.2.3). 

The probability density function (pdf) of the distributions were given by Fisher (1915, p. 

510) and Wishart (1928) for the bivariate and general multivariate cases, respectively. The 

derivations tend to be involved with geometric viewpoints (see e.g., Anderson, 2003, 

Section 7.2) or not self-contained algebra as criticized by Ghosh and Sinha (2002) (for the 

references of derivations see Srivastava & Khatri, 1979, p. 73; Anderson, 2003, pp. 256-

257). Khatri (1963) showed a brief derivation using an integral of the unity over the 

constant quadratic forms having the chi-square density. Ghosh and Sinha (2002) gave a 

self-contained concise proof of the Wishart density though it is an indirect method. In this 

note, almost self-contained known proofs and new ones for the uncorrelated and correlated 

multivariate cases are shown with didactic explanations. 

 

2. Proofs of the Wishart distributions 

2.1 The distribution of a lower-triangular matrix for the Wishart density 

Suppose that in the random matrix { } ( 1,..., ; 1,..., ; )ijX i p j n p n   X , each 

column is multivariate normally distributed as N ( , )p p0 I  independent of the other 

columns with the population mean vector 0  and covariance matrix pI  denoting the 

p p  identity matrix. That is, all the elements of X  are mutually independently 

distributed as standard normal. 

Let T T S XX TT  be Bartlett-decomposed such that T  is a p p  lower-

triangular matrix whose diagonal elements are positive. Define 
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T
11 21 22 1( , , ,..., ,..., )p pps s s s ss  and T

11 21 22 1( , , , ..., ,..., )p ppt t t t tt , where s  and t  are the 

2{( ) / 2} 1p p   vectors of the non-duplicated elements of S  and the random elements of 

T , respectively. Let T| / | s t  (Srivastava & Khatri, 1979, p. 28) be the absolute value of 

the determinant of the Jacobian matrix for the transformation S T : 

T
( 1; 1)ij

kl

s
p i j p k l

t

 
       

  

s

t
 

using the double subscript notation for the rows of the elements of s  and columns for 

those of Tt  in T/ s t . Then, the Jacobian of the transformation is given by T| / | s t . 

For the proof of the Wishart distribution, the following lemmas are used. 

Lemma 1. Suppose that each of 2m variables ikX  and jkX  

( ; 1,..., ; 1, 2,...)i j k m m    independently follows 1N(0,1) N (0,1) . Then, the 

distribution of 
1

m

ik jkk
X X

  is the same as that of 2

1
( ; 1,..., )

m

il jkk
X X i j l m


  . 

Proof. When m = 1, the equal distribution of 1 1i jX X  and 2
1 1 1 1| |i j i jX X X X  is 

given by the symmetric distribution of 1 1i jX X  about zero. For general cases, consider the 

moment generating functions (mgf’s). By definition, the mgf of 
1

m

ik jkk
X X

  is 

    1 1

2 2

1

2 2 2

1

2 2

1

E exp E exp( )

1
exp d exp d

2 2 2

( ) (1 )1 1
exp d exp d

2 22 2

(1 )1
exp

22

mm

ik jk ik jkk k

m jk ik
ik jk jk ikk

m jk ik ik
jk ikk

m ik

k

t X X tX X

x x
tx x x x

x tx t x
X x

t x



 



 

 

  

 

  





   
         

         
    

 
 

 

  

  


2 /2

d

(1 ) (| | 1).

ik

m

x

t t










 
  



 

On the other hand, the mgf of 2

1

m

il jkk
X X

  is 
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It is found that the above two mgf’s are the same, which shows the same distribution of 

1

m

ik jkk
X X

  and 2

1
( ; 1,..., )

m

il jkk
X X i j l m


  . Q.E.D. 

Lemma 2 (Deemer & Olkin, 1951, Theorem 4.1; Srivastava & Khatri, 1979, Exercise 

1.28 (i); Muirhead, 1982, Theorem 2.1.9; Anderson, 2003, p. 255). The Jacobian of the 

transformation S T  is 

T 1

1
| / | 2

pp p i
iii

t  
 

   s t  

Proof. Deemer and Olkin (1951) derived the result as a special case of another general 

theorem. Muirhead (1982) used the exterior product while an essential standard proof was 

given by Anderson (2003). The derivation is given here by induction. When p = 1, 

T
11 11| / | d / ds t  s t  2

11 11 11d / d 2 0t t t    showing that the above result holds. Assume 

that the result holds when *p p  i.e., T| / | s t
** * 1 *

1
2 ( 1)

pp p i
iii

t p 


  . When 

* 1p p  , the elements * 1,1 * 1,2 * 1, * 1, , ...,p p p ps s s     are added to s  at its end. Similarly, 

* 1,1 * 1,2 * 1, * 1, , ...,p p p pt t t     are added to Tt . Noting that 
1

( 1)
j

ij ik jk
k

s t t p i j


    , we find 

that T/ s t  is a lower-triangular matrix. Consequently, the added factor in T| / | s t  

when * 1p p   over when *p p  is given by the product of the added diagonal 

elements: 
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* 1,1 * 1,2 * 1, * * 1, * 1
11 22 * * * 1, * 1

* 1,1 * 1,2 * 1, * * 1, * 1

2p p p p p p
p p p p

p p p p p p

s s s s
t t t t

t t t t
    

 
    

   


   
  . 

That is, T| / | s t  becomes 

 * ** * * *11 1 1 1
11 22 * * * 1, * 11 1

2 2 2
p pp p i p p i

ii p p p p iii i
t t t t t t

     
  

  , 

which shows that the formula T 1

1
| / | 2

pp p i
iii

t  
 

   s t  holds when * 1p p   

indicating the required result. Q.E.D. 

In the following theorem for a known Wishart density, we use ( / 2)p n  

( 1)/4

1
{( 1) / 2}

pp p

i
n i 


     i.e., the p-variate Gamma function (Anderson, 2003, 

Definition 7.2.1; Subsection 7.2, Equation (18); see also DLMF, 2021, Section 35.3, 

https://dlmf.nist.gov/35.3), where 1

0
( ) exp( ) d ( 0)kk v v v k

      is the usual gamma 

function. 

Theorem 1. Under the condition that the n columns of X  independently follow 

N ( , )p p0 I , the pdf of the Wishart distributed S  is given by 

( 1)/2

/ 2

exp{ tr( ) / 2} | |
( | , ) ( )

2 ( / 2)

n p

p p np
p

w n n p
n

 
 


S S

S I . 

Proof. Consider the case of ij ijt X  and 2 ( 1,..., ; 1,..., 1)
n

ii ikk i
t X i p j i


    . 

Since ( 1,..., ; 1,..., )ijX i p j n   are mutually independent, ( 1,..., ; 1,..., )ijt i p j i   are 

independent. Note that T 2 T

1
( ) ( )

i

ii ij iij
t


 TT XX  ( 1,..., )i p  are independently chi-

square distributed with n df, where ( )ij  is the (i, j)-th element of a matrix; and iit  is chi-

distributed with 1n i   df . Further, Lemma 1 shows that the distributions of the off-

diagonal elements T

1
( )

j

ij ik jkk
t t


TT  and T( ) ( 1)ij p i j  XX  using iit  and 

( 1,..., ; 1,..., 1)ijt i p j i    are the same. That is, the distribution of TS XX and TTT  

are the same when ( 1,..., ; 1,..., )ijt i p j i   are distributed as above. The pdf of the 

constructed ijt ’s ( 1)p i j    denoted by ( )pf T  becomes 
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2

2
2

{( 1)/2} 1 ( )/2
1 1

2 2

1 1

( 1) ( 1) ( 1) ( 1)

2 4 4 4

exp( / 2) 1
( ) exp / 2

2 {( 1) / 2} ( 2 )

exp( / 2) exp / 2
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n ip
ii ii
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i p i j

p
n i
ii ii ij

i p i j

n p p p p p p p
p

i

t t
f t

n i

t t t
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T

T

1

2

1

exp{ tr( ) / 2}

.

2 ( / 2)

p
n i
ii

i

npp p

p

t

n









 
 

 






TT  

In the above expression, the pdf of the chi-distributed t  with k df denoted by ( | )iif t k  is 

given by that of the chi-square distributed 2
iiu t  with k df i.e., 

2

( /2) 1

/2
( | ) exp( / 2)

2 ( / 2)

k

k

u
f u k u

k



 


 with the Jacobian d / d 2ii iiu t t , yielding 

( 1) 2 1 2( /2) 1

/2 ( 1)/2 1

exp( / 2)d
( | ) exp( / 2)

2 ( / 2) d 2 {( 1) / 2}

n ik
ii ii

ii k n i
ii

t tu u
f t k u

k t n i

   

  


  

   
 

as shown earlier, when 2
iiu t  and 1k n i   . 

Consider the transformation T S  in T T S XX TT . The Jacobian ( )J T S  of 

this transformation is given by the reciprocal of ( )J S T  obtained in Lemma 2 as 

  1
T 1

1
( ) 1/ | / | 2

pp p i
iii

J t


 
 

     T S s t . Consequently, using 1/2
11| | | | ppt t S T   

the pdf of S  becomes 

  T
( 1)/2

1

/2
12

1

( | , ) ( ) ( )

exp{ tr( ) / 2} exp{ tr( ) / 2} | |

2 ( / 2)
2 ( / 2)2

p p p

p n i
n piii

np np
p pp p i p

p iii

w n f J

t

n
n t


 



  


 

 
 








S I T T S

TT S S  

Q.E.D. 

Remark 1. The pdf of the ijt ’s ( 1)p i j    i.e., ( )pf T  given above using 

Lemma 1 is algebraically equal to that of Anderson (2003, Equation (6), p. 253, Corollary 

7.2.1), Wijsman (1957, Equation (12)) and Kshirsagar (1959, Remarks). However, a typical 

derivation by e.g., Anderson is an indirect one using the orthogonalization and the 

conditional normal density. Since Anderson’s derivation seems to give some complicated 

impressions for beginning students/researchers though it is almost self-contained, the 

corresponding didactic explanation of his derivation is given below. Anderson (2003, 
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Equation (2), p. 252) defined the n-dimensional independent random vectors 

N ( , ) ( 1,..., )i n n i pv 0 I  with 

T
1

T
p

 
 
 
 
 

v

X =

v

 . 

Then, the Gram-Schmidt sequential orthogonalization is employed (Anderson, 2003, 

Equation (3), p. 253) as 

T1

T
1

( 2,..., )
i

j i
i i j

j j j

i p




  
w v

w v w
w w

 and 1 1w v , 

where he used the expression T
j jv w  for the denominator T

j jw w . Though T T
j j j jv w w w  

( 1,..., )j i  as will become apparent, T
j jw w  may be more natural and appropriate. While 

he included the short derivation of the orthogonality among iw ’s by induction , it is 

repeated here with some added explanations. When i = 2, we have 

T T 1 T T T T T 1 T
2 1 2 1 1 1 1 2 1 2 1 2 1 1 1 1 1{ ( ) } ( ) 0     w w v w w w w v w v w v w w w w w  

showing the orthogonality. Suppose that 

T 0 ( , 1,..., 1; )j k j k i j k   w w  

hold. Then, we have 

T T1 1
T T T T

T T
1 1

T
T T

T
0 ( 2,..., ; 1,..., 1),

i i
j i j i

k i k i j k i k j
j jj j j j

k i
k i k k

k k

i p k i

 

 

 
     

 

     

 
w v w v

w w w v w w v w w
w w w w

w v
w v w w

w w

 

due to the assumption T 0 ( , 1,..., 1; )j k j k i j k   w w , showing the required result 

T 0 ( , 1,..., ; )j k j k i j k  w w . Recall that T T ( 1,..., )j j j j j i v w w w  mentioned earlier, 

which is obtained by T 0 ( , 1,..., ; )j k j k i j k  w w  and 
T1

T
1

i
j i

i i j
j j j





 
w v

w v w
w w

( 2,..., )i p . 

The orthogonalization procedure is re-expressed by 
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1 1 1

T1

T
1

T 1 T 1 T
1 1 1 1 1 1 1 1( ,..., ) diag{( ) ,..., ( ) }( ,..., )

( ) ( 2, ..., ),
i i i

i
j i

i i j
j j j

i i i i i i

i i n i i i p
  





 
   

 

 

     



W W W

w v
w v w

w w

v w w w w w w w w v

v P v I P v Q v

 

where 
1

T 1 T
1 1 1 1( )

i i i i i


   WP W W W W  is the idempotent (i.e., 

1 1

2

i i 
W WP P ) and symmetric 

projection matrix transforming or projecting iv  onto the space spanned by the columns of 

1 1 1( ,..., )i i W w w  of full column rank by assumption; and 
1 1i in 
 W WQ I P  is also an 

idempotent and symmetric projection matrix yielding the residual vector 
1ii i

 Wv P v  or the 

projected vector on the space orthogonal to the column space of 1iW with 

1 1i ii i i 
 W Wv P v Q v . Anderson (2003, p. 252) stated “ iw  is the vector from iv  to the 

projection on 1 1, ..., iw w ” with his Figure 7.1. He repeatedly stressed the equivalence of 

the column space of 1iW  and that of 1 1, ..., iv v  in our expression. 

Using the constructed 1 1, ..., iw w  by the Gram-Schmidt orthogonalization or 

projection, Anderson (2003, p. 252) defined 

T|| || ( 1,..., )ii i i it i p  w w w  and T / || || ( 2,..., ; 1,..., 1)ij i j jt i p j i   v w w , 

which may be uniformly expressed by T / || || ( 2,..., ; 1,..., )ij i j jt i p j i   v w w  due to 

T T ( 1,..., )j j j j j i v w w w  mentioned earlier. Then, noting that 
1ii i i

  Ww v P v , we have 

1

T T1

T 2
1 1 1|| || || ||i

i i i
j j j i ij

i i i i i j j
j j jj j j j

t




  

       W

w w w v
v w P v w v w w

w w w w
 

and 

T T T

1 1

T

1 1

( )
|| || || ||

( 1)
|| || || ||

ji
jkik

ij i j k k
k kk k

ji
jkik

k k ik jk
k kk k

tt

tt
t t p i j

 

 

 
   

 

    

 

 

XX v v w w
w w

w w
w w

 

(Anderson, 2003, p. 252). In T / || || ( 2,..., ; 1,..., 1)ij i j jt i p j i   v w w , / || ||j jw w  is 

seen as the unit-norm vector representing the direction for the j-th coordinate in the 1i   

coordinates given by 1 1, ..., iw w . He stated that “ , 1,..., 1ijt j i   are the first 1i   
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coordinates in the coordinate system with 1 1, ..., iw w  as the first coordinates axes” (p. 

252). We also find that ijt  is || ||jw  times the regression coefficient ijb  for iv  on jw  

since 

T T T/ || || ( / ) || || || || ( 2,..., ; 1,..., 1)ij i j j i j j j j ij jt b i p j i     v w w v w w w w w . 

The properties of the normality of T / || || ( 2,..., ; 1,..., 1)ij i j jt i p j i   v w w  and 

their mutual independence shown by Anderson is based on the normality of the conditional 

distribution of the multivariate normal when ( 1,..., 1)j j i w  are given and orthogonal 

transformation in T / || || ( 2,..., ; 1,..., 1)ij i j jt i p j i   v w w . That is, the standard  

normally-distributed of T / || ||ij i j jt  v w w  do not depend on 1 1, ..., iw w  indicating 

independence with T T( / || ||) ( / || ||)j j k kw w w w ( , 1,..., 1)jk j k i   , where jk  is the 

Kronecker delta with 1jj   and 0 ( )jk j k    (Anderson, 2003, Theorem 3.3.1). The 

independent property of iit ’s is given by  1/21T 2

1
( )

i

ii ii ijj
t t




 XX . Although the same 

result as shown above by the didactic explanation of Anderson’s derivation is directly given 

by Lemma 1, the two methods may be insightful with compensatory properties. 

 

2.2 The Wishart density for general correlated cases 

For the correlated cases, four lemmas are provided. Lemma 3 is for three Jacobians in 

the product of two lower-triangular matrices, where the first Jacobian was used by Anderson 

(2003, Theorem 7.2.2) to derive the Wishart density for general correlated cases while the 

remaining two are given for generality with didactic purposes. Lemmas 4 and 5 are 

provided for the Jacobians in two alternative derivations of the general Wishart density. The 

proof of Lemma 6 associated with sufficient statistics is based on Ghosh and Sinha (2002) 

Lemma 3. Suppose that A BC , where ,A B  and C  are p p  lower-triangular 

matrices. Consider the variable transformation from the non-zero elements of C  or B  to 

those of A . Then, the Jacobians ( )J C A  and ( )J B A  are 
1

1

p i
iii

b


  and 

1
1

1

p p i
iii

c


 
 , respectively. When B C , 

1

1 1
( ) ( )

p i

ii jji j
J b b



 
   B A . 
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Proof. Note that Anderson (2003, p. 254) gave ( )J C A . Since 

( 1)
i

ij ik kjk j
a b c p i j


    , we have 

11 11 11

21 22 21

22 22 22

1 1

0 0 0 0

* 0 0 0

* * 0 0

* * * 0

* * * *

p pp p

pm pp pp

a b c

a b c

a b c

a b c

a b c

     
     
     
     
     

     
     
     
     
     
          

 
 
 

      
 

      
 

, 

where the diagonal element of the lower-triangular matrix corresponding to the row for ija  

and the column for ijc  is ( 1)iib p i j   ; the asterisks indicate zero or non-zero 

elements ; and 

11 11 11

21 11 21

22 22 22

1 11 1

0 0 0 0

* 0 0 0

* * 0 0

* * * 0

* * * *

p p

pppp pp

a c b

a c b

a c b

a c b

ca b

    
    
    
    
    

    
    
    
    
    
       

 
 
 

      
 

     
 

, 

where the corresponding diagonal element for ija  and ijb  is ( 1)jjc p i j   . Since the 

inverses of the Jacobian matrices for ( )J C A  and ( )J B A  on the right-hand sides 

of the above equations are lower-triangular, the Jacobians become the reciprocals of the 

absolute values of the determinants i.e., 
1

p i
iii

b
  and 1

1

p p i
iii

c  
 , respectively. The result 

when B C  is obtained by the reciprocal of the determinant of the sum of the two lower-

triangular matrices. Q.E.D. 

Lemma 4. Suppose that TA BCB , where A  and C  are p p  symmetric 

matrices; and B  is a lower-triangular matrix. Consider the variable transformation from 

the non-duplicated elements of C  to those of A . Then, the Jacobian ( )J C A  is 
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( 1)| | p 
B . 

Proof. Since the non-duplicated elements of A  using its diagonal and infra-diagonal 

elements are 
1 1

( 1)
i j

ij ik kl jlk l
a b c b p i j

 
     , we have 

( 1; 1,..., ; 1,..., )ij
ik jl

kl

a
b b p i j k i l j

c


     


, 

which gives 

11 11 11 11

21 22 11 21

22 22 22 22

1 11 1

0 0 0 0

* 0 0 0

* * 0 0

* * * 0

* * * *

p pp p

pp pp pp pp

a b b c

a b b c

a b b c

a b b c

a b b c

     
     
     
     
     

     
     
     
     
     
          

 
 
 

      
 

      
 

, 

where the diagonal element of the lower-diagonal matrix for ija  and ijc  is 

/ ( 1)ij ij ii jja c b b p i j      . Since ( )J C A  is the reciprocal of the absolute value 

of the determinant of the above lower-triangular matrix, we obtain 

1 ( 1)

1
( ) 1 / | |

p p p
iii

J b   


  C A B . Q.E.D. 

Lemma 5. Suppose that T TA BCC B , where A  is a p p  symmetric matrix; and 

B  and C  are lower-triangular matrices. Consider the variable transformation from the 

non-zero elements of C  to the non-duplicated elements of A . Then, the Jacobian 

( )J C A  is ( 1) 1

1
| | / 2

pp p p i
iii

c   
 B . 

Proof 1. The diagonal and infra-diagonal elements of A  are employed for its non-

duplicated ones without loss of generality. Then, define T
11 21 22 1( , , ,..., ,..., )p ppa a a a aa  

and T
11 21 22 1( , , ,..., ,..., )p ppc c c c cc  with the elements lexicographically ordered. Since B , 

C  and BC  are lower-triangular, the Jacobian matrix  T/ /ij kla c    a c

( 1; 1)p i j p k l       becomes lower-triangular. This can be shown by 
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T T T T T{ ( ) } ( ) ( )

( ) ( ) ( 1; 1),

ij
kl lk ij kl ij lk ij

kl

ik jl il jk

a

c

b b p i j p k l


   



       

B E C CE B BE C B BCE B

BC BC
 

where ijE  is the matrix of an appropriate size, whose (i, j)th element is 1 with the 

remaining ones being 0. The right-hand side of the last equation in the above expression 

vanish when i k  or { } { }i k j l   . This condition indicates the lower-triangular form 

of  T/ /ij kla c    a c . Then, the diagonal elements are 

T T T T{ ( ) } ( ) ( 1)ij
ij ji ij ij ij ii jj jj

ij

a
b c b p i j

c


      


B E C CE B BE C B  

and 

T T 2{ ( ) } 2 ( 1,..., )ii
ii ii ii ii ii

ii

a
b c i p

c


   


B E C CE B . 

Since the determinant of the Jacobian matrix for ( )J A C  is 

 

1

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

2

2 2 2 | | ,

p i p i p p iij ij pii
ii jj jji j i j i i j

ij ij ii

p p p pp i p j p j p p p i p p p i
ii jj jj ii ii iii j i i

a a a
b c b

c c c

b c b b c c



      

         
   

   
      

  

      

   B

 

the Jacobian ( )J C A  is the reciprocal of the absolute value of the above quantity: 

( 1) 1

1
( ) | | / 2

pp p p i
iii

J c   
 

  C A B , 

which is the required result. Q.E.D. 

Proof 2. The transformation T TA BCC B  is seen in two steps. In the first step, the 

transformation TC CC  is considered, whose Jacobian is given by Lemma 2 

T 1

1
( ) 1 / 2

pp p i
iii

J c  


  C CC . The second step is for the transformation 

T T T CC A BCC B  with the Jacobian T ( 1)( ) | | pJ  
 CC A B , which is given by 

Lemma 4. Then, the Jacobian ( )J C A  is the product of the two Jacobians due to the 

chain rule, which gives the required result. Q.E.D. 

Suppose that each column of a p n  matrix Y  follows N ( , )p 0 Σ  with positive 
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definite Σ  independent of the other columns. Recall X  in Theorem 1. Let TΣ BB  be 

the Cholesky decomposition, where B  is a fixed lower-triangular matrix whose diagonal 

elements are positive for identification and convenience. Then, each column of Y BX  

independently follows N ( , )p 0 Σ . Define T T T T  ΣS YY BXX B BSB , where 

T T

p
  IS S XX TT , and the { ( 1) / 2} 1p p    vector 

T
11 21 22 1( , , ,..., ,..., )p pps s s s sΣ Σ Σ Σ Σ Σs  with { } ( , 1, ..., )ijs i j p Σ ΣS . 

Lemma 6. Define positive definite T
i i iΣ B B  and T

i i iΣS B SB ( 1, 2)i  , where S  is 

as before. Denote the pdf’s of 
iΣS  at ΣS  by ( ) ( 1, 2)

i
g i Σ Σ ΣS . Then, 

1

2

, 1

, 2

( ) ( | , )

( ) ( | , )
p n

p n

g

g








Σ Σ Σ

Σ Σ Σ

S Y 0 Σ

S Y 0 Σ
, 

where , 1
( | , ) {( ) | , }

n

p n i p j ij
  

Y 0 Σ Y 0 Σ ; ( ) jY  is the j-th column of Y ; and 

T 1

/2 1/2

exp{ ( ) ( ) / 2}
{( ) | , } ( 1, 2; 1,..., )

(2 ) | |
j i j

p j i n
i

i j n



 




  

Y Σ Y
Y 0 Σ

Σ
. 

Proof. The derivation is given by the factorization theorem for the sufficient statistic 

corresponding to ΣS  for Σ  as used by Ghosh and Sinha (2002, Equation (8)): 

, ( | , ) ( ) ( ) ( 1, 2)
ip n i g h i  Σ Σ ΣY 0 Σ S Y , 

which gives the required result. Q.E.D. 

The Wishart density for general correlated cases (see e.g., Srivastava & Khatri, 1979, 

Theorem 3.2.1; Anderson, 2003, Theorem 7.2.2) is derived in different ways. 

Theorem 2. Let each column of a p n  matrix Y  follows N ( , )p 0 Σ  with positive 

definite Σ  independent of the other columns. Then, the pdf of TΣS YY  is 

1 ( 1)/2

/2 /2

exp{ tr( ) / 2} | |
( | , )

2 | | ( / 2)

n p

p np n
p

w n
n

  



Σ Σ

Σ

Σ S S
S Σ

Σ
. 

Proof 1. Consider the transformation T T ΣT S BTT B . The Jacobian is given by 

Lemma 5, when , ΣA S B B  and C T  with added restrictions 0iib   and 

0 ( 1,..., )iit i p   as 
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   ( 1) 1 ( 1)/2 1

1 1
( ) | | / 2 | | / 2

p pp p p i p p p i
ii iii i

J t t       
 

   ΣT S B Σ  

The pdf of T  denoted by ( )pf T  was given by Theorem 1. Then, we have 

T T ( 1)/2 1
( 1)/2

1 1
( /2) /21

1

1 T 1 ( 1)/2 1 T 1 ( 1)/2

( | , ) ( ) ( )

exp{ tr( ) / 2} exp{ tr( ) / 2} | |
| |

2 ( / 2) 2 ( / 2)2

exp{ tr( ) / 2} | | | |

2

p p

p p
n i p n p
ii iip

i i
pnp p npp p i

p piii

p n p

np

w n f J

t t

n nt

    
 

 
  



       

 

 
 

 




 



Σ Σ

Σ Σ

S Σ T T S

TT TT Σ
Σ

B S B Σ B S B
/2

1 ( 1)/2

/2 /2

( / 2)

exp{ tr( ) / 2} | |
,

2 | | ( / 2)

p

n p

np n
p

n

n

  







Σ ΣΣ S S

Σ

 

where 1 T 1 T 1 1 T 1 1tr( ) tr( ) tr{( ) } tr( )       Σ Σ Σ ΣB S B B B S BB S Σ S  and 

1 T 1 1| | | || |  Σ ΣB S B S Σ  are used. The last expression gives the required result. Q.E.D. 

Proof 2. Employ the two-step transformation T T   ΣT S TT S BSB . The first 

step was used by Theorem 1. The Jacobian T( )J  T S TT  in the first step is given by 

Lemma 2 by taking the reciprocal of the last result of the lemma while 

T( )J  ΣS S BSB  is obtained by Lemma 4. That is, 

( 1)/2 ( 1)/2
( 1)

/2 /2

1 1 ( 1)/2 ( 1)/ 2

/2

1

( | , ) ( ) ( ) ( )

exp{ tr( ) / 2} | | exp{ tr( ) / 2} | |
( ) | |

2 ( / 2) 2 ( / 2)

exp{ tr( ) / 2} | | | |

2 ( / 2)

exp{ tr( ) / 2} | |

p p

n p n p
p

np np
p p

n p p

np
p

w n f J J

J
n n

n

   
 

     



  

 
  

 









Σ Σ

Σ

Σ Σ

Σ Σ

S Σ T T S S S

S S S S
S S B

Σ S Σ S Σ

Σ S S ( 1)/2

/2 /2
.

2 | | ( / 2)

n p

np n
p n

 

Σ

 

Q.E.D. 

Proof 3 (Anderson, 2003, Theorem 7.2.2). Anderson used an alternative two-step 

transformation * * *T   ΣT T BT S T T . The Jacobian *( )J T T  is given by the 

first result of Lemma 3 while *( )J  ΣT S  is given by the reciprocal of the last result in 

Lemma 2 when *T T . That is, 
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* *

T

1 1
* 11

( /2) 1 1

T * T * 1

1 1

/2 * 1

1 1

( | , ) ( ) ( ) ( )

exp{ tr( ) / 2}
2

2 ( / 2)

exp{ tr( ) / 2} ( / ) exp{ tr( ) / 2}

2 ( / 2)

p p

p
n i
ii

p pi p p ii
ii iinp p i i

p

p
n i n p

ii ii ii
i i

p pnp i p i
p ii iii i

w n f J J

t
b t

n

t b t

n b t


 

 
  

  

 

 
 

  






 
 




 



 

Σ ΣS Σ T T T T S

TT

TT TT

 /2

1

1 ( 1)/2

/2 /2

2 ( / 2)

exp{ tr( ) / 2} | |
.

2 | | ( / 2)

p

pnp n
ii pi

n p

np n
p

b n

n



  











Σ ΣΣ S S

Σ

 

Q.E.D. 

Proof 4. Use Theorem 1 and Lemma 6 when 1 pΣ I  and 

T 1/2 1/2 T
2 2 2 ( )  Σ B B Σ Σ Σ . Then, we have 

,

,

( 1)/2 T 1 /2 /2

/2 T / 2

1 ( 1)/2

/2 /2

( | , )
( | , ) ( | , )

( | , )

exp{ tr( ) / 2} | | exp{ tr( ) / 2} / {(2 ) | | }

2 ( / 2) exp{ tr( ) / 2} / (2 )

exp{ tr( ) / 2} | |
.

2 | | ( / 2)

p n
p p p

p n p

n p pn n

np pn
p

n p

np n
p

w n w n

n

n







  

  



 


 






Σ Σ

Σ Σ

Σ Σ

Y 0 Σ
S Σ S I

Y 0 I

S S YY Σ Σ

YY

Σ S S

Σ

 

Q.E.D. 

 

3. Remarks and conclusion 

For the general correlated cases, four proofs are shown in Theorem 2. The one-step first 

proof uses ( )pf T  with ( )J  ΣT S  given by Lemma 5, where T TΣS BTT B  with 

lower-triangular B  and T  is seen as a two-fold Bartlett (Cholesky) decomposition or a 

usual Bartlett (1933) T( )ΣS BT BT  in terms of lower-triangular BT . The two-step 

second proof uses ( )pf T  with T( )J  T S TT  and T( )J  ΣS S BSB  obtained by 

Lemmas 2 and 4, respectively. Anderson’s (2003) two-step third proof uses ( )pf T  with 

*( )J  T T BT  and *( )J  ΣT S given by Lemmas 3 and 2, respectively. Among the 

four proofs, the first and fourth ones are relatively simple. The remaining two-step proofs 
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seem to be comparable. It is found that in order to derive the final Jacobian by Proofs 2 and 

3, Lemma 2 is firstly and secondly used, respectively. When only the pdf of ( )
p Σ IS S  is 

focused on, Proof 2 may be the simplest though the same result is immediately obtained 

from the pdf of ΣS  substituting pΣ I . 

In each of the four proofs, ( )pf T  is used. Two derivations for ( )pf T  were shown. 

The first method using Lemma 1 is much simpler than that used by Anderson (2003) as 

detailed in Remark 1. The author believes that this simplification will reduce the difficulties 

frequently encountered when beginning students/researchers master the Wishart density. 

Note that when the Wishart density for ( | , )p pw nS I  is given, ( )pf T  is obtained using 

( )J S T  in Lemma 2 as easily as the transformation ( )J T S , which is the reversed 

problem (see Bartlett, 1933; Muirhead, 1982, Theorem 3.2.14). 

Remark 2. Lemma 1 gave the justification of T TXX TT  with mutually independent 

normal ( )ijt p i j    and chi-distributed ( 1,..., )iit i p . While the chi-square 

distribution of T( )iiTT  is obvious, the distribution of T( ) ( )ij i jTT  is that of the 

product sum of p pairs of independent normals (the product-sum normal for short). The pdf 

and mgf of the product-sum normal in the case of a possibly correlated single pair was given 

by Craig (1936). For current developments of this issue, see e.g., Seijas-Macías and Oliveira 

(2012), and Seijas-Macías, Oliveira, Oliveira and Leiva (2020). 

Remark 3. As addressed earlier, the complicated property found in many of the proofs 

of the Wishart density seems to be due partially to the associated Jacobians in e.g., 

Srivastava and Khatri (1979, Section 3.2) and Anderson (2003, Section 7.2). The proof of 

the Wishart density in Theorem 1 is similar to that in Srivastava and Khatri (1979, Section 

3.2).Though the Jacobian in Lemma 2 was also used by Srivastava and Khatri, we did not 

use the Jacobian of *{ , }X T V  in *X TV , where *V  is a p n  semi-orthonormal 

matrix with * *T
pV V I  (see Srivastava & Khatri, 1979, Exercise 1.33). Instead, we used 

the marginal chi and normal distributions for T  as in Anderson (2003). 

As shown earlier, in the three proofs of the Wishart density ( | , )pw nΣS Σ , the Bartlett-

like Cholesky decomposition TΣ BB  is used for non-stochastic Σ . Though this 
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factorization gives simple results, other factorizations can also be used with T TΣ BGG B ,

T T( ) BG BG DD , where T T
p GG G G I  and D BG . For illustration, Proof 5 

using 1/2D Σ  with 1/2 2( ) Σ Σ  will be shown in A.1 of the appendix for didactic 

purposes with associated remarks. The concise derivation of Khatri (1963) will be explained 

in A.2. The Bartlett decomposition TS TT  can also be replaced by other ones with the 

same number of random variables. The case called the exchanged Bartlett decomposition 

will be shown in A.3 of the appendix. 

Conclusion. Among Proofs 1 to 4 of the Wishart distribution given earlier and Proofs 5 

to 7 to be shown in the appendix for expository purposes, Proof 4 using our Lemma 1 for 

the equivalence of the distributions of the product-sum normal and the product of the chi 

and standard normal as well as Lemma 6 for the factorization theorem given by Ghosh and 

Sinha (2002) is the simplest. Since Proof 4 uses elementary and self-contained methods, the 

proof may be understood by beginning students/researchers without much difficulty. 

 

Appendix 

A.1 An alternative proof of the Wishart density for correlated cases 

Let 1/2Σ  be a symmetric matrix-square-root of Σ  satisfying 1/2 2( ) Σ Σ . Then, we 

have 1/2 N ( , )pY Σ X 0 Σ  as N ( , )pBX 0 Σ , which gives T 1/2 T 1/2 ΣS YY Σ XX Σ

1/2 1/2 Σ SΣ , where ΣS  is redefined using 1/2Σ . Let T
11 21 22 1( , , ,..., ,..., )p pps s s s sΣ Σ Σ Σ Σ Σs  

using redefined { } ( , 1, ..., )ijs i j p Σ ΣS . Then, vec( )p Σ ΣD s S  follows, where pD  of 

full column rank is the 2 { ( 1) / 2}p p p   duplication matrix consisting of 0’s and 1’s 

(Magnus & Neudecker, 1999, Chapter 3, Section 8); and vec( )  is the vectorizing operator 

stacking the columns of a matrix in parentheses sequentially with the first column on the 

top. Using the formula Tvec( ) ( )vec( ) ABC C A B  (see Magnus & Neudecker, 1999, 

Chapter 2, Theorem 2), where   denotes the direct or Kronecker product, we obtain 

1/2 1/2 1/2 1/2 1/2 1/2vec( ) vec( ) ( )vec( ) ( )p p     Σ ΣD s S Σ SΣ Σ Σ S Σ Σ D s . 

Pre-multiplying the above equation by T 1 T( )p p p p
 D D D D , which is the left- or Moore-
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Penrose generalized inverse of pD  with ( 1)/2p p p p


D D I  (see Magnus & Neudecker, 

1999, Chapter 3, Section 8), we have 

1/2 1/2( )p p
 Σs D Σ Σ D s . 

The Jacobian of the transformation ΣS S  or equivalently Σs s  is given by 

1/2 1/2 ( 1)/2| ( ) | | | p
p p
 

 D Σ Σ D Σ , which is derived using the following lemma. 

Lemma 7 (Magnus & Neudecker, 1986, Equation (7.11)). Let A  be a p p  positive 

definite matrix with distinct eigenvalues. Then, 1| ( ) | | |p
p p
  D A A D A . 

Proof. While Magnus and Neudecker (1986) used Shur’s theorem for the existence of a 

non-singular matrix V  satisfying 1 V AV M , where M  is an upper-triangular matrix 

for a general square matrix A , we use a familiar special case of the theorem as 

T L AL Λ  when TA LΛL  with T T
p LL L L I  and 

1 1diag( ,..., ) ( ... 0)p p      Λ , where the columns of L  and ( 1,..., )i i p   are the 

eigenvectors and eigenvalues of A , respectively. Note that 

T T

T T

T T

( ) ( ) ( )

( )( )( )

{( ) ( )} ( ) ,

p p p p p p

p p

p p p p

  



 

  

   

   

D L L D D A A D D L L D

D L L A A L L D

D L AL L AL D D Λ Λ D

 

where ( ) ( )p p p p
   D D A A A A D D  and p p p p

 D D D D  (Magnus & Neudecker, 

1999, Chapter 3, Theorem 13) are used, followed by the transformation given by 

( )( ) ( ) ( )   A B C D AC BD  when multiplications are defined. 

Note that T T 1( ) { ( ) }p p p p
    D L L D D L L D  since 

T T T T
( 1)/2( ) ( ) ( )( )p p p p p p p p p p

   
      D L L D D L L D D L L L L D D D I . 

Consequently, we can write as 

T T 1( ) ( ) ( ) ( ) ( )p p p p p p p p p
           D L L D D A A D D L L D B D A A D B D Λ Λ D , 

which shows that the eigenvalues of ( )p p
 D A A D  are the same as those of 

( )p
 D Λ Λ D  (see e.g., Magnus & Neudecker, 1999, Chapter 1, Theorem 5). Employ the 

double subscript notation as used earlier for the row numbers i and j ( 1)p i j    and 
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column numbers k and l ( 1)p k l    of the { ( 1) / 2} { ( 1) / 2}p p p p    matrix 

( )p p
 D Λ Λ D . These numbers correspond to the subscripts of the elements of e.g., the 

{ ( 1) / 2} 1p p    vector T
11 21 22 1( , , ,..., ,..., , )p pps s s s ss . 

Consider ( ) pΛ Λ D , where the (k, k)th columns of ( ) pΛ Λ D  (k = 1,…,p) are 

unchanged from the corresponding ones of Λ Λ  while the (k, l)th columns 

( 1)p k l    of ( ) pΛ Λ D  are combined ones as the sum of the ( , )-k l  and ( , )- thl k

columns of Λ Λ  such that e.g., 

2
1

2 2 1 2
2 1 1 2 2 1 2

2 1
2
2

0 01 0 0
0 00 1 0( ) diag( , , , ) 0 1 0 0 0

0 0 1 0 0


        



  
       

      

Λ Λ D  

when p = 2. For the second transformation ( )p p
 D Λ Λ D , noting that T 1 T( )p p p p

 D D D D  

consists of 1’s, 1/2’s and 0’s as 2

1 0 0 0
0 1 / 2 1/ 2 0
0 0 0 1


 
 
 
 

D , we find that ( )p p
 D Λ Λ D  is the 

{ ( 1) / 2} { ( 1) / 2}p p p p    diagonal matrix whose diagonal elements are 2 ( 1,..., )i i p   

and ( 1)i j p i j      as 2 2
2 2 1 2 1 2( ) diag( , , )     D Λ Λ D . Then, we have 

1

2 1

1 1 1

| ( ) | | ( ) | | |
pp p

p
p p p p i i i i

i p i j i

   


  

    

   
        

   
  D A A D D Λ Λ D A  

Q.E.D. 

Proof 5 of the Wishart density in Theorem 2. The Jacobian of the transformation 

ΣS S  or equivalently Σs s  is given by Lemma 7 as 

1/2 1/2 ( 1)/2| ( ) | | | p
p p
 

 D Σ Σ D Σ . Consequently, ( )J  Σs s  becomes ( 1)/2| | p Σ . Then, 

the pdf of ΣS  is obtained by that of 1/2 1/2  ΣS Σ S Σ  in Theorem 1 and 

( 1)/2( ) | | pJ   Σs s Σ  as 
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( 1)/2
( 1)/2

/2

1/2 1/2 1/ 2 1/2 ( 1)/2 ( 1)/2

/2

1 ( 1)/ 2

/2 /2

exp{ tr( ) / 2} | |
( | , ) | |

2 ( / 2)

exp{ tr( ) / 2} | | | |

2 ( / 2)

exp{ tr( ) / 2} | |
.

2 | | ( / 2)

n p
p

p np
p

n p p

np
p

n p

np n
p

w n
n

n

n

 
 

       

  
















Σ

Σ Σ

Σ Σ

S S
S Σ Σ

Σ S Σ Σ S Σ Σ

Σ S S

Σ

 

Q.E.D. 

Remark 4. When Lemma 7 for the Jacobian of ΣS S  is given, Theorem 2 for the 

Wishart density for general correlated cases was immediately obtained. Conversely, when 

the Wishart densities for S  and ΣS  are available, the Jacobian is easily given by 

comparing two densities using 1/2 1/2  ΣS Σ S Σ , which was employed by Anderson (2003, 

Theorem 7.3.3). 

 

A.2 On Khatri’s (1963) self-contained concise derivation 

Khatri (1963) is referred to only by Kshirsagar (1972, p. 59) and, Srivastava and Khatri 

(1979, p. 76) to the author’s knowledge. The derivation depends on the integral 

T

/2 ( /2) 1
1/ ( / 2) d dk k

kq
q k x x 


  x x

 , where q is a positive constant and ix ’s with 

T
1( ,..., )kx xx  independently follow the standard normal. This integral is typically 

obtained in a proof of the chi-square distribution with k df using the surface area

/2 1
1 2 / ( / 2)k k

kS r k 
    of the ( 1)k  -sphere with the radius 1/2r q  in the k-

dimensional Euclidian space and 1/2d {1/ (2 )}dr q q : 

 T T

2
11

/2 1 /2 ( 1)/2

/2 /2 1/2

( /2) 1
/2

(1 / 2 ) exp( / 2) | d d

1 2 d 1 2 1
exp exp

(2 ) 2 ( / 2) d (2 ) 2 ( / 2) 2

1
,

2 ( / 2) 2

k

i kqi q

k k k k

k k

k
k

x x x

q r r q q

k q k q

q
q

k



 
 

 

 





             
     

 x x x x


 

yielding 

T

/2 ( 1)/2 /2 ( /2) 1

1 1/2

2 1
d d

( / 2) 2 ( / 2)

k k k k

kq

q q
x x

k q k

  


 

 x x
 . 
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Khatri (1963, p. 53) stated that T

/2 /2
1d d / ( / 2)k k

kq
x x q k


 x x

  using our notation, 

where / 2kq  rather than ( / 2) 1kq   is probably a typo since otherwise the correct factor 

( 1)/2| | n p S  corresponding to ( / 2) 1kq   when 1k n p    in his subsequent expression of 

the Wishart density does not follow. An alternative short derivation of T 1d d kq
x x

x x


/2 ( /2) 1 / ( / 2)k kq k    was given by Ogasawara (2022b) as follows. Suppose that the pdf 

of the chi-square with k df, which is equal to that of the gamma with the shape parameter 

k/2 and the scale parameter 2, is obtained by a different method using e.g., the property of 

the distribution that the sum of the independent gamma distributed variables with the same 

scale parameter becomes the gamma with the shape parameter being the sum of those of the 

gammas and the same scale. Note that the beta integral or the moment generating function 

can be used for the derivation of this property. Then, we have 

 T T
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 , 

which gives 

T

T
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1 2
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d d
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 x x

x x

 . 

We find that this derivation without using the area of the ( 1)k  -sphere is similar to that by 

Anderson (2003) mentioned in Remark 4. 

Proof 6 of the Wishart density in Theorem 2 (Khatri, 1963). Khatri’s 1.5-page short 

derivation is due partially to his concise description. Since the article is less well 

documented with no title, the citations mentioned earlier using the same incorrect page 

numbers and several possible typos including the above one for important points and other 

minor errors, the corrected proof is provided with some added explanations. The derivation 

consists of a p-step variable transformation with p Jacobians canceling most of them after 

multiplication. 

Define the p n  matrix X , where each column independently follows N ( , )p 0 Σ . 

Partition 

T
1 1 1 1 1T

T T T T
1 1

p p p p p p

p pp p p p p
s

    

  
 

  
     

     

S s X X X x
S X X

s x X x x
, where e.g., pps  is temporarily 
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used in place of pps  for simplicity. Define the n n  matrix 
1

1

p

n
n p



 

 
  
  

X
P

Y
, where the 

( 1)n p n    submatrix 1n p Y  is chosen such that T
1 1n p n   Y X O  and 

T
1 1 1n p n p n p     Y Y I . Then, we have 

1T

1

p

n n
n p



 

 
  
  

S O
P P

O I
, which gives 

T 1/2 1/2
1| | | | | |n n n p  P P P S . Consider the variable transformation from px  to n pP x  with 

T T T
1 1( , )p n p n p   s z P x , where 1 1n p n p p   z Y x  and 1 1/2

1( ) | | | |p n p n pJ  
   x P x P S . 

Since 
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we have T T 1
1 1 1 1 1 1| | / | |n p n p pp p p p ps 

          z z s S s S S . 

Using the multivariate normal density, the joint marginal density of 1pX , when a 

random matrix S  at S  is a fixed one, becomes 

1 1
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where the integrand does not include 1n p z . Then, the above integral becomes 
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where Khatri’s (p. 54) expression 1| | ( 2) / 2p n p  S  using our notation in place of 

( )/ 2
1| | n p

p


S  is incorrect. Define {( ) }p i p i n  X , {( ) }n p i n p i n    Y , 
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{( ) ( )},p i p i p i   S {( ) 1}p i p i  s  and {( ) 1} ( 2,..., 1)n p i n p i i p      z  similarly 

to those when 1i  , respectively. Then, using these matrices and vectors in similar 

manners, we have the successive transformations as 
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Noting that T ( 2)/2 ( 2)/2 ( 2)/2
1 1 1 11( ) | |n n ns      X X S  is a fixed quantity, the last step is the 

integral with respect to the row vector 1X : 

T1 1
1 1 11
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Q.E.D. 

 

A.3 The exchanged Bartlett decomposition 

The Bartlett decomposition TS TT  has been used in this paper as well as in 

literatures. Let TS UU , where T( )U T  is the upper-triangular matrix whose non-zero 

elements are random variables. Note that U  can be obtained by rotating T  as U TV  

using an orthonormal matrix V . Define the upper-triangular matrix C  satisfying 

TΣ CC  with 0 ( 1,..., )iic i p  , where C  is obtained by *C BV  and *V  is 

another orthonormal matrix. Recall that the Cholesky decomposition TΣ BB  was used 
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earlier. The form TΣ CC  is also called the exchanged (reversed) Cholesky or upper-

lower (UL) decomposition in this paper. 

Remark 5. Consider the distribution of ( 1,..., ; ,..., )iju i p j i p  , which are assumed 

to be mutually independent. As in the case of the usual Bartlett, Lemma 1 shows that when 

iiu  is chi-distributed with n p i   df ( 1,..., )i p  and iju  is standard normal 

( 1,..., ; 1,..., )i p j i p   , the distribution of T T( ) S XX TT  is the same as that of 

TCC . Note that iit  is chi-distributed with n p i   df rather than 1n i  . The joint pdf 

of U  denoted by ( )pf U  becomes 
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UU  

Proof 7 of the Wishart density in Theorem 2. Consider the one-step transformation 

from U  to T T T T T
   S CXX C CSC CUU C , where it is found that 

i.i.d.

( ) N ( , )j pC X 0 Σ  ( 1,..., )j n . Redefine the vector of the non-duplicated elements in 

S  as T
11 1 22 2( ,..., , ,..., ,..., )p p pps s s s s     s  whose elements are lexicographically 

ordered Similarly, define the { ( 1) / 2} 1p p    vectors c  and u  using the corresponding 

elements of C  and U , respectively. 

The proof is similar to Proof 1 of Lemma 5. Since C , U  and CU  are upper-

triangular, the Jacobian matrix  T/ /ij kls u     s u (1 ;1 )i j p k l p       

becomes upper-triangular, whose diagonal elements are 

T T T T{ ( ) } ( ) (1 )ij
ij ji ij ij ij ii jj jj

ij

s
c u c i j p

u


      


C E U UE C CE U C  

and 
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T T 2{ ( ) } 2 ( 1,..., )ii
ii ii ii ii ii

ii

s
c u i p

u


   


C E U UE C . 

Since the determinant of the Jacobian matrix or ( )J  S U  becomes 
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( )J U S  is given by the reciprocal of the above quantity. 

The Wishart density is given by ( )pf U  and ( )J U S : 
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as expected. Q.E.D. 

Remark 6. Though TU T  as noted earlier, U  is obtained by reversing the row 

indexes of T  followed by the similar reversal of the column ones. When p = 3, this 

transformation proceeds as 

31 32 33 33 32 31 11 12 1311

21 22 21 22 22 21 22 23

31 32 33 11 11 33

0 0

0 0 0 0

0 0 0 0 0 0

t t t t t t u u ut

t t t t t t u u

t t t t t u

      
                
             

T U . 

The above example indicates other decompositions * *T * *T S T T U U  with the 

unchanged distribution of TS XX , where * *( )T U  is a lower (upper)-triangular matrix 

defined with the non-zero elements on and below (above) the minor diagonals. Note that 

*T  and *U  are obtained by T  and U  by reversing the row or column indexes. When p 
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= 3, *T  and *U  are 

*
3311

* *
22 21 22 23

* * *
33 32 31 31 32 33

0 00 0

0 0

tt

t t t t

t t t t t t

  
      
     

 and 

* * *
11 12 1313 12 11

* *
23 22 21 22

*
33 31

0 0

0 0 0 0

u u uu u u

u u u u

u u

  
      
     

, 

respectively. 

Actually, we have infinitely many transformations with the unchanged distribution of 

S , including the above ones, using various orthonormal p p  matrices denoted by V ’s 

since each column of VX  independently follows N ( , )p p0 I  (see e.g., Anderson, 2003, 

Theorem 3.3.1). In other words, the distributions of VX  and X  are the same. Then, 

TS XX  can be replaced by T TS VXX V . Note that one of the decomposed matrices 

e.g., *, ,T T U  and *U  are given by other ones by V  as  *T VU . This indeterminacy 

of transformation is similar to the rotational indeterminacy in orthogonal rotation in factor 

analysis and canonical correlation analysis or more generally transformations in structural 

equation modeling (Ogasawara, 2007; Schuberth, 2021; Yu, Schuberth & Henseler, 2023). 
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