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The distribution of the sample correlation coefficient under variance-truncated 

normality 

 

Abstract: The non-null distribution of the sample correlation coefficient under bivariate 

normality is derived when each of the associated two sample variances is subject to stripe 

truncation including usual single and double truncation as special cases. The probability 

density function is obtained using series expressions as in the untruncated case with new 

definitions of weighted hypergeometric functions. Formulas of the moments of arbitrary 

orders are given using the weighted hypergeometric functions. It is shown that the null joint 

distribution of the sample correlation coefficients under multivariate untruncated normality 

holds also in the variance-truncated cases. Some numerical illustrations are shown. 

 

Keywords: Wishart distribution, stripe truncation, weighted hypergeometric functions, 

sample variances and covariances, multivariate normality, multivariate gamma function. 
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1. Introduction 

The non-null distribution of the sample correlation coefficient (r) under normality was 

first given by Fisher (1915, p. 516) using a differential expression (see Anderson, 2003, 

Equation (39), Section 4.2.2). Soper, Young, Cave and Pearson (1917, Equations (xiii) & 

(xxiv)) obtained the recursive formulas of the even and odd moments of r using the Gauss 

hypergeometric functions, and the results in samples of size as small as 3 or larger. Kendall 

(1948, Equation (14.53); Sections 14.17-14.18) gave the joint probability density function 

(pdf) of the sample variances and r under bivariate normality with the moments of r up to 

the fourth order. Hotelling (1953, Equation (25)) derived an expression of the pdf of r using 

the Gauss hypergeometric series with relatively fast convergence (see Muirhead, 1982, 

Section 5.1.2, Equation (10); Stuart & Ort, 1994, Section 16.30), which was used by Rady, 

Fergany and Edress (2005) to have moments of r. Anderson (1958, 2003, Theorem 4.2.2) 

gave a series expression of the pdf of r based on the Wishart distribution, which can be used 

to have the moments rather easily (see also Muirhead, 1982, Section 5.1.3, Equation (11)). 

Ghosh (1966) seems to have employed one of these formulas to have the moments of r. 

Joarder (2006, Theorem 2.1) and Romero-Padilla (2016, Theorem 1) used the joint 

distribution of the sample variances and r under bivariate normality for the moments of r. 

For other expressions of the distribution under normality and historical developments, see 

Stuart and Ort (1994, pp. 559-567) and Johnson, Kotz and Balakrishnan (1995, Chapter 32, 

Section 2). 

It is known that the null distribution of the sample correlation coefficient is given from 

the t-distribution with 2N   degrees of freedom with N being the number of observations, 

which holds under sphericity as well as normality (see Muirhead, 1982, Section 5.1.2). The 

non-null distribution of the sample correlation coefficient under normality is typically given 

by the Wishart distribution with 1n N   degrees of freedom, where the random matrix 

in the Wishart is (i) n times the sample covariance matrix when the scale matrix is the 

population covariance matrix or (ii) the sample covariance matrix when the scale matrix is 

1n  times the population one. Both formulations can be employed to derive the distribution 

of the sample correlation coefficients, where the term “sample dispersion matrix” can be 

used in both cases. Then, the off-diagonal elements of the sample dispersion matrix are 
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re-expressed by the sample correlation coefficients and the unchanged diagonals. 

In this paper, truncation of observations based on (n times) sample variances is 

considered in the Wishart distribution. This corresponds to the situation when e.g., some 

sample variance is too large or too small, the observation is deleted due to the possible 

existence of outliers or distortions. Then, the distribution of the correlation coefficients in 

the truncated Wishart is derived, where the re-expressions of the off-diagonal elements in 

the sample dispersion matrix using the correlation coefficients are employed with the 

Jacobian. 

So far, various types of truncation have been investigated, where the random vector has 

the multivariate normal or non-normal distribution. Observations are subject to single, 

double, radial (Tallis, 1961, 1963) and plane (Tallis, 1965) truncation depending on the 

definitions of truncation for observations. Elliptical truncation is also used when quadratic 

forms of observations or chi-squared variables under normality are considered (Tallis, 1963; 

Kotz, Balakrishnan & Johnson, 2000, Chapter 45, Section 10; Arismendi & Broda, 2017). 

Recently, Ogasawara (2021a) proposed stripe truncation for a single variable having a 

zebraic truncation pattern. Sectional truncation given by Ogasawara (2021b) is a 

multivariate extension of stripe truncation. In these cases, moments after truncation have 

been of primary interest (see Fisher, 1931; Kan & Robotti, 2017; Kirkby, Nguyen & 

Nguyen, 2021; Galarza, Lin, Wang & Lachos, 2021). 

The remainder of this paper is organized as follows. Section 2 gives the non-null 

distribution and moment formulas of the sample correlation coefficient under bivariate 

normality with variance truncation. Numerical illustrations are given in Section 3. In 

Section 4, it is shown that the joint null distribution of the sample correlation coefficients 

under multivariate normality is unchanged irrespective of variance truncation. Some 

discussions are given in Section 5. Proofs for lemmas, theorems and corollaries when 

necessary are given in the appendix. 

 

2. The bivariate case 

Let a p p  random matrix { }ijvV  be Wishart distributed, which is denoted by 

W ( , )p nV Σ  with V  being positive definite i.e., 0V , where 0Σ  is a scale 



4 

 

matrix with n degrees of freedom. Then, the pdf of the Wishart distribution is given by 
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  is the multivariate gamma function (Anderson, 

2003, Definition 7.2.1; Subsection 7.2, Equation (19); see also DLMF, 2021, Section 35.3, 

https://dlmf.nist.gov/35.3); V  is used also as a realization of V  for simplicity of 

notation. Consider the bivariate case with 
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  and r are the population and sample correlation coefficients, respectively. Employ the 

change of variable from 12 21( )v v  to r with unchanged 11v  and 22v  yielding the 

Jacobian 12 11 22d dv v v r . Then, we have the Wishart density 
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(Anderson, 2003, Section 4.2.2; Muirhead, 1982, Section 5.1.3). 

Assume that V  is truncated such that only when 
2

1 1
{ }iK

ii iki k
v I

 
  , the observation 

{ }ijvV  is selected otherwise truncated, where ikI  is an interval satisfying 

1 1[ , ), 0 ... ( 1, 2; 1,..., )
i iik ik ik i i iK iK iI a b a b a b i k K          , 

where iK  is the number of intervals for iiv . When 1iK   with 1 10 i ia b     or 

1 10 i ia b    , iiv  is singly upper- or lower-truncated, respectively while when 1iK   
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with 1 10 i ia b    , iiv  is doubly truncated. When 2iK   with 

1 1 2 20 i i i ia b a b      , iiv  is inner-truncated with the two tails being selected. These 

cases occur e.g., when / nV  is the sample covariance matrix; and iiv  (and consequently 

V ) is discarded if /iiv n  is too small, too large or both. When truncation does not occur 

irrespective of the value of iiv , 1iK   with 1 10 i ia b     is employed though V  is 

possibly truncated due to the other value of 3 ,3i iv   . The above truncation is similar to stripe 

truncation for univariate cases (Ogasawara, 2021a). Since a particular size of iiv  gives 

truncation, V  or T
11 22( , , )v v ru  is said to be variance-truncated in this paper. 

Suppose that u  is Wishart distributed including change of variable and 

reparametrization under variance truncation with the non-null set of intervals 

2

1 1
{ }iK

ii iki k
v I

 
   for selection. Then, this truncated distribution is denoted by 

2W ( , ; , )nu A B , where { }ikaA  and { }ikbB  are the sets of the lower and upper 

limits of the intervals for selection defined earlier, respectively. 

Theorem 1. Let T
11 22 2( , , ) W ( , ; , )v v r nu A B  with n > 1 and | | 1  . Then, the 

marginal pdf of r is 
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the Pochhammer symbol; and 1

0
( | ) exp( ) d / ( )

x
F x t t t 
     is the regularized 

gamma function or the distribution function of the gamma with the shape parameter   

and the unit scale parameter. 

In Theorem 1, 1 0 ( )( ; ; ; )
kw kF a x w  is a new weighted generalized hypergeometric series 

or function, where a weight ( )kw  in the k-th term of the series (k = 0, 1,…) is added to the 

corresponding usual or unweighted generalized hypergeometric function 

1 0 0
( ; ; ) ( ) / !k

kk
F a x a x k




  (see Mathai, 1993, Section 3.2.1; Abadir, 1999, Equation (4)). 

Note that similar weighted hypergeometric functions 
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corresponding to the Kummer confluent and Gauss series are defined by Ogasawara (2021b, 

Equations (5) and (7)), respectively. 

As addressed earlier, the pdf of r under untruncated normality is known. The following 

result includes an alternative expression of the normalizing constant. 

Corollary 1. Let T
11 22 2( , , ) W ( , )v v r n  with n > 1, which indicates the untruncated 

Wishart. Then, the marginal pdf of r is 

2
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Note that Anderson (1958, 2003, Theorem 4.2.2) and Muirhead (1982, Equation (11), 

Section 5.1.3) employ the following expression corresponding to that of Corollary 1: 

22 2 /2
2 ( 3)/2

0

2 (1 ) (2 )
( | , ) (1 )

( 1) 2 !

n n l
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l

n l r
f r n r
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 . 

which is obtained from the original normalizer of the Wishart density ( | , )pw nS Σ  shown 

earlier using the Legendre duplication formula for the bivariate gamma function. While the 

above expression of the normalizing constant is simpler than that of Corollary 1, the two 
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expressions give the following formula. 

Result 1. When n > 1, 

1/2
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In Result 1, the Legendre duplication formula is used. When n is a positive even 

number, this equality can be proved without using Corollary 1. That is, when n = 2, the 

series becomes a usual geometric one 2 2
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definitions 0( ) 1 ( 0)a a   and 00 1 . The cases n = 4, 6,… are given by differentiating 

the series by 2  successively. When 1n   is real-valued including even n, the equality 
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which is equal to 1( / 2)n   times the right-hand side of the equality to be derived, where 

the binomial expansion is used (see Abadir, 1999, Equations (2) and (5)). 

Define 
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kwF   similarly to 1 0 ( )
kwF  . Then, we have the following results. 

Lemma 1. Some moments of r under variance truncation as in Theorem 1 using 

different series expressions are 
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Remark 1. It is found that when hypergeometric functions are used, Lemma 1 gives 

two expressions of moments i.e., non-recursive and recursive, where the former includes 

3 2 ( )
kwF   while the latter 2 1 ( )

kwF  . The expressions of the moments of odd powers using 

the non-recursive method (non-recursive moments for short) are given by Lemma 1 (i): 

2 1 2 1 2E{ (1 ) | 1,2,...; 0; , ; , }k k jr r r k j n     A B  

while the corresponding recursive moments are 
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On the other hand, the corresponding non-recursive moments of even powers are given 

by Lemma 1 (ii): 
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Theorem 2. The raw moments of r up to the fourth order under variance truncation as 

in Theorem 1 using different series expressions are 
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as shown after Result 1, the mean using the hypergeometric functions becomes 
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where the last result is given by the Euler transform 

2 1 2 1( , ; ; ) (1 ) ( , ; ; )c a bF a b c x x F c a c b c x      

(Erdélyi, 1953, Section 2.1.4, Equation (22); Abramowitz & Stegun, 1972, Equation 

15.3.3). 

Similarly, the untruncated variance using 2E(1 | , )r n  with the hypergeometric 

functions is given by 
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which is simpler than the corresponding expression using 2E( | , )r n  in that the usual 

Gauss hypergeometric function 2 1{ }F   can be used rather than the generalized 

higher-order function 3 2{ }F  . 

The expressions of truncated sk and kt are given without using hypergeometric 

functions for simplicity. The corresponding untruncated results are given by substituting 

( ) 1F  
B

A  for truncated ones. The untruncated raw moments up to the second order using the 

Gauss hypergeometric functions were derived by Kendall (1948) and up to the fourth order 

by Ghosh (1966) as well as Soper et al. (1917, Section (3)) with somewhat different 

expressions. It is found that the untruncated expectation and variance shown above are equal 

to the corresponding results given by Kendall (1948, Equations (14.55) & (14.56)), Ghosh 

(1966, Equation (1)) and Muirhead (1982, p. 155, the last equation; p. 156, Equation (20)). 

Further, in Lemma 1, the odd and even moments without truncation using 

hypergeometric functions become 
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which are found to be algebraically equal to the known ones (Romero-Padilla, 2016, 

Corollary 1, Equations (16) and (15)), respectively. The last expression of 3E( | , ; , )r n A B  

in Theorem 2 using 2 1{ }F   when without truncation becomes 
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which is found to be algebraically equal to Romero-Padilla (2016, Equation (22)), who 

obtained this result by re-expressing Soper et al. (1917, Equation (xxvi)) without using the 

recursive formula in Lemma 1. The above expression 3E( | , )r n  is different from the 

corresponding one using 2 1{ }F   by Ghosh (1966, Equation (1)). Romero-Padilla (2016, 

p.20) stated that Ghosh’s formula for 3E( | , )r n  is incorrect. The author also found that 

the numerical values of 3E( | , )r n  using Ghosh’s formula in the numerical examples 

given later are much smaller than those obtained by the formulas of Theorem 2, which are 

algebraically equal to Romero-Padilla (2016, Equation (22)). 

The last expression of 4E( | , ; , )r n A B  in Theorem 2 using 2 1{ }F   when without 

truncation becomes 
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Though this formula is different from the corresponding expression of Ghosh (1966, 

Equation (1)), the two expressions give the same numerical values, which are also similar to 

the corresponding simulated values, suggesting the algebraic equality. 

These findings partially support our results under variance truncation. 

Remark 2. Note that the different expressions of the moments using hypergeometric 

functions in Lemma 1 give some relationships between weighted 2 1{ }F   and 3 2{ }F  . 

When without truncation, the last expression in Lemma 1 (ii) using hypergeometric 

functions becomes 

2

2 /2 21/2
2 1

1/2

2 21/2
2 1

1/2

E{(1 ) | 1, 2,...; , }

{( 1) / 2}
(1 ) { / 2, / 2; ( 2 ) / 2; }

{( 2 1) / 2}

{( 1) / 2}
(1 ) { , ; ( 2 ) / 2; },

{( 2 1) / 2}

j

n

j

r j n

n
F n n n j

n j

n
F j j n j

n j



 

 

 


  
 


  
 

 

which was used by Muirhead (1982, Section 5.1.3, Equation (19)), when j = 1, to have 

2E( | , )r n  and possibly by Ghosh (1966, Equation (1)). Though the last results are easily 

derived, they give some relationships between unweighted 3 2{ }F   and 2 1{ }F   when 

they are re-expressed by 2E( | 1, 2,...; , )jr j n  as in Remark 1. For instance, when j = 1, 

we have 

1 2 / 2 2
3 2

1 2 2
2 1

(1 ) { / 2, / 2,3 / 2; ( 2) / 2, 1 / 2; }

1 (1 )(1 ) {1, 1; ( 2) / 2; } ( 1).

nn F n n n

n F n n

 

 





 

     
 

Similar relations are also given by comparing 2 1E( | 1, 2, ...; , )jr j n   and its recursive 

expression 2E{ (1 ) | 1,...; , }jr r j n   in Lemma 1 (ii) when without truncation. 

 

3. Numerical illustrations 

In this section, numerical illustrations of some moments of r under variance-truncated 

bivariate normality are shown with simulated moments. Since the moments derived in the 

previous section are exact ones, the simulations may be unnecessary as long as the formulas 

are correct. However, the algebraic expressions include infinite series, which are 

approximated by finite ones in actual computation. So, the corresponding simulated values 

are given. Table 1 shows a summary of 11 examples under various types of variance 
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truncation. Example (Ex.) 1 is the untruncated case included for comparison. Ex. 2 to 4 are 

under lower-truncation for 11v  and 3-way truncation for 22v . Ex. 5 to 7 are under double 

truncation for 11v  and 3-way for 22v . Ex. 8 to 11 are under inner-truncation for 11v  and 

4-way for 22v . For the intervals of selection under lower- and upper-truncation, [CL, Inf )  

and [0, CR)  are used for illustration, respectively, where 

CL E( ) var( ) 2ii iiv v n n    , CR E( ) var( ) 2 ( 1, 2)ii iiv v n n i      

and Inf   . These selection (truncation) points are also used under double and inner 

truncation. 

Tables 2 and 3 give the simulated and theoretical (exact) moments/cumulants up to the 

fourth order. The theoretical values are given by the finite series when the relative size of an 

added term is smaller than or equal to a predetermined value denoted by ‘eps’. The zero 

value of eps corresponding to the highest machine precision is used in the numerical 

illustrations, which is computationally attained in the series under the default double 

precision of the R-language (R Core Team, 2020). For the series expressions, both of 

modified (not including ( )
kp qwF  ) and standard (including 2 1 ( )

kwF   or 3 2 ( )
kwF  ) 

hypergeometric functions (see Theorem 2) are used for comparison. The results showed 

reasonably close values. The truncated probability 2 2 /2
1 0 ( 2 )( / 2; ; ; )(1 )

k

n
w kF n F   B

A  

in the tables is the relative size of the reciprocal of the normalizer 2C  over the untruncated 

counterpart. Note that when both of 11v  and 22v  are upper-truncated,   gives the 

cumulative distribution function (cdf) for the marginal Wishart distribution of 11v  and 22v . 

The asymptotic values of   are given by the asymptotic normal distributions of 11v  and 

22v  with their exact means, variances shown earlier and 2
11 22cov( , ) 2v v n . 

Simulations are carried out by randomly generating 105 sample covariance matrices 

under bivariate untruncated normality using the R-package ‘mvtnorm’ (Genz et al., 2020) 

when the population value is 1
1



 
  

, where 0.3   (Table 2) and 0.7 (Table 3) are used 

each with n = 20 and 50. While all the 105 sample covariance matrices are used in Ex. 1, 

some of them are used for the remaining examples selecting the matrices satisfying both of 
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the selection conditions for 11v  and 22v . From the selected sample covariance matrices, 

simulated moments/cumulants and   are obtained. 

Tables 2 and 3 show that the theoretical/simulated moments and   are close to each 

other indicating the accuracy of the computationally obtained values of the exact formulas. 

It is also found that the asymptotic value of   is reasonably close to the corresponding 

simulated and theoretical values, which may primarily be due to the exact means and 

covariance matrix of 11v  and 22v . All the values of the means in the tables are found to be 

close to   irrespective of truncation in various ways. While it is known that in the 

untruncated case, the asymptotic bias of r is of order 1 2 1( ) (1 )O n n      (Ghosh, 1966, 

Equation (3); Muirhead, 1982, Section 5.1.3, Equation (21)), the tables suggest similar 

results for r under variance truncation. However, Table 2 also shows that the theoretical 

(simulated) bias of r in Ex. 6 is .0042 (.0039) when n = 20 while .0045 (.0044) when n = 50, 

which are larger than those when n = 20 although their absolute values are smaller than or 

comparable to the values of untruncated Ex.1 i.e., -.0068 (-.0073) when n = 20 and -.0027 

(-.0030) when n = 50. Note that the corresponding asymptotic values obtained from the 

formula shown above give -.0137 when n = 20 and -.0055 when n = 50, which are twice as 

large as those of the exact values. These findings suggest the non-negligible higher-order 

asymptotic bias. 

The values of SD in the tables show the influence of variance truncation. That is, the 

SDs under lower (Ex. 2 to 4) or double (Ex. 5 to 7) truncation tend to be smaller than those 

under untruncated (Ex. 1) or inner-truncated (Ex. 8 to 11) cases. The SDs of both lower 

truncation for 11v  and 22v  (Ex. 3) are smaller than those of lower and upper truncation for 

11v  and 22v  (Ex. 4), respectively, indicating that when sample variances are large, the 

corresponding r tends to be stable with small SD’s. The values of sk are negative with the 

relatively large absolute values when 0.7   and/or n =20. The values of kt when 

0.3   are approximately zero while they are mostly positive when 0.7  . It is of 

interest to see that the largest kt when 0.7   is found in untruncated Ex. 1 and the 

smallest kt in Ex. 11 under both inner-truncation. 
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4. The multivariate null distribution 

In this section, the null distribution in the p-variate case is considered. Let 

/ , { }ij ij ii jj ijr v v v r R  and / ( , 1, ..., )ij ij ii jj i j p     . Define 

( 1,..., ; 1, ..., )ik iI i p k K   with A and B as in the bivariate case with the assumption

1 ( 1,..., )ii i p   . For the p-variate case, let T T
11( ,..., , )ppv vu r , T

12 13 , 1( , , ..., )p pr r r r , 

{ }ij p  Σ P I  and pI  be the p p  identity matrix. 

Lemma 2. Suppose that 11, ..., ppv v  are truncated as defined above. Employ the 

change of variables { }ijvV  with ij ii jj ijv v v r , where 11, ..., ppv v  are unchanged. Then, 

the pdf of the joint distribution of T T
11( ,..., , )ppv vu r  is 

( 1)/2 ( 2)/2
11 11

/2

( | , ; , ) ( | ; , )

exp{ ( ... ) / 2} | | ( )
,

2 ( / 2)

p p p

n p n
pp pp

np
p

w n w n

v v v v

n F

  

 

  


 B
A

u Σ I A B u A B

R   

where 

(0)
1 1

0 | | 1
2 2 2 2

iKp
ij ij

i j

b an n
F F F F 

 

    
        

    
B B

A A . 

Theorem 3. Suppose that W ( , ; , ) W ( ; , )p p pn nu Σ = I A B A B . The joint pdf of r is 

( 1)/2( / 2) | |
( | ; , ) ( | )

( / 2)

p n p

p

n
f n f n

n

 
 


R

r A B r , 

which also holds under the elliptical distribution. 

The result ( | )f nr  without truncation is known (Muirhead, 1982, Theorem 5.1.3). 

Result 3. Theorem 3 gives the following formula: 

( 1)/2 ( 1)/2

0 0
| | d | | d ( / 2) / ( / 2) ( 1)n p n p p

p n n n p   

 
      R R

R R R r , 

which is said to be the standardized multivariate gamma function in this paper due to 

1( 1,..., )iir i p  . 

The equation in Result 3 should mathematically hold irrespective of truncation. Though 

we consider the cases of 2p  , R  becomes 1 when 1p   and the above integral is 

defined to be 1, if necessary, which is consistent with the unit value of the right-hand side of 
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the above equation. The above equality gives another integral expression of the multivariate 

gamma function 

( 1)/2

0
( / 2) ( / 2) | | dp n p

p n n  


   R

R r . 

While it is known that 

( 1)/2

0
( / 2) exp{ tr( )} | | d ( 1)n p

p n n p 


    V V V V , 

which holds for real-valued 1n p   (Anderson, 2003, Corollary 7.2.4), the alternative 

integral expression given by Result 3 is simpler than or comparable to the above one. Result 

3 can also be derived as follows. Noting that dV  is interpreted as d{v( )}V  and recalling 

the Jacobian ( 1)/ 2
11d{v( )} ( ) dp

ppv v V u  in the proof of Lemma 2, we have 

( 1)/2
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R

R

r

R R

 

The above derivation extends integer n p  to real-valued 1n p  . When the range of 

11, ..., ppv v  is restricted as in Theorem 3, the above derivation also gives the following. 

Result 4. When the support of 11, ..., ppv v  is constrained to 
1 1

{ }ip K

ii iki k
v I

 
  , the 

multivariate gamma function defined under truncation becomes 

( 1)/2

0

( 1)/2

0

( / 2 | , ) ( / 2)

exp{ tr( )} | | d

( / 2) | | d .

p p

n p
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F n
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A R

A B

V V V
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, 

When 2p   in Results 3 and 4, the standardized bivariate gamma function becomes 
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1( 1)/2 2 ( 3)/2

0 1

1 2( 1/2) 2 ( 3)/2 2

0

| | d (1 ) d

1 1
(1 ) d , ,

2 2

n p n
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which yields the pdf of 12r r  under normality: 

2 ( 3)/2 1 1
( | , , ) ( | ) (1 ) / ,

2 2
n n

f r n f r n r       
 

A B  

without using the t-distribution with 1n   degrees of freedom as mentioned in the 

introductory section. The normalizer of the above pdf is also obtained from Result 3 using 

the bivariate gamma function as 

( 1)/2 2
20

1/2

| | d ( / 2) / ( / 2)

1 1 1
/ , .

2 2 2 2

n p n n

n n n

 


  

               
     

R R R

. 

Since the pdf of r is unchanged after variance truncation, we have the moments of 

| |R  or the scatter coefficient. 

Corollary 2. Under the same condition as in Theorem 3, we have 

( / 2) {( 2 ) / 2}
E(| | | , , ) E(| | | ) ( 0)

{( 2 ) / 2} ( / 2)

p
pk k

p
p

n n k
n n k

n k n

  
  

  
R A B R . 

In Corollary 2, E(| | | )k nR  is known (Muirhead, 1982, Equation (9), Section 5.1.2). 

 

5. Discussions 

(a) The elliptical distribution: In the multivariate null distribution of R, it was shown 

that the pdf of R under normality without truncation is robust under the elliptical 

distribution with or without variance truncation. However, the robustness does not hold in 

the non-null distribution with variance truncation although it is known that the non-null 

distribution of R without truncation is the same under the corresponding elliptical 

distribution as noted in the proof of Theorem 3. The non-robust property under variance 

truncation is due to the different distributions of sample variances (and covariances) under 

elliptical distributions with distinct fourth cumulants. That is, observations are 

variance-truncated in different ways depending on the fourth cumulants even if the same 
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sets of the lower and upper limits of the intervals for selection i.e., A and B are used. For 

instance, when observations are multivariate t-distributed (see e.g., Kotz & Nadarajah, 

Equation (1.1)) with single or double tail variance-truncation, observations are truncated 

more often than under normality since the variance of a sample variance is larger than the 

normal counterpart. Note that when inner truncation is used in this case, observations are 

truncated less often than under normality. 

(b) The variance ratio: It is known that as in the case of R, the pdf of the ratio of 

sample variances in the bivariate elliptical distributions is the same when the scale matrix is 

the same (Joarder, 2013, Theorem 5.1). Then, if the variance ratio is used for truncation, it is 

expected that the pdf of R under normality holds in the corresponding elliptical distribution. 

Since the variance ratio as well as the variances can be used e.g., in quality control (Omar, 

Joarder & Riaz, 2015), the distribution of R with variance or variance-ratio truncation may 

be useful in practice. 

(c) The Euler transform: Recall that in the bivariate untruncated moments of r shown 

in Section 2, the Euler transform gave simplified results including the Gauss 

hypergeometric functions. It is tempting to use this formula in the weighted Gauss series. 

However, it seems that generally 

2 1 ( ) 2 1 ( )( , ; ; ; ) (1 ) ( , ; ; ; )
k k

c a b
w k w kF a b c x w x F c a c b c x w     . 

There are several derivations for the Euler transform 2 1( , ; ; )F a b c x  

2 1(1 ) ( , ; ; )c a bx F c a c b c x      (Erdélyi, 1953; Section 2.1.4, Equations (21) & (23); 

Rainville, 1960, Chapter 4, Theorem 21). Among them Erdélyi’s derivation is to use the 

Euler integral: 

1 1 1
2 1 0

( )
( , ; ; ) (1 ) (1 ) d

( ) ( )
b c b ac

F a b c x t t tx t
b c b

   
  
    , 

which is a special case of the Euler integral formula for the higher-order generalized 

hypergeometric functions (see Slater, 1966, Section 4.1; DLMF, 2021, Equation 16.5.2, 

https://dlmf.nist.gov/16.5.E2) and can be extended to the corresponding weighted functions: 
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0 0 0
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( )1; 0 1),kw 

 

which is new and can be derived by writing ( )
kp qwF   in the integrand as an infinite series 

followed by term by term beta integration as in the usual unweighted case. While the above 

Euler integral holds in the weighted generalized hypergeometric functions, the Euler 

transform for the Gauss series uses the closed formula 1 0 ( ; ; ) (1 ) aF a tx tx    when p = 1 

and q = 0 with the change of variable (1 ) / (1 )s t tx    in e.g., Erdélyi’s derivation. 

However, in the weighed case of 1 0 ( )( ; ; ; )
kw kF a x w  it is difficult to obtain the 

corresponding closed expression or similar ones. This yields the difficulty of obtaining the 

simplification of the weighted Gauss series. 

(d) The asymptotically constant truncated probability: In the numerical illustrations, 

the truncated probability 2 2 /2
1 0 (2 )( / 2; ; ; )(1 )

k

n
w kF n F   B

A  (the reduced probability due to 

truncation) with its simulated and asymptotic values is shown, where the asymptotic value is 

shown since it is easily obtained by the cdf of the asymptotic bivariate normal distribution 

for iiv  or / ( 1, 2)ii iis v n i   though some numerical computation is generally required for 

the cdf as for hypergeometric functions. The asymptotic  ’s in Tables 2 and 3 are the same 

irrespective of the size of n, which is due to the construction of the selection (truncation) 

points CL 2 E( ) var( )ii iin n v v     and CR 2 E( ) var( )ii iin n v v     ( 1, 2)i  . 

These values are employed for ease of comparison among different n’s. 

Note that the fixed selection points without using n can be well used for the exact 

moments and  . For convenience, consider the sample variances ( 1, 2)iis i  . When 

1ii  , it holds that E( ) 1 ( 1, 2)iis i   under arbitrary distributions as long as they exist. Let 

the upper (right) selection point for iis  be given as CR 1 (0 )c c      under single 

truncation. When n goes to infinity, we have the limiting untruncated case with 1   since 

CR 1 E( ) / 2 var( )ii iic s c n s     and 2 1Pr( CR) 2iis c n    by the Chebyshev inequality. 
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In Tables 2 and 3, the exact   slightly varies over different n’s. However, it can be shown 

that when n goes to infinity, the limiting exact   becomes equal to the asymptotic  . The 

  when using selection (truncation) points satisfying this property (the asymptotically 

constant truncated probability) is important when we consider the asymptotic moments of r 

(see the next subsection (e)) since the asymptotic moments under truncation e.g., in the 

above case with CR 1 c   reduces to the usual asymptotic moments without truncation. 

(e) The small bias: In the section for numerical illustrations, 11 examples are shown. 

These cases can also be seen as distinct estimators (trimmed or truncated estimators) of   

using truncated sample variances. Though it is not the purpose of this paper to propose the 

best truncated estimator, it is of interest to compare the 11 estimators in terms of the total 

error index e.g., the (root) mean square error (RMSE). As Tables 2 and 3 show, the biases 

are small, the MSEs are mostly explained by the variances. The best case when  = 0.3 

(0.7) and n = 20 is Ex. 6 with RMSE = .1998 (.1020) (not shown in the tables). When  = 

0.3 (0.7) and n = 50, the best one is Ex. 7 with RMSE = .1256 (.0632). These cases use 

double or lower-tail truncations. The largest RMSEs in the four conditions are given by Ex. 

11 with both variances inner-truncated. 

In the numerical illustrations, the biases of r under variance truncation are shown to be 

as small as that without truncation. This finding suggests the following. 

Conjecture 1. Let 11v  and 22v  be truncated such that the asymptotically constant 

truncated probability holds. Then, we have 

2
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This conjecture is partially supported by the expansion of the factor before   on the 

right-hand side of the first equation: 

2 22
2 1 2
1/2 2

1
2

2 2 {( 1) / 2} 2 1 1
( / 2) 1 1 ( )

( / 2) 2 2 2
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n n
n n O n

n n n n

n
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where 1 2( ) / ( ) {1 (1 / 2) ( )( 1) ( )}z z z z O z                   (Erdélyi, 1953, 
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p. 47, Equation (4)) is used. 

Another partial support is given by the expansion of the factor after   without 

truncation: 
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where the Euler transform is used. The above expansions give the asymptotic bias without 

truncation: 

1 2 1
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2 1
2

E( | ) 1 ( ) 1 ( )
2 2

(1 )
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2

n n
r O n O n

n
O n

 

 

 
 




   
       
   


  

. 

as mentioned earlier. 

(f) The non-recursive and recursive moments: In Lemma 1, the non-recursive and 

recursive moments are shown. As addressed in Remark 1, the former includes 3 2 ( )
kwF   

while the latter 2 1 ( )
kwF  , which gives an advantage of the latter. However, if we use the 

latter for higher-order moments, we may suffer from the propagating errors (see the warning 

by Azzalini et al., 2020, http://azzalini.stat.unipd.it/SW/Pkg-mnormt/mnormt-manual.pdf, p. 

16). In the recursive methods of the moments of orders higher than e.g., the tens for the 

truncated normal vectors (e.g., Fisher, 1931, Equation (13); Kan & Robotti, 2017, Theorem 

1), it is known that the results tend to suffer from subtract cancellation errors (Pollack & 

Shauly-Aharonov, 2019; Ogasawara, 2021a, b). 

Although 2 1 ( )
kwF   looks much simpler than the corresponding 3 2 ( )

kwF  , in the 

examples for illustration, the required numbers of terms for convergence in the functions are 

almost the same. Further, it is almost equal to that of 1 0 ( )
kwF   which is required for the 
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computation of the normalizer of the pdf and 2 2 /2
1 0 (2 )( / 2; ; ; )(1 )

k

n
w kF n F   B

A . Note that 

the added computation of 3 2 ( )
kwF   over 2 1 ( )

kwF   is an added (log) rising factorial each in 

the numerator and denominator in every term of the series, which seems to be rather trivial 

as long as the computation for the numerical examples is concerned. As addressed earlier, 

while 2 1( )F   was used by Ghosh (1966) and Muirhead (1982), 3 2 ( )F   was used by 

Romero-Padilla (2016, Equations (18) to (20)). 

(g) The modified and non-modified hypergeometric functions: In Lemma 1 and 

Theorem 2, the formulas with the series expressions similar to hypergeometric functions 

(the modified hypergeometric functions) are shown followed by the hypergeometric 

expressions. The modified functions are given for their simplicity. The user cpu times 

required for the computation of the theoretical and asymptotic values in Tables 2 and 3 by 

the modified (simplified) and non-modified hypergeometric functions are 1.75 and 3.10 

seconds, respectively using Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, showing an 

advantage of the modified functions due to the reduction of the number of evaluating (log) 

gamma functions (factorials). An advantage of the non-modified functions for non-recursive 

and recursive moments is that a general function for ( ) ( , 0,1,...; 1)
kp qwF p q p q     can 

be easily coded in a computer language since all the rising factorials in the series take the 

common form of ( )k  in the k-th term (k = 0,1,...). 

(h) The moment generating function (mgf): The moments of r in Theorem 2 are given 

without using the mgf. The mgf is derived by expanding tre  and taking the beta integral 

term by term. After some algebra we have the following expression: 

2
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which is found to be 1 when t = 0 as expected using 0( / 2) 1t  . It is also found that when 

differentiated with respect to t and evaluated at t = 0, we have the result algebraically equal 

to the mean in Theorem 2. The above expression of the mgf is a scaled sum of two weighted 

bivariate hypergeometric functions similar to the Appell series when unweighted i.e., 
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( ) 1lF B
A  (see Bayley, 1935/1972, Chapter 9; Slater, 1966, Chapter 8; Zwillinger, 2015, 

Section 9.18). 

 

Appendix 

Proof of Theorem 1. The pdf of u  is written as 

1 ( 3)/2
2 2( | , ; , ) exp{ tr( ) / 2} | | nw n C   u A B Σ V V , 
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V  and 2C  is the normalizing constant satisfying 
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Expanding exp{ } , we have 
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where 1

0
( | ) exp( ) d

x
x t t t     is the lower incomplete gamma function with 

( | ) ( )     . When integrating the above result with respect to r, noting that the 

integral becomes zero if l is odd and using 2 ( 0,1,...)l k k  , we have 

1 12 ( 3)/2 2{ (1/2)} 2 ( 3)/2 2

1 0

2 1 1
(1 ) d (1 ) d ,

2 2
l n k n k n

r r r r r r  
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where ( , )    is the beta function. Consequently, the normalizing constant becomes 
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where 

2 2
1/2(2 ) 2 1 1 1 2

, /
(2 )! 2 2 ! 2 2

k kk n n n k

k k

                  
     

 

is used. Canceling the common factor 2{2(1 )}n  and redefining 2C  after this 

cancellation with the definition of the rising factorial and the Legendre duplication formula 

2 1 1/2(2 ) 2 ( ) { (1 / 2)}zz z z       (see Erdélyi, 1953, Section 1.2, Equation (15); DLMF, 

2021, Equation 5.5.5, https://dlmf.nist.gov/5.5.E5), we have 
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which gives the required expressions. 

Proof of Corollary 1. For the untruncated case, in the proof of Theorem 1 we have 
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which give the required result. 

Proof of Lemma 1. Using the pdf given by Theorem 1, we obtain 
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The alternative expression is given by the left-hand side of the third equation from the last: 
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where { } [{ } ]m m
k k    and the second last result is given by the Legendre duplication 

formula. 

The result of 2E{ (1 ) | 0,1,...; , ; , }jr r j n  A B  is given from above with i = 0 and 

3 2 { }
kwF   replaced by 2 1 { }

kwF  . 
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The alternative expression is given by the left-hand side of the third equation from the last: 
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The alternative expression of 2E{(1 ) | 0,1, ...; , ; , }jr j n  A B  is given from above with i 

= 0 and 3 2 { }
kwF   replaced by 2 1 { }

kwF  : 
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Proof of Theorem 2. The expressions without hypergeometric functions are easily 

given from Lemma 1. The alternative expression for the mean is obtained by Lemma 1 (i): 
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The expressions using hypergeometric functions for the moment of the second power 

are obtained by Lemma 1 (ii): 
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In the expressions of the moment of the fourth power, the coefficients in the terms of 

hypergeometric functions are given by Lemma 1 (ii) with 

( 1)/2

( 1)/2
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n

n n n n n
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Proof of Lemma 2. The pdf of u  is written as 

( 1)/2 ( 1)/2
11( | ; , ) exp{ tr( ) / 2} | | ( )n p p

p p ppw n C v v   u A B V V  , 

where V  is assumed to be expressed by u ; ( 1)/ 2
11d{v( )} ( ) dp

ppv v V u  is the 

Jacobian; v( )  is the vectorizing operator taking the non-duplicated elements of a matrix in 

parentheses; and pC  is the normalizing constant satisfying 
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In the last result, when without truncation, the constant product becomes 
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Consequently 1/ pC  under the above truncation is found to be decreased to 

1 1 1 1

| | / | |
2 2 2 2 2 2 2 2 2

i i
pK Kp p

ij ij ij ij

i j i j

b a b an n n n n
F F F   

   

                                         
  B

A  

times the corresponding 1/ pC  without truncation. Since the reciprocal of the normalizer of 

the Wishart distribution without truncation is /2 /2 /22 | | ( / 2) 2 ( / 2)np n np
p pn n  Σ  as 

shown earlier, which is unchanged irrespective of variable transformations for 

(1 )ijv i j p   . Then, we have 

/21 / 2 ( / 2)np
p pC n F  B

A , 

which gives the required result. 

Proof of Theorem 3. Using the result of 1 / pC  in the proof of Lemma 2, we obtain 

/2 ( 1)/2
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1 1
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where the integrand is 1 / pC  times the pdf of r. Canceling the common factors /22np  and 

F B
A  in the integrand and 1 / pC , the required pdf is obtained. The equality 

( | ; , ) ( | )f n f nr A B r  is given by the vanishing F B
A  in the expression. The robust 

property of the pdf against the violation of normality is due to the known equality of the pdf 

of R without truncation under the elliptical distribution (for the bivariate case, see Ali & 

Joarder, 1991, Theorem; for the p-variate case, Joarder & Ali, 1992, Theorem 3.1). 
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 Table 1. Eleven examples and their variance truncation 

                        The numbers of intervals         The selection points 
         Truncation type       for selection              v11             v22       
Ex. No.    v11       v22       v11     v22           A      B      A       B 

1  untrnc untrnc  1 1  0 Inf 0 Inf 
2  lower untrnc  1 1  CL Inf 0 Inf 
3  * lower  1 1  CL Inf CL Inf 
4  * upper  1 1  CL Inf 0 CR 
5  double untrnc  1 1  CL CR 0 Inf 
6  * lower  1 1  CL CR CL Inf 
7  * double  1 1  CL CR CL CR 
8  inner untrnc  2 1  0 CL 0 Inf 

 CR Inf 
9  * lower  2 1  0 CL CL Inf 

 CR Inf 
10  * double  2 1  0 CL CL CR 

 CR Inf 
11  * inner  2 2  0 CL 0 CL 

 CR Inf CR Inf 

 Note. 
1 12 2

11 1 1 22 2 21 1
( ) , ( )

n n

i ii i
v X X v X X

 

 
     ; untrnc = untruncated, lower = lower-tail 

 truncated, upper = upper-tail truncated, double = doubly truncated, inner = inner-truncated; 

 Inf = , CL = E( ) var( ) 2ii iiv v n n   , CR = E( ) var( ) 2ii iiv v n n    (i = 1, 2); 

 ‘*’ indicates ‘the same as above’. 
 
 
  



 

 

 
Table 2. Simulated and theoretical values of the moments/cumulants of r with the truncated 
probability   when  = 0.3 (the number of generated (not selected) sample covariance matrices = 105) 
 
 
Ex. No. 

 
    Mean       SD           sk          kt      

 Sim.  Th.   Sim.  Th.    Sim.  Th.   Sim.  Th. 

  
 The truncated probability  

    Sim.    Th.    Asy. 
   = 0.3,  n = 20  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

 .2927 .2932 .2060 .2058 -.3694 -.3648 -.0024 -.0334 
 .3044 .3051 .2029 .2026 -.3764 -.3738 .0113 -.0134 
 .3163 .3167 .1995 .1992 -.3820 -.3804 .0388 .0034 
 .2916 .2926 .2032 .2029 -.3587 -.3568 -.0102 -.0302 
 .2922 .2928 .2034 .2030 -.3555 -.3575 -.0231 -.0296 
 .3039 .3042 .2001 .1998 -.3613 -.3638 .0067 -.0139 
 .2925 .2930 .2008 .2004 -.3424 -.3486 -.0135 -.0298 
 .2937 .2940 .2117 .2120 -.3979 -.3793 .0267 -.0536 
 .3063 .3069 .2083 .2087 -.4059 -.3949 .0442 -.0244 
 .2913 .2925 .2079 .2088 -.3851 -.3743 .0162 -.0425 
 .2991 .2972 .2197 .2188 -.4288 -.3924 .0320 -.0862 

 1 1 1 
 .84751 .84656 .84134 
 .72130 .72088 .71337 
 .71102 .71032 .70283 
 .69215 .69120 .68269 
 .58469 .58464 .57485 
 .47905 .47880 .46702 
 .30785 .30880 .31731 
 .26210 .26193 .26649 
 .21208 .21240 .21567 
 .09577 .09639 .10164 

   = 0.3,  n = 50  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

 .2970 .2973 .1294 .1293 -.2413 -.2448 -.0181 -.0007 
 .3050 .3050 .1276 .1275 -.2492 -.2453 -.0029 .0031 
 .3120 .3124 .1260 .1258 -.2506 -.2445 -.0014 .0051 
 .2969 .2971 .1272 .1273 -.2358 -.2384 -.0007 -.0001 
 .2976 .2972 .1272 .1274 -.2482 -.2388 -.0007 .0000 
 .3044 .3045 .1259 .1256 -.2514 -.2379 .0062 .0018 
 .2971 .2973 .1258 .1256 -.2332 -.2314 .0130 -.0017 
 .2957 .2975 .1338 .1335 -.2252 -.2562 -.0684 -.0183 
 .3945 .3060 .1319 .1316 -.2287 -.2610 -.0653 -.0091 
 .2951 .2969 .1312 .1312 -.2255 -.2523 -.0740 -.0012 
 .2970 .2986 .1393 .1383 -.2271 -.2652 -.0832 -.0485 

 1 1 1 
 .84261 .84323 .84134 
 .71603 .71579 .71337 
 .70497 .70573 .70283 
 .68500 .69599 .68269 
 .57888 .57829 .57485 
 .47190 .47156 .46702 
 .31500 .31401 .31731 
 .26473 .26494 .26649 
 .21447 .21443 .21567 
 .10053 .09959 .10164 

Note. SD = standard deviation, sk = skewness, kt = excess kurtosis,  (the truncated probability) = 
2 2 /2

1 0 (2 )( / 2; ; ; )(1 )
k

n
w kF n F B

A ; Sim. = simulated values, Th. = theoretical values, Asy. = asymptotic 

values. 
 
  



 

 

 
Table 3. Simulated and theoretical values of the moments/cumulants of r with the truncated 
probability   when  = 0.7 (the number of generated (not selected) sample covariance matrices = 105) 
 
 
Ex. No. 

 
    Mean       SD           sk          kt      

 Sim.  Th.   Sim.  Th.    Sim.  Th.   Sim.  Th. 

  
 The truncated probability  

    Sim.    Th.    Asy. 
   = 0.7,  n = 20  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

 .6904 .6907 .1219 .1218 -.9532 -.9543 1.4637 1.4431 
 .7083 .7086 .1092 .1091 -.8414 -.8452 1.0923 1.1047 
 .7198 .7201 .1014 .1014 -.7616 -.7683 .8304 .8636 
 .6940 .6941 .1096 .1095 -.8079 -.8127 1.0321 1.0457 
 .6941 .6941 .1096 .1095 -.8101 -.8135 1.0383 1.0471 
 .7062 .7061 .1018 .1018 -.7283 -.7351 .7740 .8078 
 .6973 .6972 .1025 .1024 -.7042 -.7106 .7267 .7607 
 .6821 .6831 .1454 .1454 -.9689 -.9723 1.0600 1.0267 
 .7133 .7145 .1244 .1247 -.9829-1.0114 1.1160 1.2152 
 .6850 .6856 .1263 .1267 -.8412 -.8700 .8121 .8996 
 .6778 .6795 .1697 .1692 -.9646 -.9599 .6287 .5710 

 1 1 1 
 .84615 .84656 .84134 
 .74816 .74786 .74427 
 .69530 .69498 .68672 
 .69130 .69120 .68269 
 .59732 .59627 .58965 
 .50835 .50726 .49660 
 .30870 .30880 .31731 
 .25029 .25029 .25170 
 .18448 .18394 .18609 
 .12422 .12485 .13122 

   = 0.7,  n = 50  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

 .6964 .6964 .0743 .0741 -.6207 -.6002 .6780 .5901 
 .7073 .7073 .0679 .0679 -.5209 -.5092 .4457 .3905 
 .7144 .7142 .0641 .0643 -.4592 -.4581 .3057 .2890 
 .6979 .6978 .0670 .0670 -.5156 -.5031 .4640 .4004 
 .6979 .6978 .0669 .0670 -.5162 -.5035 .4726 .4006 
 .7052 .7049 .0632 .0635 -.4512 -.4513 .3302 .2965 
 .6993 .6990 .0629 .0632 -.4467 -.4412 .3298 .2909 
 .6930 .6933 .0881 .0875 .-.6410 -.6220 .3138 .2528 
 .7130 .7129 .0770 .0770 -.6351 -.6459 .2989 .3620 
 .6949 .6945 .0764 .0762 -.5215 -.5466 .1727 .2496 
 .6903 .6915 .1025 .1017 -.6457 -.6148 -.0551 -.1423 

 1 1 1 
 .84279 .84323 .84134  
 .74277 .74465 .74427 
 .69015 .68992 .68672 
 .68585 .68599 .68269 
 .58985 .59134 .58965 
 .49935 .50071 .49660 
 .31415 .31401 .31731 
 .25136 .25189 .25170 
 .18508 .18528 .18609 
 .12907 .12873 .13122 

Note. SD = standard deviation, sk = skewness, kt = excess kurtosis,  (the truncated probability) = 
2 2 /2

1 0 (2 )( / 2; ; ; )(1 )
k

n
w kF n F B

A ; Sim. = simulated values, Th. = theoretical values, Asy. = asymptotic 

values. 
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