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This article supplements Ogasawara (2023) with the second proof and 
associated remarks for Lemma 1. 

 
Lemma 1 (Ogasawara, 2023). Suppose that each of 2m variables ikX  and 

jkX ( ; 1,..., ; 1, 2,...)i j k m m    independently follows 1N(0,1) N (0,1) . 
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Proof 2. In this proof, the pdf of the chi-distribution is used with associated 
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Then, the joint pdf of X  and Y  becomes 
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Consider the variable transformation Z XY  with unchanged X . Since the 
Jacobian is 1( )J Y Z x  , the joint pdf of X  and Z  is 
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which gives the pdf of Z  as 
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. The 

mgf of Z  is 
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where the integrand of the last integral is the density of the scaled chi-

distributed variable with the scale parameter 2 1/2 2(1 ) ( 1)t t  . 

Noting that the distribution of each ik jkX X  in 1

m

ik jkk
X X

  is equal to 

that of | |ik jkX X , which is distributed as Z  given earlier when m = 1, the 

mgf of ik jkX X  becomes 2 /2(1 )t  . Since the mgf of 
1

m

ik jkk
X X

  is equal to 

that of 1
| |

m

ik jkk
X X

  with the m terms being i.i.d., the mgf of 1

m

ik jkk
X X

  

is given by 2 /2(1 ) mt   as obtained earlier for 2

1

m

jk ilk
X Y

  showing their 

same distributions. Q.E.D. 
Remark S.1 A byproduct of Proof 2 is the pdf of Z  using an integral 

expression. A slightly different derivation of the pdf is given by the variable 
transformation Z XY  with unchanged Y  rather than X . Since the 
Jacobian is 1( ) | |J X Z y   , the joint pdf of Y  and Z  is 
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where / 0z y   by definition. The above result gives another expression of the 
pdf for Z  
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which is not simpler than that given earlier and can be shown to be equal to the 

previous one using /x z y  and 2( ) | d / d | | |J Y X y x z x   . 
Remark S.2 The derivation of the pdf of Z  suggests the corresponding 

pdf when X  and Y  are correlated. Let 2 1/2 2(1 ) ( 1)Y X U      , 
where U  is standard normally distributed and uncorrelated with X . Then, 
the correlation coefficient of X  and Y  becomes  . Consider the 

transformation from U  to 2 1/2{ (1 ) }Z XY X X U      with 
1 2 1/2( ) | | (1 )J U Z x     . Since the joint pdf of X  and Z  is 
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we have 
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which is seen as a special case of Pearson, Jeffery and Elderton (1929, Equation 
(iv)), Wishart and Bartlett (1932, Equation (12)), and Craig (1936, pp. 3-4) 
though these authors use the Bessel function of the second kind with imaginary 
argument (see McKay,1932; Watson, 1944/1995). It is found that when 0  , 
the pdf becomes equal to that obtained earlier when m = 1. The mgf of Z  is 
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The above result becomes 2 1/2(1 )t   when 0   as obtained earlier. An 
algebraically equal expression 2 2 1/ 2{1 2 (1 ) }t t      was given by Wishart 

and Bartlett (1932, Equation (9)), which supports the validity of ( )Zf z  given 
earlier. 

Remark S.3 We deal with the sum of the products of correlated variables 

1
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X Y

 , ( 2)m  , where iX  and iY  are standard normally distributed with 

E( )i iX Y  ( 1 1)   ( 1,..., )i m  and independent of jX  and 
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S . Since *S  follows the Wishart distribution with 

the scale matrix 
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Σ  and m df, the density of *S  at  x z
z yS  with p 

= 2 becomes 
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Consider the variable transformation from Y  to 2 0U XY Z    with 
1( )J Y U x  . Then, the joint pdf of ,X U  and Z  is 
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which gives the marginal density of X  and Z  as 
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From this result, the pdf of Z  is derived as 
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Let 2X V  with ( ) 2J X V v  . Then, the above result becomes 
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where the last result is given by the redefinition of X V . Note that in the 
above density 2m   is assumed. Though 2 ( / 2)m  when 1m   is not 
defined, it is found that the derived density when 1m   becomes 
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as obtained earlier for the product of the correlated standard normal variables. 
Remark S.4 The mgf of the sum of the products of correlated variables 
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 ( 2)m   as defined in Remark S.3 is obtained. Using the pdf of 

Z , we have 
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which is expected since 1
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  is the sum of m independent identically 

distributed terms, where the mgf of each term was obtained as 
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