Supplement to the paper "On some known derivations and new ones for the Wishart distribution: A didactic"

Haruhiko Ogasawara

This article supplements Ogasawara (2023) with the second proof and associated remarks for Lemma 1.

Lemma 1 (Ogasawara, 2023). Suppose that each of $2 m$ variables $X_{i k}$ and $X_{j k}(i \neq j ; k=1, \ldots, m ; m=1,2, \ldots)$ independently follows $\mathrm{N}(0,1) \equiv \mathrm{N}_{1}(0,1)$. Then, the distribution of $\sum_{k=1}^{m} X_{i k} X_{j k}$ is the same as that of $X_{i l} \sqrt{\sum_{k=1}^{m} X_{j k}^{2}}$ $(i \neq j ; l=1, \ldots, m)$.

Proof 2. In this proof, the pdf of the chi-distribution is used with associated mgf's. Let $X=\sqrt{\sum_{k=1}^{m} X_{j k}^{2}}$ and $Y=X_{i l}$. Then, X is chi-distributed with m df. The pdf of X at x denoted by $f_{\chi}(x \mid m)$ is given by that of the chi-square distributed $U=X^{2}$ at u with m df i.e., $f_{\chi^{2}}(u \mid m)=\frac{u^{(m / 2)-1}}{2^{m / 2} \Gamma(m / 2)} \exp (-u / 2)$ with the Jacobian $\mathrm{d} u / \mathrm{d} x=2 x$, yielding

$$
\begin{aligned}
f_{\chi}(x \mid m) & =\frac{u^{(m / 2)-1}}{2^{m / 2} \Gamma(m / 2)} \exp (-u / 2) \frac{\mathrm{d} u}{\mathrm{~d} x} \\
& =\frac{u^{(m / 2)-1} \exp (-u / 2)}{2^{m / 2} \Gamma(m / 2)} 2 x \\
& =\frac{x^{m-1} \exp \left(-x^{2} / 2\right)}{2^{(m / 2)-1} \Gamma(m / 2)}
\end{aligned}
$$

Then, the joint pdf of X and Y becomes $\frac{x^{m-1} \exp \left(-x^{2} / 2\right)}{2^{(m / 2)-1} \Gamma(m / 2)} \frac{\exp \left(-y^{2} / 2\right)}{\sqrt{2 \pi}}$.

Consider the variable transformation $Z=X Y$ with unchanged X. Since the Jacobian is $J(Y \rightarrow Z)=x^{-1}$, the joint pdf of X and Z is

$$
\frac{x^{m-1} \exp \left(-x^{2} / 2\right)}{2^{(m / 2)-1} \Gamma(m / 2)} \frac{\exp \left(-y^{2} / 2\right)}{\sqrt{2 \pi}} x^{-1}=\frac{x^{m-2} \exp \left\{-\left(x^{2}+z^{2} x^{-2}\right) / 2\right\}}{2^{(m-1) / 2} \pi^{1 / 2} \Gamma(m / 2)},
$$

which gives the pdf of Z as $f_{Z}(z \mid m)=\frac{\int_{0}^{\infty} x^{m-2} \exp \left\{-\left(x^{2}+z^{2} x^{-2}\right) / 2\right\} \mathrm{d} x}{2^{(m-1) / 2} \pi^{1 / 2} \Gamma(m / 2)}$. The mgf of Z is

$$
\begin{aligned}
& \frac{\int_{-\infty}^{\infty} \int_{0}^{\infty} x^{m-2} \exp \left\{-\left(x^{2}+z^{2} x^{-2}\right) / 2\right\} \exp (t z) \mathrm{d} x \mathrm{~d} z}{2^{(m-1) / 2} \pi^{1 / 2} \Gamma(m / 2)} \\
& =\frac{\int_{0}^{\infty} x^{m-2} \exp \left\{-\left(1-t^{2}\right) x^{2} / 2\right\} \int_{-\infty}^{\infty} \exp \left\{-\left(z-t x^{2}\right)^{2} x^{-2} / 2\right\} \mathrm{d} z \mathrm{~d} x}{2^{(m-1) / 2} \pi^{1 / 2} \Gamma(m / 2)} \\
& =\frac{\int_{0}^{\infty} x^{m-2} \exp \left\{-\left(1-t^{2}\right) x^{2} / 2\right\} x(2 \pi)^{1 / 2} \mathrm{~d} x}{2^{(m-1) / 2} \pi^{1 / 2} \Gamma(m / 2)} \\
& =\frac{\int_{0}^{\infty}\left(1-t^{2}\right)^{m / 2} x^{m-1} \exp \left\{-\left(1-t^{2}\right) x^{2} / 2\right\}\left\{2^{(m / 2)-1} \Gamma(m / 2)\right\}^{-1} \mathrm{~d} x}{\left(1-t^{2}\right)^{m / 2}} \\
& =\frac{1}{\left(1-t^{2}\right)^{m / 2}},
\end{aligned}
$$

where the integrand of the last integral is the density of the scaled chidistributed variable with the scale parameter $\left(1-t^{2}\right)^{-1 / 2}\left(t^{2}<1\right)$.

Noting that the distribution of each $X_{i k} X_{j k}$ in $\sum_{k=1}^{m} X_{i k} X_{j k} \quad$ is equal to that of $\left|X_{i k}\right| X_{j k}$, which is distributed as Z given earlier when $m=1$, the mgf of $X_{i k} X_{j k}$ becomes $\left(1-t^{2}\right)^{-/ 2}$. Since the mgf of $\sum_{k=1}^{m} X_{i k} X_{j k}$ is equal to that of $\sum_{k=1}^{m}\left|X_{i k}\right| X_{j k}$ with the m terms being i.i.d., the mgf of $\sum_{k=1}^{m} X_{i k} X_{j k}$ is given by $\left(1-t^{2}\right)^{-m / 2}$ as obtained earlier for $\sqrt{\sum_{k=1}^{m} X_{j k}^{2}} Y_{i l}$ showing their same distributions. Q.E.D.

Remark S. 1 A byproduct of Proof 2 is the pdf of Z using an integral expression. A slightly different derivation of the pdf is given by the variable transformation $Z=X Y$ with unchanged Y rather than X. Since the Jacobian is $J(X \rightarrow Z)=|y|^{-1}$, the joint pdf of Y and Z is

$$
\begin{aligned}
& \frac{x^{m-1} \exp \left(-x^{2} / 2\right)}{2^{(m / 2)-1} \Gamma(m / 2)} \frac{\exp \left(-y^{2} / 2\right)}{\sqrt{2 \pi}}|y|^{-1} \\
& =\frac{(z / y)^{m-1} \exp \left\{-(z / y)^{2} / 2\right\}}{2^{(m / 2)-1} \Gamma(m / 2)} \frac{\exp \left(-y^{2} / 2\right)}{\sqrt{2 \pi}}|y|^{-1} \\
& =\frac{(z / y)^{m-1}|y|^{-1} \exp \left[-\left\{(z / y)^{2}+y^{2}\right\} / 2\right]}{2^{(m-1) / 2} \pi^{1 / 2} \Gamma(m / 2)}
\end{aligned}
$$

where $z / y \geq 0$ by definition. The above result gives another expression of the pdf for Z

$$
f_{Z}(z \mid m)=\frac{\int_{-\infty}^{\infty}(z / y)^{m-1}|y|^{-1} \exp \left[-\left\{(z / y)^{2}+y^{2}\right\} / 2\right] \mathrm{d} y}{2^{(m-1) / 2} \pi^{1 / 2} \Gamma(m / 2)}
$$

which is not simpler than that given earlier and can be shown to be equal to the previous one using $x=z / y$ and $J(Y \rightarrow X)=|\mathrm{d} y / \mathrm{d} x|=|z| x^{-2}$.

Remark S. 2 The derivation of the pdf of Z suggests the corresponding pdf when X and Y are correlated. Let $Y=\rho X+\left(1-\rho^{2}\right)^{1 / 2} U\left(\rho^{2} \leq 1\right)$, where U is standard normally distributed and uncorrelated with X. Then, the correlation coefficient of X and Y becomes ρ. Consider the transformation from U to $Z=X Y=X\left\{\rho X+\left(1-\rho^{2}\right)^{1 / 2} U\right\}$ with $J(U \rightarrow Z)=|x|^{-1}\left(1-\rho^{2}\right)^{-1 / 2}$. Since the joint pdf of X and Z is

$$
\begin{aligned}
& (2 \pi)^{-1} \exp \left\{-\left(x^{2}+u^{2}\right) / 2\right\} J(U \rightarrow Z) \\
& =(2 \pi)^{-1} \exp \left[-\left\{x^{2}+\left(z x^{-1}-\rho x\right)^{2}\left(1-\rho^{2}\right)^{-1}\right\} / 2\right]|x|^{-1}\left(1-\rho^{2}\right)^{-1 / 2} \\
& =(2 \pi)^{-1}\left(1-\rho^{2}\right)^{-1 / 2} \exp \left\{-\frac{x^{2}+z^{2} x^{-2}-2 z \rho}{2\left(1-\rho^{2}\right)}\right\}|x|^{-1},
\end{aligned}
$$

we have

$$
\begin{aligned}
f_{Z}(z) & =(2 \pi)^{-1}\left(1-\rho^{2}\right)^{-1 / 2} \int_{-\infty}^{\infty} \exp \left\{-\frac{x^{2}+z^{2} x^{-2}-2 z \rho}{2\left(1-\rho^{2}\right)}\right\}|x|^{-1} \mathrm{~d} x \\
& =\pi^{-1}\left(1-\rho^{2}\right)^{-1 / 2} \int_{0}^{\infty} \exp \left\{-\frac{x^{2}+z^{2} x^{-2}-2 z \rho}{2\left(1-\rho^{2}\right)}\right\} x^{-1} \mathrm{~d} x
\end{aligned}
$$

which is seen as a special case of Pearson, Jeffery and Elderton (1929, Equation (iv)), Wishart and Bartlett (1932, Equation (12)), and Craig (1936, pp. 3-4) though these authors use the Bessel function of the second kind with imaginary argument (see McKay,1932; Watson, 1944/1995). It is found that when $\rho=0$, the pdf becomes equal to that obtained earlier when $m=1$. The mgf of Z is

$$
\begin{aligned}
& \mathrm{M}_{Z}(t)=\pi^{-1}\left(1-\rho^{2}\right)^{-1 / 2} \int_{-\infty}^{\infty} \int_{0}^{\infty} \exp \left\{-\frac{x^{2}+z^{2} x^{-2}-2 z \rho}{2\left(1-\rho^{2}\right)}+z t\right\} x^{-1} \mathrm{~d} x \mathrm{~d} z \\
& =\pi^{-1}\left(1-\rho^{2}\right)^{-1 / 2} \int_{0}^{\infty} \int_{-\infty}^{\infty} \exp \left\{-\frac{z^{2}-2\left\{\rho+\left(1-\rho^{2}\right) t\right\} x^{2} z+x^{4}}{2\left(1-\rho^{2}\right) x^{2}}\right\} x^{-1} \mathrm{~d} z \mathrm{~d} x \\
& =\pi^{-1}\left(1-\rho^{2}\right)^{-1 / 2} \int_{0}^{\infty} \int_{-\infty}^{\infty} \exp \left(-\frac{\left[z-\left\{\rho+\left(1-\rho^{2}\right) t\right\} x^{2}\right]^{2}}{2\left(1-\rho^{2}\right) x^{2}}\right) \mathrm{d} z \\
& \quad \times \exp \left(-\frac{\left[1-\left\{\rho+\left(1-\rho^{2}\right) t\right\}^{2}\right] x^{2}}{2\left(1-\rho^{2}\right)}\right) x^{-1} \mathrm{~d} x \\
& =(2 / \pi)^{1 / 2} \int_{0}^{\infty} \exp \left(-\frac{\left[1-\left\{\rho+\left(1-\rho^{2}\right) t\right\}^{2}\right] x^{2}}{2\left(1-\rho^{2}\right)}\right) \mathrm{d} x \\
& =\frac{\left(1-\rho^{2}\right)^{1 / 2}}{\left[1-\left\{\rho+\left(1-\rho^{2}\right) t\right\}^{2}\right]^{1 / 2}} .
\end{aligned}
$$

The above result becomes $\left(1-t^{2}\right)^{-1 / 2}$ when $\rho=0$ as obtained earlier. An algebraically equal expression $\left\{1-2 \rho t+\left(1-\rho^{2}\right) t^{2}\right\}^{-1 / 2}$ was given by Wishart and Bartlett (1932, Equation (9)), which supports the validity of $f_{Z}(z)$ given earlier.

Remark S. 3 We deal with the sum of the products of correlated variables $\sum_{i=1}^{m} X_{i} Y_{i},(m \geq 2)$, where X_{i} and Y_{i} are standard normally distributed with $\mathrm{E}\left(X_{i} Y_{i}\right)=\rho(-1 \leq \rho \leq 1)(i=1, \ldots, m)$ and independent of X_{j} and $Y_{j}(i \neq j)$. Redefine $X=\sum_{i=1}^{m} X_{i}^{2}, Y=\sum_{i=1}^{m} Y_{i}^{2}$ and $Z=\sum_{i=1}^{m} X_{i} Y_{i}$ with the random matrix $\mathbf{S}^{*}=\left(\begin{array}{ll}X & Z \\ Z & Y\end{array}\right)$. Since \mathbf{S}^{*} follows the Wishart distribution with the scale matrix $\boldsymbol{\Sigma}=\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)$ and m df, the density of \mathbf{S}^{*} at $\mathbf{S}=\left(\begin{array}{ll}x & z \\ z & y\end{array}\right)$ with p $=2$ becomes

$$
\begin{aligned}
w_{p}(\mathbf{S} \mid \boldsymbol{\Sigma}, m) & =\frac{\exp \left\{-\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{S}\right) / 2\right\}|\mathbf{S}|^{(m-p-1) / 2}}{2^{m p / 2}|\boldsymbol{\Sigma}|^{m / 2} \Gamma_{p}(m / 2)} \\
& =\exp \left\{-\frac{x+y-2 \rho z}{2\left(1-\rho^{2}\right)}\right\} \frac{\left(x y-z^{2}\right)^{(m-3) / 2}}{2^{m}\left(1-\rho^{2}\right)^{m / 2} \Gamma_{2}(m / 2)} .
\end{aligned}
$$

Consider the variable transformation from Y to $U=X Y-Z^{2} \geq 0$ with $J(Y \rightarrow U)=x^{-1}$. Then, the joint pdf of X, U and Z is

$$
\begin{aligned}
& \exp \left\{-\frac{x+y-2 \rho z}{2\left(1-\rho^{2}\right)}\right\} \frac{\left(x y-z^{2}\right)^{(m-3) / 2}}{2^{m}\left(1-\rho^{2}\right)^{m / 2} \Gamma_{2}(m / 2)} J(Y \rightarrow U) \\
& =\exp \left\{-\frac{x+\left(u+z^{2}\right) x^{-1}-2 \rho z}{2\left(1-\rho^{2}\right)}\right\} \frac{u^{(m-3) / 2} x^{-1}}{2^{m}\left(1-\rho^{2}\right)^{m / 2} \Gamma_{2}(m / 2)} \\
& =\exp \left\{-\frac{u}{2\left(1-\rho^{2}\right) x}\right\} \frac{u^{(m-3) / 2} x^{-1}}{2^{m}\left(1-\rho^{2}\right)^{m / 2} \Gamma_{2}(m / 2)} \exp \left\{-\frac{x+z^{2} x^{-1}-2 \rho z}{2\left(1-\rho^{2}\right)}\right\},
\end{aligned}
$$

which gives the marginal density of X and Z as

$$
\begin{aligned}
& \int_{0}^{\infty} \exp \left\{-\frac{u}{2\left(1-\rho^{2}\right) x}\right\} \frac{u^{(m-3) / 2} x^{-1}}{2^{m}\left(1-\rho^{2}\right)^{m / 2} \Gamma_{2}(m / 2)} \mathrm{d} u \exp \left\{-\frac{x+z^{2} x^{-1}-2 \rho z}{2\left(1-\rho^{2}\right)}\right\} \\
& =\frac{\left\{2\left(1-\rho^{2}\right) x\right\}^{(m-1) / 2} \Gamma\{(m-1) / 2\} x^{-1}}{2^{m}\left(1-\rho^{2}\right)^{m / 2} \Gamma_{2}(m / 2)} \exp \left\{-\frac{x+z^{2} x^{-1}-2 \rho z}{2\left(1-\rho^{2}\right)}\right\} \\
& =\frac{x^{(m-3) / 2}}{2^{(m+1) / 2}\left(1-\rho^{2}\right)^{1 / 2} \pi^{1 / 2} \Gamma(m / 2)} \exp \left\{-\frac{x+z^{2} x^{-1}-2 \rho z}{2\left(1-\rho^{2}\right)}\right\}
\end{aligned}
$$

From this result, the pdf of Z is derived as

$$
f_{Z}(z \mid m)=\int_{0}^{\infty} \frac{x^{(m-3) / 2}}{2^{(m+1) / 2}\left(1-\rho^{2}\right)^{1 / 2} \pi^{1 / 2} \Gamma(m / 2)} \exp \left\{-\frac{x+z^{2} x^{-1}-2 \rho z}{2\left(1-\rho^{2}\right)}\right\} \mathrm{d} x
$$

Let $X=V^{2}$ with $J(X \rightarrow V)=2 v$. Then, the above result becomes

$$
\begin{aligned}
& f_{Z}(z \mid m)=\int_{0}^{\infty} \frac{x^{(m-3) / 2}}{2^{(m+1) / 2}\left(1-\rho^{2}\right)^{1 / 2} \pi^{1 / 2} \Gamma(m / 2)} \exp \left\{-\frac{x+z^{2} x^{-1}-2 \rho z}{2\left(1-\rho^{2}\right)}\right\} 2 v \mathrm{~d} v \\
& =\int_{0}^{\infty} \frac{v^{m-2}}{2^{(m-1) / 2}\left(1-\rho^{2}\right)^{1 / 2} \pi^{1 / 2} \Gamma(m / 2)} \exp \left\{-\frac{v^{2}+z^{2} v^{-2}-2 \rho z}{2\left(1-\rho^{2}\right)}\right\} \mathrm{d} v \\
& =\int_{0}^{\infty} \frac{x^{m-2}}{2^{(m-1) / 2}\left(1-\rho^{2}\right)^{1 / 2} \pi^{1 / 2} \Gamma(m / 2)} \exp \left\{-\frac{x^{2}+z^{2} x^{-2}-2 \rho z}{2\left(1-\rho^{2}\right)}\right\} \mathrm{d} x
\end{aligned}
$$

where the last result is given by the redefinition of $X=V$. Note that in the above density $m \geq 2$ is assumed. Though $\Gamma_{2}(m / 2)$ when $m=1$ is not defined, it is found that the derived density when $m=1$ becomes

$$
f_{Z}(z \mid m=1)=\frac{1}{\pi\left(1-\rho^{2}\right)^{1 / 2}} \int_{0}^{\infty} \exp \left\{-\frac{x^{2}+z^{2} x^{-2}-2 \rho z}{2\left(1-\rho^{2}\right)}\right\} x^{-1} \mathrm{~d} x
$$

as obtained earlier for the product of the correlated standard normal variables.
Remark S. 4 The mgf of the sum of the products of correlated variables $Z=\sum_{i=1}^{m} X_{i} Y_{i}(m \geq 2)$ as defined in Remark S. 3 is obtained. Using the pdf of Z, we have

$$
\begin{aligned}
& \mathrm{M}_{Z}(t \mid m) \\
& =\int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{x^{m-2}}{2^{(m-1) / 2}\left(1-\rho^{2}\right)^{1 / 2} \pi^{1 / 2} \Gamma(m / 2)} \exp \left\{-\frac{x^{2}+z^{2} x^{-2}-2 \rho z}{2\left(1-\rho^{2}\right)}\right\} \exp (t z) \mathrm{d} x \mathrm{~d} z \\
& =\int_{0}^{\infty} \frac{x^{m-2}}{2^{(m-1) / 2}\left(1-\rho^{2}\right)^{1 / 2} \pi^{1 / 2} \Gamma(m / 2)} \int_{-\infty}^{\infty} \exp \left\{-\frac{x^{2}+z^{2} x^{-2}-2 \rho z-2\left(1-\rho^{2}\right) t z}{2\left(1-\rho^{2}\right)}\right\} \mathrm{d} z \mathrm{~d} x \\
& =\int_{0}^{\infty} \frac{x^{m-2}}{2^{(m-1) / 2}\left(1-\rho^{2}\right)^{1 / 2} \pi^{1 / 2} \Gamma(m / 2)} \\
& \times \int_{-\infty}^{\infty} \exp \left(-\frac{\left[z-\left\{\rho+\left(1-\rho^{2}\right) t\right\} x^{2}\right]^{2}+x^{4}-\left\{\rho+\left(1-\rho^{2}\right) t\right\}^{2} x^{4}}{2\left(1-\rho^{2}\right) x^{2}}\right) \mathrm{d} z \mathrm{~d} x \\
& =\int_{0}^{\infty} \frac{x^{m-2}}{2^{(m-1) / 2}\left(1-\rho^{2}\right)^{1 / 2} \pi^{1 / 2} \Gamma(m / 2)}(2 \pi)^{1 / 2}\left(1-\rho^{2}\right)^{1 / 2} x \\
& \\
& \times \exp \left(-\frac{\left[1-\left\{\rho+\left(1-\rho^{2}\right) t\right\}^{2}\right] x^{4}}{2\left(1-\rho^{2}\right) x^{2}}\right) \mathrm{d} x \\
& =\int_{0}^{\infty} \frac{x^{m-1}}{2^{(m-2) / 2} \Gamma(m / 2)} \exp \left(-\frac{\left[1-\left\{\rho+\left(1-\rho^{2}\right) t\right\}^{2}\right] x^{2}}{2\left(1-\rho^{2}\right)}\right) \mathrm{d} x \\
& =\int_{0}^{\infty} \frac{v^{(m-1) / 2}}{2^{(m-2) / 2} \Gamma(m / 2)} \exp \left(-\frac{\left[1-\left\{\rho+\left(1-\rho^{2}\right) t\right\}^{2}\right] v}{2\left(1-\rho^{2}\right)}\right) \frac{v^{-1 / 2}}{2} \mathrm{~d} v \\
& =\int_{0}^{\infty} \frac{v^{(m-2) / 2}}{2^{m / 2} \Gamma(m / 2)} \exp \left(-\frac{\left[1-\left\{\rho+\left(1-\rho^{2}\right) t\right\}^{2}\right] v}{2\left(1-\rho^{2}\right)}\right) \mathrm{d} v \\
& =\frac{\left(1-\rho^{2}\right)^{m / 2}}{\left[1-\left\{\rho+\left(1-\rho^{2}\right) t\right\}^{2}\right]^{m / 2}},
\end{aligned}
$$

which is expected since $Z=\sum_{i=1}^{m} X_{i} Y_{i}$ is the sum of m independent identically distributed terms, where the mgf of each term was obtained as

$$
\frac{\left(1-\rho^{2}\right)^{1 / 2}}{\left[1-\left\{\rho+\left(1-\rho^{2}\right) t\right\}^{2}\right]^{1 / 2}} .
$$

References

Craig, C. C. (1936). On the frequency function of $x y$. The Annals of Mathematical Statistics, 7, 1-15.
McKay, A. T. (1932). A Bessel function distribution. Biometrika, 24, 39-44.
Ogasawara, H. (2023). On some known derivations and new ones for the Wishart distribution: A didactic. Journal of Behavioral Data Science, 34
(1), 34-58. https://doi.org/10.35566/jbds/v3n1/ogasawara.

Pearson, K., Jeffery, G. B., \& Elderton, E. M. (1929). On the distribution of the first product moment-coefficient, in samples drawn from an indefinitely large normal population. Biometrika, 164-201.
Watson, G. N. (1944). A treatise on the theory of Bessel functions (2nd ed.). (1995, Reprint). Cambridge: Cambridge University Press.
Wishart, J., \& Bartlett, M. S. (1932). The distribution of second order moment statistics in a normal system. Mathematical Proceedings of the Cambridge Philosophical Society, 28 (4), 455-459.

