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Abstract: Based on a didactic historical review of the distributions using the Bessel function, 

some new extensions with unification are shown. Their probability density functions (pdf’s) 

are given by several integral representations of the Bessel function, whose distributions are 

called the basic Bessel (BB) ones including the known Halphen type A. Power 

transformations of the BB (PBB) distributions are provided with their moments. The 

differential equations for the PBB distributions are shown and used to have their modes. A 

unified expression for unimodal extended distributions is also given with the differential 

equation. 

 

Keywords: inverse Gaussian distribution, basic Bessel distribution, incomplete Bessel 

function, Halphen distribution type A, differential equation. 
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1. Introduction 

This paper deals with distributions including the factor 1exp( ) ( )au bu g u   

( 0, 0)a b   in the probability density function (pdf) denoted by ( )Uf u  for a positive 

random variable U, where u can be a monotonic function of u. The normalizing constant 

generally includes a Bessel function, which will be didactically mentioned later. The history 

associated with this distribution can be traced back to an observation of pollen found by 

Robert Brown in 1828, which is currently known as a Brownian motion. This issue has been 

investigated by A. Einstein in 1905 and M. C. K. Tweedie in his 1941 thesis (see Tweedie, 

1945 for an essential result; and details in Tweedie, 1957a, b). The distribution associated 

with Brownian motion, a special case of the above pdf, was called the inverse Gaussian (IG) 

distribution by Tweedie in 1956 (for the history of the IG distribution, see Chhikara and 

Folks, 1989, Section 1.2; Seshadri, 1999, Section 1.0). The IG distribution has been used in 

various fields not only in the natural and physical sciences but also in the social and 

behavioral sciences e.g., cardiology, hydrology, demography, linguistics, employment 

service, labor disputes and finance typically in lifetime researches in a broad sense as noted 

by Chhikara and Folks (1989, Section 1.4 and Chapter 10), and additional fields as ecology, 

entomology, health sciences, traffic noise intensity, management sciences, actuarial 

sciences, histomorphometry, electrical networks, meteorology, mental health, physiology, 

remote sensing, market research, slug lengths in pipelines and plutonium estimation as 

shown by Seshadri (1999, page. v and Part II) with real life examples. Note that in the IG 

distribution, the Bessel function does not seem to appear though it is implicitly used as will 

be explained later. 

Use of the (modified) Bessel function in statistics dates back to Fisher (1928, p. 663) for 

the multiple correlation coefficient followed by Pearson, Jeffery and Elderton (1929, pp. 

165, 187; for citing Fisher’s work see p. 193) and, Wishart and Bartlett (1932, Equation 

(12)) for the product distribution of two correlated normal variables. Note that the product 

distribution is a special case of the McKay Bessel distribution as noted by Wishart and 

Bartlett (1932, p. 459) as well as McKay (1932, p. 43) (for the product distribution, see 

Ogasawara, 2023b). Apart from these developments using the Bessel functions in statistics, 

or in Brownian motion, explicit representations of the pdf  ( )Uf u  were independently 
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provided by Halphen (1941), a French mathematician as well as a hydrologist, which are 

currently summarized as the Halphen type A (HA) distribution, whose normalizing constant 

includes a Bessel function as noted by Halphen (1941, p. 635). 

Halphen’s harmonic distribution or its generalized HA distribution has been mostly 

unnoted in the academic community other than in the French-speaking statistical 

hydrologists until the Halphen family of distributions including the HA was introduced as 

late as in the 1980’s and later (see Dvorák, Bobée, Boucher & Ashkar, 1988; Barndorff-

Nielsen, Blaesild & Seshadri, 1992, Section 2; Perreault, Fortin & Bobée, 1994; Seshadri, 

1997; 1999, Part II, Section F; Perreault et al.,1999a, b). Recent textbooks by statistical 

hydrologists on the Halphen family of distributions with extensions are e.g., El Adlouni and 

Bobée (2017), and Singh and Zhang (2022). 

On the other hand, the IG distribution, whose pdf (see e.g., Chhikara & Folks, 1989, 

Equation (2.1)) denoted by ( IG ) ( | , )Uf u    ( 0; 0, 0)u       is easily found to be a 

special case of  ( )Uf u  : 

1/2 2
( IG ) 3/2

2

11/2 3/2

1

( )
( | , ) exp

2 2

1
exp exp ,

2 / 2 2

U

u
f u u

u

u u

u

   
 

   
     



 


     
   

                        
          

 

when 2/ (2 )a   , / 2b  ;  
3/2
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2

u
g u 




  

  
 

; and 

11/2

exp
2 /

 
  


         
     

 is 

a normalizing constant. The pdf ( IG ) ( | , )Uf u    looks free from the Bessel function. 

However, it is shown that the normalizer includes the Besel function as follows. Without 

loss of generality, employ the reparametrization / ( 0)z z    and consider that u is 

given after change of variable as * /u u   with 1   being the Jacobian, where   is the 

scale parameter and *u  corresponds to the unit scale variable *U .  Then, it is seen that the 

normalizing constant is given by  1
1/2 ( )K z 

 , where ( ) ( R , 0)vK z v z   is the modified 

Bessel function of the second kind of order v (for 1/2 1/2( ) ( )K z K z  1/2{ / (2 )} e zz  , see 

Watson, 1944/1995, Section 3.71, Equation (13), p. 80; Abramowitz & Stegun, 1972, 
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Formula 10.2.17, p. 444; Zwillinger, 2015, Formula 8.469-4, p. 934; DLMF, 2023, 

http://dlmf.nist.gov/10.39.E2), which will be didactically introduced and repeatedly used 

later. For clarity, the pdf’s of the unit scale *U  and scaled U , using parameter z, are shown: 

*

( IG ) * 1 * * 3/2
1/2 *

1 1
( | ) ( ) exp

2 2U

z
f u z K z u u

u
 



      
  

 and 

3/2

( IG ) 1 1
1/ 2

1
( | , ) ( ) exp

2 2U

z u u
f u z K z

u

 
 


 



    
      

    
, 

where the Bessel function used in the pdf’s is scale-free in that as shown earlier and above, 

even when employing a scale parameter as * /u u  , the Bessel function is unchanged 

with the additional Jacobian 1   being multiplied outside the Bessel. On the other hand, 

when using the most typical parametrization in the IG distribution with parameters   and 

 , the shape parameter ( )z   is confounded with the scale parameter  . That is, a large 

value of the shape parameter   may simply be due to using a large scale parameter. 

This must have been aware for researchers of the IG. Tweedie (1957a, Equations (1a) to 

(1d)) provided three sets of reparametrization other than { , }   for the IGs, where the 

second one is { , ( / )}z     , which is equal to our expression. Chhikara and Folks 

(1989, p. 8) stated “Both   and   are of the same physical dimensions as the random 

variable...”. Seshadri (1999, p. 2) gave almost the same statement. It seems that inclusion of 

  seems to have been a standard practice possibly due primarily to dealing with physical 

quantities whose scales are of relatively much importance. One of the advantages of using 

the Bessel function is its scale-freeness with its argument z as an un-confounded shape 

parameter. This is a motivation of this didactic review concerning the distributions using the 

Bessel function applied to various fields, where the function may be unfamiliar to beginning 

students/researchers in the statistical or data sciences. 

The remainder of this paper is organized as follows. Section 2 introduces the modified 

Bessel function of the second kind and its integral representations including known ones. 

Based on these expressions, five distributions are defined and called basic Bessel (BB) 

distributions. One of the BB’s is an extension of Halphen’s harmonic distribution retaining 

harmonicity. Section 3 gives the power transformations of the BB (PBB) distributed 
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variables, which are extensions of the BB distributions. In Section 4, moments and an 

associated moment generating function for the PBB’s are shown, where new incomplete 

Bessel functions are defined and used. Section 5 provides the differential functions to derive 

the modes of the PBB’s, where quasi-quadratic equations are also defined for iterative 

computation. In Section 6, some discussions including extensions with unification are given. 

 

2. The basic Bessel distributions 

The modified Bessel function of the second (or sometimes called “third”) kind of order 

v denoted by ( )vK z  is given as a solution * ( )w z  of the following modified Bessel equation 

2 * *
2 2 2 *

2

d d
( ) 0

d d

w w
z z z v w

z z
    , 

where z and v are complex variable and parameter, respectively (Erdélyi, 1953, Section 

7.2.2, Equation (11); Abramowitz & Stegun, 1972, Formula 9.6.1; DLMF, 2023, 

https://dlmf.nist.gov/10.25.E1). A set of integral representations of ( )vK z  is 

“the first integral expressions” 
2

10

( / 2) 1
( ) exp d

2 4

v

v v

z z
K z w w

w w





 
   

 
  

2
1

0

( / 2) 1
exp d ,

2 4

v
vz z w

w w
w

  
   

 
 2( | arg( ) | / 4, Re 0)z z   

(Watson, 1944/1995, Section 6.22, Equation (15); Agrest & Maksimov, 1971, Equation 

(4.18); Zwillinger, 2015, Formulas 3.471-12 and 8.432-6; DLMF, 2023, 

https://dlmf.nist.gov/10.32.E10). Among the above two representations, the first one has 

been exclusively used. 

Alternative expressions are obtained by the following formula: 

“the second integral expressions” 1

0

1 1
( ) exp d

2 2
v

v

z
K z x x x

x

       
  

  

1

0

1 1
exp d ( )

2 2
v

v

z
x x x K z

x

  


       
  

  ( R, 0)v z  , 

where the former expression is used in various aspects (Hurst, 1995, Equation (3.3); 

Perreault, Bobée & Rasmussen, 1999a, Equation (45); Finlay & Seneta, 2008, p. 170; Song, 

Park & Kim, 2014, Definition 1; Song, Kang & Kim, 2014, Definition 1; Gaunt, 2021, 
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Appendix), and is easily given by the variable transformation / (2 )x z w  when Rz  in 

the first formula of the first integral expressions) of ( )vK z  whereas Song, Kang and Kim, 

(2014, Lemma 1) derived the earlier formula from the former expression of the second ones 

which they gave as the definition of ( )vK z . Note that the latter expression of the second 

ones is given by the variable transformation of the former from x  to 1x  . Watson 

(1944/1995, Section 6.22, Equation (8) when 0  ) used the latter expression. The two 

second integral expressions give 

“the modified second integral expression”  

* * 1 * 1 *
*0

1 1
( ) exp ( + )d

4 2
v v

v

z
K z x x x x

x

         
  

  ( R, 0)v z  , 

which may look redundant but is included for later use. Note that the above integrand is 

unchanged by exchanging v  by v  and/or the variable transformation from *x  to * 1x  . 

Though this expression is easily obtained by the earlier ones, to the author’s knowledge the 

modified expression is new. 

      An additional integral representation is given by 

“the third integral expressions” 
0

( ) exp( cosh ) cosh( ) dvK z z y vy y


   

0
exp( cosh ) cosh( ) dz y vy y


    ( | arg( ) | / 2)z   

with  cosh( ) (e e ) / 2y yy    (Watson, 1944/1995, Section 6.22, Equation (5); Magnus & 

Oberhettinger, 1948, p. 39; Magnus, Oberhettinger & Soni, 1966, p. 85; Abramowitz & 

Stegun, 1972, Formula 9.6.24; a redundant expression using 

( ) (1 / 2) exp( cosh ) cosh( ) dvK z z y vy y



   by Barndorff-Nielsen & Halgreen, 1977, p. 

310; Zwillinger, 2015, Formulas 8.432-1; DLMF, 2023, https://dlmf.nist.gov/10.32.E9). 

Agrest and Maksimov (1971, Equation (4.17)) and Joarder (1995, p. 118) used the third 

expression with slight modification: 

“the modified third integral expressions” * * *1
( ) exp( cosh ) d

2vK z z y vy y



    

* * *1
exp( cosh ) d ( )

2 vz y vy y K z



    , 
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which are obtained from the first formula of the first expressions using the variable 

transformation e 2 /y w z  as when Joarder (1995) first derived the closed-formula of the 

characteristic function (cf) of Student-t distribution using ( )vK z  , where v corresponds to a 

half of the degrees of freedom. Note that in the third integral expression Zwillinger (2014, 

Formula 8.432-1) included a point for the possible area of z as ( | arg | / 2z   or Re 0z   

and 0)v  . Since the added point does not give a finite value of the integral, the point 

should be deleted as described earlier. However, a limiting value of  ( )vK z  when z  goes to 

+ 0 as a function of z exists as 1

0
lim ( ) ( )2 ( 0)v v

v
z

K z v z v 


    which was used by Hurst 

(1995, Equation (4.2)) without derivation though for this limiting value Abramowitz and 

Stegun (1972) was referred to. However, the latter editors do not seem to have provided 

their formula 9.6.9 with its derivation as noted by Song, Park and Kim (2014, Definition 1-

II), who gave the proof. Using the formula, Hurst (1995) independently provided the same 

expression of the cf of the Student-t distribution. 

Historically, the third expression seems to have been first derived as an integral 

representation of ( )vK z  by L. Schläfli in 1873 followed by the modified third, second and 

first ones in this order though the first one has been most extensively investigated (Watson, 

1944/1995, Section 6.22, Equations (5), (7), (8) and (15)).  Note that the second integral 

expressions are obtained from the modified third one’s using the variable transformation  
*

e yx   or 
*

e yx  . An advantage of the modified third expressions over the remaining 

ones is * Ry   i.e., two-sided while 0w  , 0x  , * 0x   and 0y   for the first, second, 

modified second, and un-modified third expressions, respectively. 

When *, , ,w x x y  and *y  are seen as realized values of random variables *, , ,W X X Y  

and *Y  in the integral expressions, respectively, their distributions are defined as follows. 

Definition 1 (the BB pdf’s of the first to modified third kinds). Variables 

*, , ,W X X Y  and *Y  are defined to follow the basic Bessel (BB) distributions of the first, 

second, modified second, third and modified third kinds, respectively with the BB 

distribution for the generic expression of the five distributions with possible 

reparametrizations when their pdf’s are 
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“the BB pdf of the first kind” 
2

1
1

( / 2) 1
( | , ) ( ) exp

2 4

v

W v v

z z
f w v z K z w

w w




 
   

 
 

( 0; R, 0)w v z   , 

“the BB pdf of the second kind” 1 11 1
( | , ) ( ) exp

2 2
v

X v

z
f x v z K z x x

x
       

  
 

( 0; R, 0)x v z   , 

“the BB pdf of the modified second kind” 

*

* 1 * * 1 * 1
*

1 1
( | , ) ( ) exp ( )

4 2
v v

vX

z
f x v z K z x x x

x
          

  
  

*( 0; R, 0)x v z   , 

 

“the BB pdf of the third kind” 1( | , ) ( ) exp( cosh ) cosh( )Y vf y v z K z z y vy   

( 0; R, 0)y v z    and 

“the BB pdf of the modified third kind” *

* 1 * *1
( | , ) ( ) exp( cosh )

2vY
f y v z K z z y vy    

*( ; R, 0)y R v z   , 

where 1 1( ) { ( )}v vK z K z   with ( ) ( )v vK z K z . 

The possible ranges for v and z common to the two-parameter distributions in Definition 

1 are Rv  and 0z  , which will be assumed unless otherwise specified. Note that while 

*, ,W X X  and Y have the common support (0, ) , that of *Y is ( , )  . Note also that, 

,W X  and *Y  are related by variable transformations 

*exp( )
2

z
x y

w
  . 

Variable *X  is given by the two-point mixture of X  using v  and v  with equal weights. 

Similarly, Y  is obtained by the two-point mixture using the truncated *Y ’s with reduced 

support (0, )  and equal weights as 
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1

1 1

1

( | , ) ( ) exp( cosh ) cosh( )

1 1
( ) exp( cosh ) ( ) exp( cosh )

2 2

( ) exp( cosh ) cosh( )

( | , ) (0 ).

Y v

v v

v

Y

f y v z K z z y vy

K z z y vy K z z y vy

K z z y vy

f y v z y



 



 

     

  

    

 

It is to be noted that the equalities for ,W X  and *Y  corresponding to  

* *

* *

1/
( | , ) ( | , )

X X
f x v z f x v z , * *

* *( | , ) ( | , )
X X

f x v z f x v z  , ( | , ) ( | , )Y Yf Y v z f Y v z  or 

( | , ) ( | , )Y Yf y v z f y v z   do not generally hold unless 0v   or the case of Halphen’s 

harmonic distribution, where the variable denoted by 0vX   (a special case of X ) has the 

same distribution as 01/ vX  . The property * *

* *

1/
( | , ) ( | , )

X X
f x v z f x v z  that holds with 

unconstrained v may be called as an extended harmonicity. 

The word “basic” in the BB distribution is adopted to differentiate it from the Bessel 

function distributions e.g., the McKay (1932, Equation (1)) Bessel function distribution 

(for other Bessel function distributions see Bose, 1936, Equation (6.6); Laha, 1954; 

McNolty, 1973). Note that a special case of the McKay Bessel function distribution can be 

seen as a mixture using the BB distribution for a mixing distribution. In other words, the 

BB distribution is implicitly used. 

An explicit use of the BB distribution is found in the harmonic distribution of Halphen 

(1941, p. 635). Let X follow this distribution, then the pdf of X at x is given by 

1 1
( | ) expXf x x x

x
       

 
, 

where Halphen stated that   is a normalizing constant including a Bessel function. Halphen 

(1941, Remarque, p. 635) also gave a generalized version of the above distribution: 

1{ | ( , , ), , , } expX

b
f x a b a b x ax

x
         

 
. 

We derive the actual form of the normalizer ( , , )a b  in the above generalized 

distribution. Employing the scale parameter 0   in the BB distribution of the second 

kind, we have its pdf using the same notations X and x for simplicity 
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1 11
( | , , ) ( ) exp ( 0; R, 0, > 0)

2 2
v

X v v

z x
f x v z K z x x v z

x

 
 

   
       

  
, 

which is the pdf of a 3-parameter or scaled BB distribution of the second kind. Halphen’s 

pdf { | ( , , ), , , }Xf x a b a b   is given from ( | , , )Xf x v z   when 1/2, 2( )v z ab   and x in 

the second scaled BB pdf is re-expressed by 2 /a x z  with d (2 / ) / d 2 /a x z x a z   as 

1 1

1 1

/2
1/2 1 1

1
( | , , ) ( ) exp (2 / ) (2 / )

2

(2 / )
( )

2

( / )
{2( ) } exp .

2

X

b
f x a b K z ax a x z a z

x

a z b
K z x ax

x

a b b
K ab x ax

x


 











  


 

 

 

    
 

    
 

    
 

 

It is found that the normalizer in Halphen’s pdf ( | , , )Xf x a b  is given by 

1/2 1 /2{2( ) } ( / ) / 2K ab a b 


  . 

After Halphen’s death in 1954, Morlat (1956, Section 2.3) investigated the 3-parameter 

scaled BB distribution of the second kind with the pdf ( | , , )Xf x v z   shown earlier, and 

called the distribution as the Halphen type A (HA) distribution. Guillot (1964, pp. 64-66) 

gave the pdf of the logarithmic transformation of Halphen’s harmonic-distributed variable, 

which is exactly the same as one of the BB pdf’s of the modified third kind with the unit 

scale parameter i.e., 

1( | , ) ( ) (1 / 2) exp( ch )U vf u v z K z z u vu   , 

where ch coshx u  was used by Guillot. Perreault et al. (1999a, p. 190) introduced the 

work of Guillot as a power transformation of Halphen’s variable though the actual one is 

logarithmic as addressed earlier. 

Good (1953) seems to be the first rediscovery of Halphen’s (1941) harmonic 

distribution as noted by Jørgensen (1982, p. 1). Perreault et al. (1999a, p. 189) also stated 

that “The generalized inverse Gaussian distribution is commonly accredited to Good 

(1953)”, where the cited generalized distribution is the same as the reparametrized Halphen 

distribution as will be addressed later. Good (1953, Equation (50)) gave an expression of the 

pdf  1( ) exp( )f p sAp p p      ( 0, 0)    with 
1

0
( ) df p p s  under possible 
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truncation, where p is an argument of the pdf and sA is seen as a normalizing factor i.e., a 

function of ,   and  . Note that Good’s pdf is the same as Halphen’s 

{ | ( , , ), , , }Xf x a b a b   with slight reparametrization and the removal of truncation, which 

is also a reparametrized scaled BB distribution of the second kind. Rukhin (1974/1978, 

Equation (0.2)) rediscovered Halphen’s scaled and shifted harmonic distribution with the 

logarithmic change of variable or Guillot’s distribution using the pdf 

0
0

( ) exp{ ch( )}
2 ( )Xf x x

K

  


    with ch( )  defined earlier. Rukhin’s distribution is a 

special case of the BB of the modified third kind when 0v   in ( )vK  . The distributions 

using 0 ( )K   including Halphen’s harmonic one are also called the hyperbola distributions 

(Barndorff-Nielsen, 1978, Section 5; Jørgensen, 1982, pp. 1-2; Perreault et al.,1999a, 

Equation (1)). Sichel (1975, Equation (2.1)) gave a reparametrized distribution of the 

Halphen distribution. Also, Barndorff-Nielsen (1977, Equation (7.1)), and Barndorff-

Nielsen and Halgreen (1977, Equation (1)) rediscovered the Halphen distribution with the 

pdf ( | , , )Xf x a b  when   , / 2a   and / 2b   as a member of “the family of the 

generalized inverse Gaussian (GIG) distributions”: 

/ 2
1/2 1 1

( | , , )

( / )
{( ) } exp ( 0; R, 0, 0)

2

Xf x

K x x x
x






  

                
 

 

(for usages of this distribution as a mixing distribution for normal variance-mean mixtures 

or the class of generalized hyperbolic distributions, see also Barndorff-Nielsen, 1978, 

Equation (4.1); Barndorff-Nielsen, Kent & Sørensen,1982, Equation (2.4)). 

 

3. Power basic-Bessel (PBB) distributions 

Power transformations of random variables of well-known distributions such as the 

normal distribution have been extensively investigated and used as the Box-Cox (1964) or 

power-normal (Goto & Inoue, 1980) transformations. Recently, Ferrari and Fumes (2017) 

and Morán-Vásquez and Ferrari (2019) gave the Box-Cox transformations for symmetric 

and elliptical distributions, respectively.  On the other hand, Takei and Matsunawa (2001, 

Equation (1.6)) showed the power-gamma distribution as a prior one, where the variable is 
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given when a power of the variable follows the gamma distribution. Independently, 

Ogasawara (2022, Section 9.2) obtained the same distribution with a multivariate version 

(Ogasawara, 2023a).  Note that the power-gamma distribution is a reparametrization of 

Stacy’s (1962, Equation (1)) generalized gamma with an extension of the real-valued power 

over the positive one used by the generalized gamma. Stacy’s generalized gamma has been 

rediscovered or restated as e.g., the three-parameter generalized gamma or the Krisky-

Menkel distributions (TPGG; Singh & Zhang, 2022, Section 6.1). The power-gamma 

distribution is also seen as a special case of the Amoroso (1925) distribution (for this 

distribution see also Crooks, 2015). For the Halphen type A distribution, whose special case 

is the IG distribution (Folks & Chhikara, 1978; Chhikara & Folks, 1989) with some 

reparametrization and variable transformation, Iwase and Hirano (1990, Equation (10)) 

obtained the distribution of the power-transformation of the IG called the power-IG (PIG) 

distribution. Further, Takei and Matsunawa (2001, Equation (1.7)) presented the power-GIG 

(PGIG) distribution, where the GIG was mentioned earlier as a reparametrized Halphen type 

A distribution. For clarity, the pdf of Takei and Matsunawa’s PGIG is repeated without 

changing notations: 

 
1

* 0, 0, 0| | 1
( ) exp ,

, {0}22( ) /b

x a bx x b
q x

Ra xab K b a

 





 

                         
. 

We consider the power transformations of the BB distributed variables, which are found 

to be given by the PGIG distributions using variable transformations, reparametrizations or 

mixtures. 

Definition 2 (the power-BB (PBB) pdf’s of the first to modified third kinds). The 

power-BB distributions are defined when their pdf’s are given as follows: 

“the PBB pdf of the first kind” 

2
1

1

( / 2) | |
( | , , ) ( ) exp

2 4

v

W v v

z z
f w v z K z w

w w


 

 


 
   

 
, 

“the PBB pdf of the second kind” 

                        1 11 1
( | , , ) ( ) exp | |

2 2
v

X v

z
f x v z K z x x

x
 

        
  

, 

 “the PBB pdf of the modified second kind” 
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                        *

* 1 * * 1 * 1
*

1 1
( | , , ) ( ) exp | | ( )

4 2
v v

vX

z
f x v z K z x x x

x
  

           
  

, 

“the PBB pdf of the third kind” 

1( | , , ) ( ) exp{ cosh ( )}cosh( ) | |Y vf y v z K z z y v y      

and “the PBB pdf of the modified third kind” 

*

* 1 * *1
( | , , ) ( ) exp{ cosh ( ) } | |

2vY
f y v z K z z y v y       

* *( 0, 0, 0, 0, R; R, 0, , 0)w x x y y v z              . 

The pdf’s in Definition 2 are given by variable transformations of *, , ,w x x y  and *y  

by *, , ,w x x y     and *y  with the Jacobians 1 1 * 1| | , | | , | |w x x        , | |  and | | , 

respectively. Note that for the second last pdf, the form y  yielding the power-

transformation of e y  i.e., e y  is used rather than y  considering practical use with similar 

results for *y  having the extended support. 

 

4. Moments of the PBB distributions 

In this section, the moments or the moment generating functions (mgf’s) are given 

except the mgf of Y  and the moments of eY , which will be shown later. 

Lemma 1. Some moments of the PBB distributions of the first, second and modified 

third kinds of real-valued order k with *M ( | , , )
Y

k v z   being the mgf of  *Y  are 

( / )

/

( )
E( | , , )

( )( / 2)
v kk

k
v

K z
W v z

K z z


 
 , 

*

( / )* ( )
E( | , , ) E{exp( ) | , , } M ( | , , )

( )
v kk

Y
v

K z
X v z kY v z k v z

K z
      , 
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 * *

( / ) ( / )*

* *

( ) ( )1
E( | , , )

2 ( )

1
{E( | , , ) E( | , , )}

2
1

= E{exp( ) | , , } E{exp( ) | , , }
2
1

M ( | , , ) M ( | , , )
2

v k v kk

v

k k

Y Y

K z K z
X v z

K z

X v z X v z

kY v z kY v z

k v z k v z

 

 

 

 

 


  

   

  

 

( )k      and 

( / ) 0* d ( ) / d |
E( | , , ) ( 1, 2,...)

( )

j j
v k kj

v

K z k
Y v z j

K z
    . 

respectively. 

The proofs of Lemma 1 and some other results will be provided in the appendix. In 

Lemma 1, *

*M ( | , , ) E{exp( ) | , , }
Y

k v z kY v z   may also be called the k-th order 

exponential moment of *Y . Note that generally *E{exp( ) | , , } E{exp( ) | , , }kY v z kY v z  . 

The two negative signs in the expression of E( | , , )kW v z   become positive when we use 

# 1W W   before power-transformation as 

( / )#
/

( )
E( | , , )

( )( / 2)
v kk

k
v

K z
W v z

K z z


  , 

which is obtained by using the pdf of #W : 

#

2 #
# 1 # 1

#

( / 2) 1
( | , ) ( ) exp

2 4

v
v

vW

z z w
f w v z K z w

w
  

   
 

. 

Though the variable #W  seems to be unused in literatures, its additional advantage is the 

factor  # 1 # 1( ( ) )v vw w   of the same form as 1vx   in the BB pdf of the second kind. An 

indirect derivation of the expression of #E( | , , )kW v z   with positive signs is given by 

considering the moments of order k  for W , which are seen as those of order k for #W  by 

definition. 

Conversely, if we consider the variable  # 1X X   , we have  

( / )# ( )
E( | , , ) ( )

( )
v kk

v

K z
X v z k

K z
       



15 

 

including a negative sign, which is found to hold by the indirect method mentioned earlier. 

The corresponding pdf for #X  becomes 

#

# 1 # # 1
#

1 1
( | , ) ( ) exp

2 2
v

vX

z
f x v z K z x x

x
        

  
, 

which seems to be comparable to the pdf of X  whose factor corresponding to * 1vx    is 1vx   

as addressed earlier (note the Jacobian # # 2|d / d |x x x   or # 2|d / d |x x x ). The pdf of #X  

was used by Song, Park and Kim (2014, Definition 1-I) to derive ( ) ( )v vK z K z  as 

addressed in Definition 1. 

Now, we derive the mgf of Y , which is relatively involved, using the pdf’s of *Y  and 

X . Note that the pdf of *Y  is not an even function or an odd one and that the support of  Y  

is (0, )  corresponding to the truncated one (1, )  of X  while the support of *Y  is 

( , )   corresponding to the untruncated one (0, )   for  X . We also use upper 

incomplete functions of the modified Bessel of the second kind defined by Cicchetti and 

Faraone (2004, Equation (2)), and Jones (2007, Equation (2.4)): 

( , ) exp( cosh )cosh( ) dvK z z y vy y





  . 

Definition 3 (the types 1 to m3 upper incomplete functions of the modified Bessell 

of the second kind). Recall the BB pdf of the third kind denoted by ( | , )Yf y v z  and that 

( | , )Yf y v z  is the sum of two distributions of *Y  with the reduced or truncated support 

(0, ) . 

“The types 3 and m3 upper incomplete Bessel functions”: The above equality for the 

definition of ( , )vK z   can be re-expressed as 

(3),

(m3), (m3),

( , ) ( , ) exp( cosh ) cosh( ) d

1 1
exp( cosh ) d exp( cosh ) d

2 2
( , ) ( , ).

v v

v v

K z K z z y vy y

z y vy y z y vy y

K z K z



 

 

 



 



  

     

 



  . 

The integrals (3), ( , )( ( , ))v vK z K z   and (m3), ( , )vK z   defined above are called the types 3 

and m3 upper incomplete functions of the modified Bessell of the second kind, respectively, 

where “3” and “m3” indicate the corresponding BB pdf’s of the un-modified and modified 



16 

 

third kinds, respectively. Though in the above equation 0   is considered to have the 

relationship between (3), ( , )vK z   and (m3), ( , )vK z  , the range of  in (m3), ( , )vK z   is 

R  . Further, for later use and convenience, define 

(3),

/

(3), ,

( , ) exp( cosh ) cosh( ) d

exp( cosh ) cosh( ) d

( , / ) (0 , 0 )

v

v

K z z y vy y

z y v y y

K z



 





  

   





 

 

  


  

and 

* * *
(m3),

* * *

/

(m3), ,

1
( , ) exp( cosh ) d

2
1

exp{ cosh( ) }| | d
2

( , / ) ( R, R, 0).

v

v

K z z y vy y

z y v y y

K z



 





  

    





  

  

   



  

“The types 2 and m2 upper incomplete Bessel functions”: Using the variable 

transformation 
*

e y x , and then replacing x by ( R, 0)x    , we have 

1
(m3), (2), exp ( )

1
(2), ,exp ( / )

1 1
( , ) { , exp ( )} exp d

2 2

1 1
exp | |d { , exp ( / )},

2 2

v
v v

v
v

z
K z K z x x x

x

z
x x x K z

x



 
 

 

  

 

 

       
  

       
  




 

where (2), { ,exp ( )}vK z   is called the type 2 upper incomplete function of the modified 

Bessell of the second kind. The type m2 counterpart is given by (2), { ,exp ( )}vK z   as 

* * 1 * 1
(m 2), *exp ( )

(2), (2),

* 1 1
*exp ( / )

(2), , (2), ,

1 1
{ , exp ( )} exp ( )d

4 2

1
{ , exp ( )} { , exp ( )}

2

1 1
exp ( )| |d

4 2

1
{ , exp ( / )}

2

v v
v

v v

v v

v v

z
K z x x x x

x

K z K z

z
x x x x

x

K z K



  
 

 



 



 

   



   



       
  

   

       
  

 





(m2), ,

{ , exp ( / )}

{ , exp ( / )}.v

z

K z

 

 

  



 

“The type 1 upper incomplete Bessel function”: The remaining type 1 counterpart 
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(1), { , ( / 2) exp ( )}vK z z   is defined by using 
2

z
x

w
  

1/

(m3), (2), (1),

2

1( /2)exp ( )

2

1( /2) exp ( / )

1/
(1), ,

( , ) { , exp ( )} { , ( / 2) exp ( )}

( / 2) 1
exp d

2 4

( / 2) | |
exp d

2 4

{ , ( / 2) exp ( / )}.

v v v

v

vz

v

vz

v

K z K z K z z

z z
w w

w w

z z
w w

w w

K z z






  




  



 









  

 
   

 
 

   
 

 




 

It is known that the integral formula corresponding to an incomplete Bessel function of 

the second kind dates back to Binet (1841) a century before Halphen (1941) (for Binet’s 

contribution, see Watson, 1944/1999, Section 6.22, p. 183; Agrest & Maksimov, 1971, p. 

21), where the integral of the form 2 2
2

exp d
b r

a

p
y qy y

y

 
  
 

 with a and b being 

unconstrained was focused on. It is found that this formula is obtained by a special case of 

the type 2 incomplete function (2), , { ,exp ( )}vK z   in Definition 3 using the square 

transformation i.e., 2  . Currently, as mentioned earlier, (3), ( , )( ( , ))v vK z K z   seems 

to be exclusively used in literatures. 

Lemma 2. The mgf of Y with the PBB pdf of the third kind is 

(2), ( / ), (2), ( / ), (2),{ } ( / ),

E{exp( ) | , , } M ( | , , )

( ,1) ( ,1) ( ,1)
( R).

( ) ( ) ( )

Y

v k v k v k

v v v

kY v z k v z

K z K z K z
k

K z K z K z
     

 

    



     

In Lemma 2, *Pr{ 0 | }Y   ( Pr{ 1 | })X    is a value of a survival function. In the 

following lemma, we partially employ the scale parameter   for generality and didactic 

purposes. Define the partial (not conditional) expectation of 1( ln ) jX   over the range 

*X   as 

*

1 *

1 1 ( / ) 1
( / )

E{( ln ) | ( / ), ; }

1 1
( ) ( ln ) exp d

2 2

j

j v k
v k

X v k z X

z
K z x x x x

x
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*(1 / )

1 { ( / )} 1
( / )

1 1
( ) (ln ) exp | |d

2 2

( ; 1, 2,...).

j v k
v k

z
K z x x x x

x

k j



  
 


   



        
   

    


 

Then, we have the following results. 

Lemma 3. 

  ( / )1 1

0 ( / )

d ( )1
( ln ) E{( ln ) | ( / ), , }

( ) d

j mk
v km j

j m
m v k

K zj X v k zm K z k




    


 


 

   

and 

 
*

(2), ( / ),1

0 ( / )

1 *

d ( , )1
( ln )

( ) d

=E{( ln ) | ( / ), , ; } ( ; 1, 2,...).

j mk
v km

j m
m v k

j

K zj
m K z k

X v k z X k j

 




 

   





 

       


 

Remark 1. Penneault et al. (1999a, Equation (65)) gave the derivation of the special 

case of Lemma 2 when  1, ( / )j v k k    and  1  . That is, using our notation, they 

gave 

d ( )1
ln E{(ln ) | , , }.

( ) d
k

k

K z
X k z

K z t
    

Note that in the case of unit scale i.e., 1  , Lemma 3 becomes considerably simple: 

( / ) 1

( / )

d ( )1
E{( ln ) | ( / ), }

( ) d

j
v k j

j
v k

K z
X v k z

K z k




  



   and 

*
( / ) 1 *

( / )

d ( , )1
E{( ln ) | ( / ), ; }

( ) d

j
v k j

j
v k

K z
X v k z X

K z k





   



   . 

The above formulas are integral representations. The closed-form expression seems to be 

available only when j =1 i.e., d ( ) / dkK z k  using series expressions depending on whether k 

is an integer or a non-integer with the modified Bessel functions of the first kind in the latter 

case (Magnus et al., 1966, Sections 3.1.3 to 3.3.3, pp. 69-75; Zwillinger, 2015, Formulas 

8.486 (1)-4, 5, 9, 11, pp. 938-939; DLMF, 2023, Section 10.38). 

Define 
( )

( / ) 0 ,* d ( ) / d | ( )
E( | , , )

( ) ( )

j j j
v k k vj

v v

K z k K z
Y v z

K z K z
     , 
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*
(2), ( / ), 01 *

( ) *
(2), ,

d ( , ) / d |
E{( ln ) | ( / ), ; }

( )

( , )
( ),

( )

j j
v k kj

v

j
v

v

K z k
X v k z X

K z

K z
k

K z

 




  



    

    
 

( ) ( ) ( )
(2),{ }, (2), , (2), ,( ,1) ( ,1) ( ,1)j j j

v v vK z K z K z     , ( ) ( )
(2),{ }, (2),{ },( ,1) { ( ,1)} ( 2,3,...)j m j m

v vK z K z m     

and ( ) { ( )}j j
v vK z K z  ( 1, 2,...)j   for simplicity of notation. Then, we have the results for 

some moments and their functions of the PBB distributions, which will be given in Theorem 

1 of the appendix. Relationships between two sets of variables “ # 1, ( )W W W  ” and 

“ # 1, ( )X X X  ” in the PBB variables are important, which are summarized as 

Corollary 1. Some relationships between the raw moments, sk’s and kt’s of the PBB-

distributed variables of the first and second kinds are 

/ #

/ #

# #

# #

E( | , , ) ( / 2) E( | , , ),

E( | , , ) ( / 2) E( | , , ) ( R),

sk( ) sk( ), sk( ) sk( ),

kt( ) kt( ), kt( ) kt( ).

k k k

k k k

W v z z X v z

X v z z W v z k

W X W X

W X W X





 

 



 

 

 

 

Proof. The results are due to the proportionalities 1/ #( / 2)W z X  and 

# 1/( / 2)W z X  ( 0, , 0)z        . Q.E.D. 

 

5. Modes and quantiles of the PBB distributions 

In this section, the modes and quantiles of the PBB distributions are considered. 

Dvorák, Bobée, Boucher and Ashkar (1988, Equation (4)) showed a unified expression of 

the differential equations or log-density derivatives for the Halphen type A and other two 

Halphen distributions as 

2
0 1 21 d ( )

( ) d q

a a u a uf u

f u u u

 
 , 

where ( )f u  is the generic expression of the Halphen distributions (see also Perreault et 

al.,1999a, Equation (8) and Table 1; El Adlouni & Bobée, 2017, Equation (2.1); Singh & 

Zhang, 2022, Equation (3.16)). In the case of the unit scale Halphen type A or the BB 

distribution of the second kind, we have 
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2 2
2

d ln ( | , ) 1 1
1 ( 1) /

d 2 2 2
Xf x v z z v z z

x v x x
x x x

             
   

, 

yielding 0 1/ 2, 1a z a v    and 2 / 2a z   with 2q  . Recalling that by definition 0x   

as well as Rv  and 0z  , and using d ln ( | , ) / d 0Xf x v z x  , it is found that a single 

mode denoted by Mo( | , )X v z  exists: 

2 2 1/21
Mo( | , ) 1 {( 1) }X v z v v z

z
       . 

Note that among the PBB-distributed variables, those of the first, second and modified third 

kinds are given by power transformations of x as ( R, 0)x     for the Halphen type A 

or BB distribution of the second kind, followed by changes of variable: 
*

e
2

yz
x

w
 

  . 

Lemma 4. The differential equations for the PBB distributed variables ,W X  and *Y  

with the generic expression of their pdf’s denoted by ( )f t  are given by 

 2 1
0 1 2

d ln ( )
( 1)

d

f t
a a t a t t

t
             for W and X, 

and  0 1 2

d ln ( )
{ ( 1)exp( ) exp(2 )} exp( )

d

f t
a a t a t t

t
          for *Y , 

where the coefficients 0 1,a a  and 2a  are shown in Table 1. 

 

 Table 1. The coefficients in the differential equations for the PBB distributions for ,W X  

and *Y  

PBB distribution of 
0a  1a  2a  

the 1st kind, W 2 / 4z  1v   1  

the 2nd kind, X / 2z  1v   / 2z  

the modified 3rd kind, *Y  / 2z  1v   / 2z  

 

Theorem 2. The PBB distributions of  ,W X  and *Y  are unimodal with the modes 

1/2 2 1/2
1/

1
Mo( | , , ) ( 1) {( 1) }

2
W v z v v z



          , 
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1/2 2 1/2
1/

1
Mo( | , , ) 1 {( 1) }X v z v v z

z



          and 

 2 2 1/2

*
ln ( ) /

Mo( | , , )
v v z z

Y v z 


    . 

Proof. The unimodalities of the distributions are given indirectly due to the monotonic 

transformation of the Halphen type A or the BB distributions of the second kind having 

unimodality. The modes are obtained by the differential equations set to zero, which reduce 

to the quadratic equations for monotonic functions of t. A direct derivation of the 

unimodalities is found by the negative values of the product i.e., 0 2/a a  of the solutions of 

the quadratic equations (see Table 1), where only the single positive solutions give the 

modes after inverse transformation of associated monotonic functions of t. Q.E.D. 

The limiting values of Mo( | , , )W v z  , Mo( | , , )X v z   and *Mo( | , , )Y v z   when the 

values of v and z become large or small will be shown in Property 1 of the appendix. For the 

modes of the remaining PBB distributed variables *X and Y  of the modified second and un-

modified third kinds, respectively, the following results are provided. 

Lemma 5. The differential equations for the PBB distributed variables *X  and Y  with 

the generic expression of their pdf’s denoted by ( )f t  are given by 

1 2 1
0 1 2

d ln ( )
{ ( ) 1 }

d

f t
a a t t a t t

t
               for *X  , 

and   0 1 2

d ln ( )
{exp( )}exp( ) exp(2 ) exp( )

d

f t
a a t t a t t

t
          for Y , 

where the coefficients/function 0 1, ( )a a   (or 1{}a  ) and 2a  are shown in Table 2. 

 
 Table 2. The coefficients or functions in the differential equations for the PBB distributions 
for *X  and Y  

PBB distribution of 
0a  1( )a u  or 1{ }a u  2a  

the modified 2nd kind, *X  / 2z  1 1

1 1

( 1) ( 1)v v

v v

v u v u

u u

  

  

  


 
/ 2z  

the 3rd kind, Y  / 2z  ( )v v

v v

v u u

u u








 
/ 2z  
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Theorem 3. The PBB distributions of  *X  and Y  are unimodal. *Mo( | , , )X v z   is 

given by the converged value of t in the following iterative computation: 

1/1/21 1 2 2
1 1

( 1) th th

( ) 1 { ( ) 1 }
| | ( 0,1,...)j j

a t a t z
t j

z


   

  

          
 
 

, 

where ( 1) th| jt    indicates the revised value of t in the (j+1)-th ( 0,1,...)j   iteration. 

Similarly, Mo( | , , )Y v z   is obtained by the following iterative computation: 

  1/22 2
1 1

( 1) th th

{exp( )} {exp( )}1
| ln | ( 0,1,...)j j

a t a t z
t j

z

 

  

     
 
 

, 

where 1{}a   is the function of the argument in braces. 

Remark 2. The - th ( 0 1  ) quantiles denoted by ( )UQ  of the generic variable U 

for the PBB distributions are given by the upper incomplete BB functions satisfying 

( ) ( ), ,

0

* * * *

{ , ( )}
( | , , )d 1

( )

{( , , ) {( , ,1), ( , , 2), ( , , m2), ( , ,3), ( , , m3)}).

UQ j v U
U

v

K z Q
f u v z u

K z

U u j W w X x X x Y y Y y

  
   




 

Since ( ), , { , ( )}j v UK z Q  ’s are decreasing functions of ( )UQ  , the solutions of ( )UQ   

given   are numerically obtained by e.g., the bisection method. Note that as mentioned 

earlier, variables ,W X  and *Y  have the relationships 
*

e
2

Yz
X

W
 

  ,  which gives 

* ( )
( ) e

2 (1 )
Y

Q

X
W

z
Q

Q

 



 


. 

 

6. Discussion 

(a) The symmetric reciprocal Bessel distributions 

As mentioned earlier, Takei and Matsunawa (2001, p. 175) defined a family of 

symmetric reciprocal (SR) distributions that includes the factor 
x b

a x



  

( 0, 0, 0, )x a b         in the pdf with some associated regularity conditions, 
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where x is the argument of the pdf of a random variable. It is found that the PBB 

distributions of the first and second kinds belong to the SR family while the those of the 

third and modified third kinds do not, though they belong to the family by the logarithmic 

transformation. Due to this property, we have the following extension of the SR family 

based on a BB distribution. 

Definition 4 (the symmetric reciprocal Bessel (SRB) distributions). Suppose that 

( | )h U γ is a positive and differentiable function of random U over the support SU  , and 

that ( | )h U γ  has the BB distribution of the second kind, where γ  is the vector of 

parameters of an appropriate dimension. Then, U is defined to follow the symmetric 

reciprocal Bessel (SRB) distribution, whose pdf is given by 

1 11 1
( | , , ) ( ) exp ( | ) ( | ) | d ( | ) / d |

2 2 ( | )
v

U v

z
f u v z K z h u h u h u u

h u
   

    
  

γ γ γ γ
γ

. 

It is found that the family of the SRB distributions includes the BB, PBB and some of 

the SR distributions. 

(b) Unimodal symmetric reciprocal (USR) distributions and quasi-quadratic equations 

As found in Theorem 3, the differential equations set equal to zeroes take a form of the 

quasi-quadratic one in that the coefficient 1a  is a function of the associated variable. This 

suggests a pdf of a generalized (Bessel) distribution of the form similar to that of the SRB: 

* * * *
*

1
( | , ) ( , ) exp ( | ) ( | )

2 ( | )U

z
f u z C z g u h u

g u

  
    

  
γ γ γ γ

γ
, 

where 0z   as before; *γ  is a vector of other parameters; *( , )C z γ  is a normalizing 

constant possibly including a Bessel function; *( | ) 0g u γ  with *'( | )g u γ  

*d ( | ) / d 0g u u γ is a strictly increasing function of u without loss of generality in that a 

decreasing function *( | )g u γ , if desired, can be replaced by its reciprocal; *( | ) 0h u γ ; 

and the support, which can be negative, depends on cases. This distribution is called 

unimodal symmetric reciprocal (USR) distributions. Then, the corresponding differential 

equation becomes 



24 

 

* *
* *

* 2 *

* *
* * * * 2

*

* 2

* * * * * 2
0 1 2

* 2

d '( | ) '( | )
ln ( | , ) '( | )

d 2 ( | ) ( | )

'( | ) ( | )
'( | ) ( | ) '( | ) ( | )

2 ( | ) 2
( | )

( | , ) ( | , ) ( | ) ( | , ) ( | )
.

( | )

U

z g u h u
f u z g u

u g u h u

z h u g u z
g u g u g u g u

h u
g u

c u z c u z g u c u z g u

g u

 
    

 

 


 


γ γ
γ γ

γ γ

γ γ
γ γ γ γ

γ
γ

γ γ γ γ γ

γ

 

The equation to have the mode is given by the numerator set equal to zero: 

* * * * * 2
0 1 2( | , ) ( | , ) ( | ) ( | , ) ( | ) 0c u z c u z g u c u z g u  γ γ γ γ γ , 

which is seen as a quasi-quadratic equation in terms of *( | )g u γ  with all the coefficients 

*( | , ) ( 0,1, 2)jc u z j γ  being functions of u. The two solutions of the equation always 

consist of a positive one and a negative one since the product of the two solutions is  

* *
0 2( | , ) / ( | , ) 1c u z c u z  γ γ  as before. The solution to be employed becomes 

  1* * 2 2 * 2
1 1*

*

( | , ) ( | , ) '( | )
( | )

'( | )

c u z c u z z g u
g u

z g u


  


γ γ γ

γ
γ

, 

which is found to be positive due to the conditions 0z   and *'( | ) 0g u γ . The left-hand 

side of the above equation is also seen as an undated value of *( | )g u γ . Then, the updated u 

is given by the inverse function 1 *( | )g u γ  with the assumption of the existence of its 

unique value addressed earlier. Then, using this u, the right-hand side of the above equation 

is updated. The iteration is repeated until convergence. It is easily found that the family of 

the SRB distributions in the previous Subsection is a sub-family of the USR distributions. 

(c) Multivariate extensions 

While the Halphen type A is defined for a family of univariate distributions, 

multivariate extensions of the IG and GIG are available (see Barndorff-Nielsen, Blaesild, 

Jensen & Jørgensen, 1982, Example 4; Chhikara & Folks, 1989, Sections 11.1 and 11.2; 

Barndorff-Nielsen et al., 1992, Sections 3 and 4). It is expected that the multivariate 

extensions of the PBB distributions corresponding to the known multivariate GIG are 

similarly obtained using reparametrizations with change of variables. 

(d) Other remaining issues 
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The problems of parameter estimation, hypothesis testing for parameters and goodness-

of-fit have not been dealt with due to the emphasis on the historical review and extensions 

(for estimation in the Halphen type A, see Perreault et al., 1999b; El Adlouni & Bobée, 

2017, Chapter 4; Singh & Zhang, 2022, Section 3.5). The parameters in the PBB except the 

scale one are ,v z  and ( R, 0, R, 0)v z      . Among them, several candidate 

values may be chosen in practice for v and   rather than estimating them by e.g., maximum 

likelihood. In Section 1, the IG was found to be a special case of the Halphen type A or the 

PBB of the second kind with fixed 1 / 2v    and 1  . It is known that when v is a half 

integer, ( )( ( ))v vK z K z   is given by the following finite series: 

1/2

(1/2)
0

( )!
( ) (2 ) e ( 0,1, ...)

2 ( )! !

k
j z

k
j

k j
K z z k

z k j j

  




     
  

(Watson, 1944/1995, Section 3.71, Equation (12), p. 80; Abramowitz & Stegun, 1972, 

Formula 10.2.15-17, p. 444; Barndorff-Nielsen,1978, Equation (3.1); Zwillinger, 2015, 

Formula 8.468, p. 934; DLMF, 2023, http://dlmf.nist.gov/10.39.E2, 

https://dlmf.nist.gov/10.47#ii, https://dlmf.nist.gov/10.49#ii; Gaunt & Li, 2023, Equation 

(24)). When 0, 1, 2k   and 3, the above formula gives 

1/2 1/2
1

1/2 3/2( ) e , ( ) e (1 )
2 2

z zK z K z z
z z

           
   

,  

1/2
1 2

5/ 2 ( ) e (1 3 3 )
2

zK z z z
z

       
 

 and 
1/2

1 2 3
7 /2 ( ) e (1 6 15 15 )

2
zK z z z z

z

         
 

. 

As addressed earlier, in the IG, only the simplest one 1/ 2 ( )K z  is used. This limitation has 

been relaxed using ( ) ( R)vK z v  in the GIG and PBB distributions, where the subfamilies 

with (1/2) ( ) ( 0,1,...)kK z k   may be of practical use. 

 

Appendix 

Proofs of Lemma 1. 

Proof 1. Using the definitions of the moments, we obtain 
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with the remaining expressions for *E( | , , )kX v z  being obtained similarly, and 

*

*

*

1 * * *
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The above expressions with the property of the mgf of *Y  yielding its raw moments give the 

required results. Q.E.D. 
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Proof 2. An alternative indirect proof of *E( | , , ) M ( | , , )k

Y
X v z k v z   is shown. By 

definition we have as before 
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 . 

Using the variable transformation 
*

e yx  , the above equation becomes 
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which gives the required result. Q.E.D. 

 

Proof of Lemma 2. 

Using the definition of the mgf, we obtain 
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where ( / ) ( / )( ) ( )v k v kK z K z     is used. The last expression gives the required result. 

 

Proof of Lemma 3. 

Since 
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 , where ( )g k  and ( )h k  are differentiable 

function of k, we obtain 
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Dividing both sides of the last equation by ( / )
( / ) ( )v k

v kK z
 

 , the first result follows as 
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The second result is similarly obtained using the definition of the partial expectation instead 

of the full one, which gives the required result. 

 

Some moments and their functions of the PBB distributions 

Theorem 1. The expectations, variances, skewnesses (sk’s) and excess kurtoses (kt’s) of 

the power BB-distributed variables of the first, second and modified third kinds are 
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Proof. The results are given by Lemmas 1to 3. Q.E.D. 

 

Proof of Lemma 4. 

For W and X, the coefficients 0 1,a a  and 2a  in Table 1 are given by definition. Then, we 
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For *Y , we have in a similar manner 
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The above expressions give the required results. 
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Some limiting values of Mo( | , , )W v z  , Mo( | , , )X v z   and *Mo( | , , )Y v z  . 

Property 1. Consider the limiting values of Mo( | , , )W v z  , Mo( | , , )X v z   and 

*Mo( | , , )Y v z   when the values of v and z become large or small. 

(i) When an arbitrary positive z and fixed R ( 0)    are given,  
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indicating that Mo( | , , 0)W v z    , Mo( | , , 0)X v z    and *Mo( | , , 0)Y v z    are strictly 

decreasing, increasing and increasing functions of v, respectively. 

 

(ii) When v and   are given, the results are shown by cases. 
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1 {( 1) } /
lim Mo( | , , 0) lim 0

/z z

v v z z
X v z

z z


 


 

           
   

 and 

0
lim Mo( | , , 0)
z

X v z 


    using L’Hôpital’s rule; 

0v  , *

0
lim Mo( | , , 0)
z

Y v z 


    and *

0
lim Mo( | , , 0)
z

Y v z 


   . 

(ii-b) 1v   , 
0

lim Mo( | , , 0) 0
z

W v z 


   and 
0

lim Mo( | , , 0)
z

W v z 


   ; 

1v  , 
0

lim Mo( | , , 0) 1
z

X v z 


  ; 

0v  , *

0
lim Mo( | , , 0) 0
z

Y v z 


  . 

(ii-c) 1v   , 
0

lim Mo( | , , 0) 0
z

W v z 


   and 
0

lim Mo( | , , 0)
z

W v z 


   ; 

1v  , 
0

lim Mo( | , , 0)
z

X v z 


    and 
0

lim Mo( | , , 0) 0
z

X v z 


  ; 

0v  , *

0
lim Mo( | , , 0)
z

Y v z 


    and 
0

lim Mo( | , , 0)
z

X v z 


   . 

 

(iii) When an arbitrary v is given, lim Mo( | , , 0)
z

W v z 


   , lim Mo( | , , 0) 0
z

W v z 


  , 

lim Mo( | , , 0) 1
z

X v z 


   and *lim Mo( | , , 0) 0
z

Y v z 


  . 

In (ii) and (iii), note that 

(1/ ) 12 2 1/2 2 2 1/2
1/

Mo( | , , 0) 1 /
( 1) {( 1) } {( 1) } 0

2

W v z
v v z z v z

z





    
             

, 

Mo( | , , 0)
0

W v z

z

 



; and 

1/2 2 1/2
1/

Mo{ | , , ( 1) 0} 1
1 {( 1) }

X v z v
v v z

z z z
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2

(1/ ) 1
2 2 1/2

2
2 2 1/2

2 2 2 1/2

1 1
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1 1
{( 1) } 1 {( 1) }
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1 1
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(1/ ) 1
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( 1)
1 {( 1) } 0;

( 1) {( 1) }

v
v v z

v v z

  
 

                

 

Mo( | , , 1)
0

X v z v

z

 



; and 

Mo{ | , , ( 1) 0}
0

X v z v

z

   



; 

and 

 

 

 
 

 
 

2 2 1/2*

11 2 2 1/2 2 2 1/2

2 2 2 1/2 2 2 1/2

2 2 1/2 2 2 1/2

2 2 1/2

2 2 1/2 2 2 1/2

ln ( ) /Mo( | , , 0)

( ) ( )

( ) ( )

( ) ( )

( )
0;

( ) ( )

v v z zY v z v

z z

z v v z z v z

z v v z v z

z v v z v z

v v v z

z v v z v z










 

      
 

    


   


  

  
 

  

 

*Mo( | , , 0)
0

Y v z v

z

 



 and 

*Mo( | , , 0)
0

Y v z v

z

 



. 

Then, it is found that Mo( | , , 0)W v z    and Mo( | , , 0)W v z    are strictly increasing and 

decreasing functions of z; 

when ( 1) 0v   , 1v   and ( 1) 0v   , Mo( | , , )X v z   is a strictly increasing, 

constant and strictly decreasing functions of z, respectively; and 

when 0v  , 0v   and 0v  , *Mo( | , , )Y v z   is a strictly increasing, constant and 

strictly decreasing functions of z, respectively. 
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Proof of Lemma 5. 

For *X , the coefficients/function 0 1, ( )a a   and 2a  in Table 2 are obtained by the 

corresponding pdf 

*

1 1 11 1
( | , , ) ( ) exp ( ) | | d / d |

4 2
v v

vX u t

z
f t v z K z u u u t t

u


    


       
  

 (0 )t    

as follows 

 1
0 2

2
10 1 2

2

2 1 1
0 1 2

1 1 1
0 1 2

1 2 1
0 1 2

d ln ( ) d
( ) | ln( ) ln | d / d |

d d

( ) d
| ( 1)

d

{ ( ) } ( 1)

{ ( ) 1}

{ ( ) 1 } ,

v v

u t

u t

f t
a u a u u u t t

t t

a a u u a u t
t

u t

a t a t t a t t

a t a t t a t

a a t t a t t









   

  

   



 

   

 

 





   

   

  

     

 
  

    

    

      

 

where the following is used 

1 1 2 2

1 1

1 1

11 1

d ln( ) ( 1) ( 1) d
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d d

( 1) ( 1) 1 d 1 d
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d d

v v v v
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t u u t
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For Y , noting that 1
exp( )

1
( | , , ) ( ) exp | | d / d |

2 2

v v

Y v u t

z u u
f t v z K z u t t

u  





       
  

 

(0 )t   , we have in a similar manner 

 
 

1
0 1 2 exp( )
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where 

exp( ) 1

d ln( ) ( ) 1 d ( )
| { }

d d

v v v v v v

u t v v v v

u u v u u t v u u
u a u

t u u u t u u
  

  

  

  
  

 
 

is used. The above expressions give the required results. 
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Proof of Theorem 3. 

Lemma 5 provides the conditions for the modes of *X  and Y  to satisfy: 

1 2
0 1 2{ ( ) 1 } 0a a t t a t         and 

0 1 2{exp( )}exp( ) exp(2 ) 0a a t t a t     , respectively. 

When 1( )a t  and 1{exp( )}a t  are seen as fixed constants using the current values in 

iterative computation, the equations become usual quadratic ones with respect to 0t   and 

exp( ) 0t  . Since the products 0 2/ 1a a   of the two solutions are both negative, the 

positive solution is employed. In iterations, when converged, the solutions satisfy the 

conditions of the single positive modes. 
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