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Abstract: Some reviews of the distribution of the product of two correlated normal random
variables and the corresponding more-than-two uncorrelated cases are given with a
historical perspective. The characteristic function of the product distribution of more-than-
two correlated normal variables is presented using the Cholesky decomposition and an
integral representation. The probability density function (pdf) of the product of these
correlated variables is shown with an improper multiple integral and discussed. The pdf of
the product distribution of three normal correlated variables with zero means is obtained as

a mixture of the modified Bessel function of the second kind.

Keywords: tetrad equations, Cholesky decomposition, characteristic function (cf), inversion

theorem, Mellin transform, modified Bessel function, Bessel distribution.



1. Introduction

The distribution of the product of two normally distributed variables with zero means
has a long history. Pearson, Jeffery and Elderton (1929, p. 187) and Wishart and Bartlett
(1932, Equation (12)) gave the probability density function (pdf) in the correlated bivariate
case using the Bessel function of the second kind with an imaginary argument (see
McKay,1932; Watson, 1944/1995; Zwillinger, 2015, Sections 6.5 and 8.4; DLMF, 2023,
https://dlmf.nist.gov/10.2.E4; for an introduction of the Bessel function see the appendix).
For the pdf of the correlated case, Craig (1936, Equation (17)) derived a series expression. It
is of interest to find that these earlier works were partially motivated by associated problems
in the behavioral sciences e.g., “tetrad equations” for the factor analysis model in
psychology (Pearson & Moul, 1927; Pearson et al., 1929, pp. 192-193). Craig (1936, p. 1)
stated that he had inquiries “one from an investigator in business statistics and the other
from a psychologist, concerning the probable error of the product of two quantities, each of
known probable error”. Currently, many applications of the product distribution are found in
the natural sciences e.g., physics and engineering (see Cui, Yu, lommelli and Kong, 2016;
Gaunt, 2022; and the references therein).

The early findings seem to be unnoted by e.g., Gaunt (2019, Section 1) stating that “The
exact distribution of the product Z = XY has been studied since 1936, where X and Y are
correlated normal variables and 1936 is Craig (1936) (see also Gaunt, 2022). This parallels
Nadarajah and Pogény’s (2016, Abstract) statement “We solve a problem that has remained
unsolved since 1936”. Later, Fischer, Gaunt and Sarantsev (2023) noted Pearson et al.
(1929) as a work of the exact distribution of a sample covariance under bivariate normality
in the review of the variance-gamma distribution. Seijas-Macias, Oliveira and Oliveira
(2023, Section 1) referred to Wishart and Bartlett (1932) as the “First historical approach”.

For general p-variate uncorrelated Gaussian cases, the pdf of the product was given by
Springer and Thompson (1966, Section 6) using the Mellin transform and its inversion (for
the transform see Epstein, 1948; Davies, 2002, Chapter 12; DLMF, 2023,
https://dlmf.nist.gov/2.5), who stated that “it seems rather surprising that the distribution of
products of more than two independent random Gaussian variables has never been derived”

(p. 519) though their result was not given in closed form. Springer and Thompson (1970,



Theorems 5 and 6) gave the same result using the Meijer G-function (DLMF, 2023,
https://dlmf.nist.gov/16.17) with a recursion formula (see also, Springer, 1979, Chapter 3).

Recent researches on the correlated bivariate Gaussian case have been given by Ware
and Lad (2003), Nadarajah and Pogany (2016), Cui et al. (2016), Oliveira, Oliveira and
Seijas-Macias (2016), Seijas-Macias, Oliveira, Oliveira and Leiva (2020), Gaunt (2022) and
Seijas-Macias et al. (2023). However, for general p-variate correlated cases, researches after
Springer and Thompson (1970) do not seem to well develop as Gaunt (2022, p. 454) stated
that “An exact formula for the PDF of the product of three or more correlated normal
random variables is not available in the literature”.

One of the purposes of this paper is to derive the characteristic function (cf) of the
product distribution for correlated more-than-two normal variables with an integral
expression, where the Cholesky decomposition is used for the unconstrained covariance
matrix. Another purpose of this paper is to obtain a representation of the pdf of the product
using improper multiple integration with discussions about the results. Then, a new result
for the pdf of the correlated tri-variate case is obtained using a mixture of the Bessel

function of the second kind.

2. The cf of the product of correlated normal variables

Let the random p-dimensional vector 'Y = (¥,...,Y, )" be multivariate normally
distributed with zero means, which is denoted by Y ~N (0,X) with E(Y)=0 and
cov(Y)=2X, 6 where X isassumed to be non-singular. Consider the random quantity
Y, =[]_Y (1<i<j<p).Let i=v-1.

Result 1. We obtain an integral expression for the cf of Z =Y, . By definition, the cf
is given by

0, (1) =E{exp(itY, )} = [ [ explity,.,) 4, (y |0, Z)dy, - dy,
= [ exp(ity..,)4,(y | 0,Z)dy,
where y,,, is defined similarly to Y, and ¢,(y|0,X)
=) " |2 exp(-y'E7'y/2) isthepdfof Y=y.Let Y=X""X, where
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X =X"22" is the Cholesky decomposition with "> =(X"*)"; and
£ ={o;} (i,j=1,..,p) isalower triangular matrix whose diagonal elements are defined
to be positive for identification of the decomposition. Then, it can be shown that
X=Z"”)'Y=2"Y~N_(0,I)) with I, beingthe pxp identity matrix. Using
X, we have

=1 0o )X X)) =] ] 60X,
with (G(Tl/)z,O ,0) being the i-th row of Y2 Define Gigj (i=1,...,p;j=1,..,0) asthe
subvector of Gig consisting of the first j elements of Gig . Then, we have
9, (1) = ¢y (1)

:E{exp(itni (T/fX(,))}—J. exp(ltH G X (1)) (x]0,1,)dx
T
_I (2r) """ exp{lt(H (G X (l))—,;—x}dx

T
0 _ X X
_ —(p-1)/2 . r-1 _1p T2 _ -7 (p-D
- J_w(zﬂ) eXp {lt(Hi:I ) X(f))“(p)plx(pn 2—}

2
® -1/2 . r=l 112 * X
% J.—oo (27) " exp {lt (H =1 O X ) O ppXp Yp} dxpdx(p—l)

T
6™x o™ x Xp-nX(p-1)
S Xi) |Opyp-1X(p-1) ~ 5

= J.jo (2m) 2 exp{lt

T
T/2 T/2 T2 X(pr)X<p72)
Xi |0 -

:I (27) PV exp| it X, .G X

i=1 0 (p=)p=2"(p=2)"(p)p-2

(I
+{1f (Tz/>2x(1>) } (1/2)}1"@—1)
(T

(p=2) 2

: P2 TN * T2 p=2 T2 T/2
+1t(H -1 S X (z))‘jp Lo=1%p18 () p-2X(p-2) +1t(Hl S %0 X (,))G(p 0r-2X(5-27 .1 X

2
. p=2 T2 * * 2 Xp-1
+ ”(HH %) X<t>)ap1,plap,p1xp1 )

. P=2 T2 T/2
+{“(H,-—1 %) Xm)("(pl)p Xy 0y ,0%,0 )0, } (1/2)}dxp1dx(p2>»

where the following expansion of the first term in the exponential on the left-hand side of



the last equation is used:

. A V7 /2

1 (Hi—l % X )"(p)p—lx(p—n

. p=2 TN T2 * T2 *

=1 (H,«_l % X ) (802X + Oy % ) (602X o) + 0,00 )-

Then, again using the method of completing the square we have

@, (1)

T

0 _ X X
_ —(p-2)/2 . P=2 T2 T2 T2 (p-2)"(p-2)
_I_w(zﬂ) cxp lt(Hi_l % X(i))“(p—l)p—zX(p—Z)"(p)p—z"(p—z)_ 5

1y pP=2 )2 /2 A\
+ 5{”(1_[,--1 NMORIO) )6<,,1),,2X(p2)0p,,}
0
A7 @t
x 1 1= 2if HP—2 /2 . < iy HP—2 72 . L
XP| 75 i1 0 X | T p1,p1Tp o it 00 X | p1p1Tpp | X
. P2 T2 * T/2 . pP=2 T2 /2 *
+[”(Hi—1 % X(f))apl,pl"(mpz"(pz) +lt(Hi—1 % X(t))"(pl)pzx<p2>‘7p,p1
P=2 T/ 7 *
+{”(H,~_1 MG X(f))app} O (p1)p-2X(p-00 prtpt | ¥pr |AX,10X )

T
© - X X
_ —(p-2)/2 . r=2 112 TR T2 (p-2)"(p-2)
= J.,w (27) CXp lt(Hi_l % Xu )G(p—np—zx(p—z)“

X p—
-2 -2
(p)p (p-2) 2

Ll P72 T2 /2 )2
+5{1t(H1_1 G(l) X(’))G(pl)pzx(pz)CTpp}
-1/2
x| 1= 2it P2 _1n . - b 1 * Rt
1 Hi=1 Sy X1y )9 p-1,p-19 p,p-1 ~ {1 Hi:l 6., X, o, .0,

-1

1 . P2 TN * * . P2 T2 * )

xexp| — 1_21t(Hi—1 S X(i))ap—l,p—lap,p—l _{lt(Hi—l S X(i))ap—l,p—lapp}
. r=2 T2 * T2 . r=2 T2 T2 *

% [” (Hi_l % X )Gp—l,p—l"(mp—zx(p—z) 1 (Hi_l MORG )0(p_1)p_2x(p_2)0'p,p_1

2
2
. P2 T2 * T/2 *
+{1t(Hi—l % Xm)"pp} “(pl)pzxwzppl,pl} dX)oa)-

Note that Result 1 gives the reduction of the initial dimensionality of multiple integral

by 2. Consequently, when p = 2, the last result yields the known closed-form formula of the
5



cf without integration as will be repeated in Example 1.

Example 1 (the cf). For confirmation, the known cf of the case with p =2 and

Y ~N,(0,X) (e.g., Ogasawara, 2023b, Remark S.2 when o,, =0o,, =1) for the cf is

shown using Result 1:

¢, (t)=E {exp(itHf_lc(T/fX(i) )} = J: exp(itH ;c(T/)zx(i) )¢2 (x]0,1,)dx

_J“” (2 -1 ¥ * * x'x
=| (7)) exp 1t011x1(021x1+0223€2)—7 dx

= J.j:o (27) " exp {itofla;xf —(x} /2)}
x| @r)"” expito;,05,x,x, - (x3 1 2)} dx,dx,
- j"; 27) " expito)onx = (x] 1 2)+ (ito},05,%,)* (1/2)} dx,
= [ @r) " expl {itoy,0, — (1/2)+ (ito},05,)*(1/2)} 7 |d,.
Noting that the integrand in the last expression is an even function of x; and employing
the variable transformation u =x; with dx,/du=1/(2u"?) and the gamma function with
the complex scale parameter {(1 /2)—ito] o, —(ito],03,) (1/ 2)}71 and T'(1/2)=7x"",
we obtain
0, (t)=2 jo‘” 27) "2 (2u") " exp [{ital*la; —(1/2) + (ito},03,)*(1/2)} u] du
=271/ 2) ~ito},03 ~ (ito],05,) 1/ 2)}
= {1 —2ito],0;, —(ito],03,)’ }71/2 ,
which is equal to Wishart and Bartlett (1932, Equation (9)), when o©,, = m £ with

O, =[O, Oy =+/C2 p and 0, =4/0,,(1— p*), and is algebraically equal to

(1-p))"? /[1-{p+(1-p*)it}’]"* when o, =0, =1 (Ogasawara, 2023b,
Remark 2).

Example 2 (the cf; Craig, 1936, Equation (10); Ware & Lad, 2003, Subsection (3.3.2),



Appendix A; Oliveira, Oliveira & Seijas-Macias, 2016, Proposition 2.1; Seijas-Macias,
Oliveira & Oliveira, 2023, Equation (1)). In this example, the case of p = 2 with a relaxed

condition of non-zero means i.e., Y ~ N,(pn,,X) is dealt with. Using the same
decomposition X =X"?2™ asin Example I, X=X"Y ~N (2"n,,I))

=N (g, 1,). Let py =p=(4,....4, )" for simplicity of notation. Then, the cf is
@, ()= Ji exp (it 1,2:1 G(T/)zx(i) ) ¢, (x| p,1,)dx

G DNCSI DI
2

® -1 . * * *
= I_w (27)" exp {Uallxl (0,%, +0,,%,)

=" @n) " exp |:ito-1*lo_;x12 ~{( =) /2}]

x [ @r) " explito],o5xx, —{(x, - )" / 2} | dr,dy,
= 7 @r) " explite), 05,37 = {(x, — ) 1 2} +itoy, 053,11, + (it7,0%,%, ) (1/ 2) | d,
=" @) exp[ ~{1- 210,03, ~ (107,05, )} (x7 /2)

+ (4, +ito], 05, 1,)x, = () /2)] dx,

2 . * * 2
= {1-2ito},05, ~ (ito7,05)* ) exp| ~F1+ (o +ito,omtt)
2 2{1-2ito},03, ~(ito},05,) }

. * % . * £ 0\2 -1/2
= {1 -2ito,,0,, —(1t0,,05,) }

X exp 2itoy, (0,4 + Tt ty) + (101,05, (44 + 445) .
2 {1 —2ito,|,0,, — (itO'ﬂU;)z}

Noting that

-1
_ o, 0 (o) 0
By = (4, 4) =X ”zuy{aif J uy=( ; }uy

_0;1 (51*10-;2)71 (0-;2)71
_ o, 0 My,
_0_1—11/2/0(1_ pz)—uz 02—21/2 (1—,02)_1/2 1y,

0_—1/2lu
_ 11 g
((_O-lll/zp/'lYl + 0-521/2/LIY2 )(1 - /O2 )1/2}

we also have



. % % . % * N2 -1/2
0, (1) = {1-2ito},03, - (ito},03,)" }

. * * 2 * . * * 2 2 2
2ito | (0, 1y + 0o, iy h,) + (1167,05,) (4 + 115)

x exp . * * . * * 2
2 {1 -2ito,,0,, — (ito,,0,,) }

. . -1/2
={1-2ito}’0}; p—(it)’ 0,05, (1 p*)}

[2it01 {022 (o

+0y, (1= p*)? 07 1y, (=07 pay, + 0, 1, )1 = p*) 7
XEXpl L 2 12 2 -1/2 12 2 23-1
+(i1) 00, (1= p ){(0-11 Hy)" + (=0 " ply + 05 py,) (1= p7) }:|

-1
x[2{1-2it0} 0} p - (i) 0,0, (1= p7)} ]

1/2

. . -1/2
= {1 —2ito| o)) p—(it)’ ,,0,,(1- pz)}

-1/2 -1/2

2t gty py, + (it)zanazz {(Gﬂl/zﬂm)z +(0y, ﬂyz)z - 2pgﬂl/2ﬂy1022 :uyz}

X EXp - -
2 {1 - thgllizo-;/zzp — (ir)? 0,05, (1~ pz)}

9

which is found to be algebraically equal to the results cited at the beginning of this example
for the moment generating function (mgf) when it is replaced by ¢ supporting their result.

Note that they used the formulation Y, = X, + X, and Y, = X, + X,, where
X, ~N,(0,p)=N(0,p), X, ~N(g,1-p) and X, ~N(u,,1-p) (0< p<1) are
uncorrelated normal variables. Note also that there are three latent variables for two
manifest variables Y, and Y, . It is found that the formulation is a saturated one-factor
model with positive p in exploratory factor analysis (EFA). The inflated dimensionality

over that of manifest variables is known to be a property of latent variable models (see e.g.,
Ogasawara, 2022a, p. 252; Ogasawara, 2023c, Section 1). Although they did not mention,

when Y, and Y, have negative correlation, Y, =—-X + X, (or Y, =-X,+ X,) with
unchanged Y, (or Y,, respectively) should be used. On the other hand, in our formulation

using the Cholesky decomposition, the dimensionality of X is the same as that of Y . The
EFA model has also been used in the definitions of the multivariate gamma (Cherian, 1941;
Prékopa and Szantai, 1978; Mathai and Moschopoulos, 1991, Definition 1; Royen, 1991,

2007) and multivariate power-gamma (Ogasawara, 2023c¢) distributions.



Example 3 (the cf). Consider the case of p =3 when Y ~ N;(0,X) . The cf becomes
. 3 o . 3
p,(t)=E {exp (1tH . G(T,./fX(,.) )} = J‘_w exp (1t1_L:1 G(Ti/)zx(l.) ) ¢,(x]0,1,)dx
w0 X' X
-3/2 . * * ¥ N .
= I_w (2m) " exp {1t0-11x1 (0%, + 0%, )(03,X, + 03X, +033X;) — T} dx
- I_w (27) " exp [ito-l*1 {o-;a;le +(05,05, + 03,03)X] X, + O3, 00X, X5 } — (X3 X, / 2)]

*® -1/2 . * * * 2 * * 2
X I_OO (27) " exp {ltall (03,053%; +0,,05,x,%,)x; — (x5 / 2)} dx;dx,,

*

= J: 2r)”" exp[ito-l*l {o-;a;xf +(05,05, + 03,05)X] X, + 05, 005,%,%; } — (XX, / 2)]

X eXp [{itcf‘l (03,05 + G;G;)clxz)}z / 2} dx,,,
= Ji (27) " exp {itoflazlo-;xf + (ital*lagla;xf )2 (1/2)—=(x}/ 2)}
Xj: (27) " exp |:it01*1 {(0;10;2 + 03,03 X X, + 0520;?61?622}

+(ito},)’ {051052(053)2%3% H(05,05)" X%, (1/2) = (x; / 2)}] dx,dx,

= I: (27) " exp {itofla;a;xf + (itO'I*lG;lG;xf )2 (1/2)=(x}/ 2)}

x[" @) exp| ~(1/ 2){1-2it},07,05%, — (ito], ) (03,05 ) |

+ {ital*l (0,05, + 0-52(7;1))612 + (it01*1)20510;2 (‘73*3)23‘13 } Xy ] dx,dx,

= I: (2z)"? {1 - 2ito},05,05,x, — (itay,)* (03,05,)"x} }_1/2

2
. 2
. (12‘(71*10';16;3)(1 )

X
1 . * * * 3
X EXp —7+1t011021031x1 + >

. . 2
{1t01*1((7;103*2 +05,05)% +(ita}))’ 03,05, ((73*3)2)513}

_ « « « . N2 * * N2 _ 2 dxl.
2{1—21t011022032x1 —(itoy,) (0,,053) x1}

Example 4 (the cf). In this example, we deal with a tri-variate model situated between
the independent and unconstrained dependent models. Note that Example 3 is a fully

dependent model in that non-singular X is unconstrained. Assume that in Example 3, Y,

is independent of possibly correlated Y, and Y,. Without loss of generality, suppose that



0,, = 0,, = 05, =1. Then, under this partially dependent model X becomes the correlation

matrix:

10 0 o, 0 0 10 0
L=P=0 1 p, | with Z”=|0y o0y 0 |=P" =)0 1 0
* * 0

0 pn oy Oy O Py (1-p3)"”?

31 32 33

Noting that this example is a special case of Example 3, using the above expressions, we

have
¢, (t)=E{exp(itY,,)| T =P}
=" @y {1-2itpyx, — (0P (1= pL)xt ) exp(-x} / 2)dx,,

which is seen as a mixture of the cf of Example 1 using the normal density.

3. The pdf of the product of correlated normal variables

In this section, the pdf of the product of correlated normal variables is considered.

Result 2. The pdf of Z =Y, ,, as defined in Result 1, at z is derived using the inversion

theorem (see e.g., Anderson, 2003, Theorem, 2.6.3), which is formally given as:
£,(2)=@m)" [ exp(-itz)p, (dt = (27) ' exp(~itz)E{exp(itY,,)}dr
=@m) [ explit(y,, - 2)}¢,(y 0, E)dy dr,
which is a (p + 1)-fold integral, and tends to be complicated unless ¢, (¢) = E{exp(itY,,,)}

is explicitly given as a tractable function of . On the other hand, the same pdf is obtained by

using the variable transformation frome.g., ¥, to Z=Y,,, and unchanged Y,...,Y, with

*p

the Jacobian [dy,/dz|=1/|y,,, |, which gives
f2(2) = I_w‘ Yis(p-1 |_1 ¢p{(y1 se0es yp—l’Z/yl*(p—l))T 10, X}dy, ..-dypfl
= I_w| Vis(p-1) |71 ¢p{(Y(Tp—1)aZ/y1*(p—1))T | 092}dy(p—1)’

where y ., ,, =, yp,l)T for simplicity of notation. The above representation is an

improper (p —1)-fold multiple integral whose dimensionality is smaller than that using the

cf by 2. The above result is seen as an extension of the Mellin convolution for the bivariate

independent cases (Epstein, 1948, Equation (2); Springer & Thompson, 1966, Equation (4),
10



Section 6; Springer, 1979, Section 4.1) or the bivariate correlated cases (Rohatgi, 1976,
Section 4.4, Theorem 7, Equation (16); Rohatgi & Saleh, 2015, Section 4.4, Theorem 3,
Equation (4); Cui et al., 2016, Theorem 2.1) to the p-dimensional correlated case.

Another convenient integral representation of the pdf of ¥,

is given by the joint pdf
of Y., j=L...,p-D:

Lemma 1. The joint pdf of Y, = (¥,,,,Y.,,- )" with Y., =Y, at

l*p

y*:(y1*19y1*2""’y1*p)T when Y:(Yl,...,Yp)T~Np(0,Z) is

T
-1 _ . Vi
fY*(y*):(Hj:1|yl*j|l)¢p (ym,ylz,---, L J |10, X

Yist Vix(p-1)
Proof. Employ the variable transformation Y — Y, , where the Jacobian matrix
dy, /dy" with y=(y,,...,» » )" is a lower-triangular one whose diagonal elements are

L, Y1sts+++s Vis(p1y - Then, the Jacobian becomes J(y — y,) =1/[det(dy, /dy")|

= H | Yi; | . Using the Jacobian we have the pdf of Y, =

e v =TT 210 )8, 4y v, 10,8

T
-1 - y* y*
:(Hl;_lyyl*l ’ 1)¢p (yl*l’ 12,---, lp j |0)Z 1)

1%1 yl*(pfl)

which is the required result. Q.E.D.
The integral representation of the pdf of Y,, using Lemma 1 is given as follows:
Theorem 1. The pdfof Z = is

l*p

L@=[ (1)

T

y1*2 yl*( 1) z

Xy 4| Vit s T T 10,2 ¢ dy,., )
yl*l yl*(p 2) yl*(p 1)

where dyl*(p_l) = dyl*ldy1*2 T dyl*(P—l) :

Proof. The pdf of Y,,, is given by the corresponding marginal distribution in the joint

1*p

11



pdf of Y, obtained by Lemma 1, yielding the required result. Q.E.D.
The pdf of Y., using the modified Bessel function of the second kind of order v

denoted by K, (-) (for this function, see the appendix) is derived. Let

Z(pfl) G(pfl)p ) Z(pf2) G(pf2)pfl
> =[ ={c"} (i,j=L....p), where T = is

6(p—1)pT o’r c(p—2)p—1T Gp—l,p—l
the (p—1)x(p—1) submatrix; ¢”™"” isthe (p—1)x1 vector with

T
_ _ ~ . Vi . .. .
¢ " = (6""")" . Define Yi., = LJ’M ) ez sy P J for simplicity of notation. Then

Vs Vix(p-1)
we obtain the following result.

Theorem 2. The pdfof Z=Y,, is

p-Lp

_ _ o -2 _ 1. 2y~ o} z
2 =oy = [ (IT | ‘)exp[—gyﬂ(},_mz“’ Fl ——J

1*(p-2)
k
w 2j . ST (p-2)p-1 .
XZZ ! (21 Y20 (—yT G(p—z)pz)zf"‘
: N 1%(p-2)

Yix(p-2)

(k=j)/2

. Ly ~1,p-1 1/2
><(O"”’Z Viepay /077 ) Kk—_/{(ap o) 21 Yiapa) |}dyl*<P—2>'

Proof. Using Theorem 1, we have

fr (D)= £,(2)

T
0 p-1 - ~ Vis(p-1) z
:I—w(Hj:1|y1*j|l)¢P (YIT*(,,Z), —, j 10,2 ¢ dy,m

Yirp-2) Vis(p-1)

_ _ 0 p-2 _ 1 - oY~ O'pil’pZ
=(2n7) e | X v Jw(Hj_l ‘yl*j ‘ l)eXp(_E)ﬁT*(pz)Z(p 2))'11(1)72) - J
Yix(p-2)

*© -1 ~T (p-2)p-1 yl*(pfl) ~T (p-2)p z
XJ._OO’ Yie(p-1) " exp “Yixp-2)C ~Yi(p-2)0
yl*(p72) yl*(pfl)

p-Lp=-1.2 2
10 yl*(p_l) 1 GppZ

2 2
2 Vg 2 Viep-n

jdyl*(p—l)dyl*(p—zr

As in Cui et al. (2015, Equations (6) and (7)) expand the following factor in the last result:

12



~T (p-2)p-1 yl*(pfl) ~T (p-2)p z
eXp[_Y1*(p—2)G T Yiu(p-2)0 J

y1*(p72) yl*(pfl)

w < T (p-2)p-1 J
o L Y =T (p-2p =2
= Z -l Yisp-1) T Yix(p-2)0

Jj=0 J' yl*(p—Z) yl*(ﬁ*”
k
w ; ST (p-2)p-1 )
_szli J Y2 T (p-2p K 2k
= ny Yix(p-2)0 Z) Dip-n-
j=0 k=0 ] . yl*(pfz)
Then, we obtain
r-Lp
_ -pl2 -2 % P2 -1 | (p-2)=T o z
f7(2)=(2n) | 2| J_W(Hj_l |y1*j | )exp(_ayl*(pz)z Yisp2) =
1x(p-2)
k
i : ST (p-2)p-1
o < 1 ] yl (o) j—k .
- _ Y Ix(p-2) ot (p-2)p 2k—j -1
lew Z Z ) (kj ( yl*(p—Z)G Z) yl*(pfl) | y1*(p71) |
=0 k=0 J Vix(p-2)
1 g? 7t 1 o?z?
XOXP\ TS e TS50 W11y Y 1)
Ix(p-2) Ix(p-1)

In the term by term integral with respectto y,,,.;,, we find that when j is odd, the

integral vanishes, which gives

—pl2 “2 [ p-2 -1 I ¢ (p-2)~T o’z
O b e I B D e e
1x(p-2)
o 2) ¥ =T (p-2)p-1 \F .
AN J Yis(p-2)0 T (r-2p /K
X Z Sl kIl “Yix(p-2)0 z
e 2N Vie(p-2)
o , 1 g7 tr! 1 o7z*
2k-2j-1 2 L
%)y Yiso-n) eXp[ P Nepn 75 72 oY 12y
1%(p-2) Yie(p-1)

It is known that the Mellin transform of exp(-ax” — fx™") is
j: X exp(—ax' - fxydx =207 (B a)' K, (2a"* ) (a>0,8>0,h>0)

(Erdélyi, 1954, Section 6.3, Equation 17, p. 313; Zwillinger, 2015, Section 3.478, Equation

4). Using this formula when x=y,,,, s=2k-2j, a=0c""""/(Q2y., ), B=0"z"/2

and h=2 for the integral with respect to ., 1, we have

13



-1
GP ,PZ

_ 2 [ ) . . )~
2 =ay = [ (IT o | ‘)exp(—gyﬂ(p_z)w R ——J

Ix(p-2)
k
w 2j ; ST (p-2)p-1 .
XZZ 1 (2) Y20 (_~T G(p—z)pz)zf"‘
Ny Yiep-2)
j : Yir(p-2)

(k=j)/2

. Ly “1,p-1 1/2
><(O"”’Z Viepay 077 ) Kk—j{(ap o) 21 Yiapa |}dyl*<P—2>’

which is the required result. Q.E.D.
An alternative expression comparable to that of Theorem 2 is obtained by the following
corollary.

Corollary 1. The pdf of Y,., in Theorems I and 2 is also given by

P

p-Lp

_ _ o _ 1 _ o z
f(z2)=(2n) P2 | Z| 12 J._OO| Vix(p-2) | : exp[_EY(Tp—z)E(p Z)Y(TP—Z) _—J

Yis(p-2)
k
© 2i 2j yT cr2r-l 2k
xzz — ( j AT —y(T 72)6(;»—2);72 :

(k=j)/2
rp 2,2 p-1,p-1
x(a Z V! O )

~1,p- /
Ko @702 2] gy 1Y ().
Proof. For the result of Theorem 2, use the inverse variable transformation

: . -3
Yisp2) = ¥(,2) Withthe Jacobian Hle | y.; |. Q.E.D.
Note that in Corollary 1 the scalar variable y,,,,, isunchanged since it is the

unchanged product y, x---xy. , , while ¥, becomes ¥, due tothe definition.

Recall that Theorem 2 was obtained by fully using Lemma 1 or Theorem 1 whereas

Corollary 1 is given by the partial transformation y — (y(TpJ), Vi(ptys Vis p)T .

Example 1 (the pdf). The known pdf using the modified Bessel function of the second
kind of zero order i.e., K,(-) (Wishart & Bartlett, 1932, Equation (12); Springer, 1979,

Equation (4.8.22); Grishchuk, 1996, Equation (49); Simon, 2002, Equation (6.15);
Nadarajah & Pogény, 2016, Theorem 2.1) is derived in two ways with or without using the

cfwhen o,, =0, =1 and o, = p. The first one uses the cfof Z =YY, as derived

earlier:

14



f,(z2)= (Zﬂ)flj': exp(—itz)p, (¢)dt
= (277)*1-[: exp(—itz) {1 —2itp —(it)*(1- pz)}—l/z 4

= (277)71-[1 exp(—itz){l - i(l+p)t}’”2 {1+i(1- p)t}’”z d

1 2172 [7 : 1 71/2 ! -
= 2r) ' (1-p%) f_mexp(—ltZ){t—i(Hp)} {tJri(l—p)} &

=27)"'(1-p") " [ expfi(- Z)t}(t +$j (r— l_lpj d.

In the above result, using Nadarajah and Pogany (2016, Lemma 3.1) i.e.,
J.oo ?Xp(lZl“) 1,2dt:2exp(b_az]]<0£a+b|z|]
= {(t—1a)(t +1b)} 2 2
(0<a<o,0<b <o, —0<z<®©),

whose didactic derivation is given in the appendix, when 6=1/(1+p) and a=1/(1-p),

we obtain

fz<z)=(27:)'1(1—pﬁ‘”zfiexmi(—z)t}(ﬁﬁJ (’— i J e

— 27 (1= p2)"? ex Pz K |z | .
( p) p 1_p2 0 1—,02

Note that the Nadarajah-Pogany lemma is of use in that while the integrand is complex-

valued, the result is real-valued as expected since the latter corresponds to the pdf of the

product. The method of Wishart and Bartlett (1932, (12)) to have the essentially the same
pdf is to employ the variable transformation z=(ip—¢)/(1-p°) using our notation and
the integration over the line from ip—o to i1p+ oo, which reduces to the integral along

the real line from —oo to oo, whose explicit justification may be given by the Nadarajah-
Pogany lemma.
The second method without using the cf to have the pdfis given by Result 2, which is

easily obtained by the variable transformation from Y, to Z =YY, and unchanged Y,

with the Jacobian |y, | as used by Grishchuk (1996):
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L@ =] 10 A2/ )" 0, Py,

£ 1 24 (22 y))=2pz
) 2\1/2 exp{_yl ( ylz £ }dyl
z7(l=p")"" [ » | 2(1-p7)
1 z w 1 2422 y?
_ ——exp P . J‘O exp{—yl ( 2)/1) dy,
z(l=p%) l1-p B 2(1-p7)
1 z o ] u+4{z° /(1= pH
e LZ " Lexpl- A=p) e |
z(1-p7) 1—p~ )70 |ul 2
1 Pz | z |
=——— —¢€X K ,
72_(1_102)1/2 p l_pZ 0(1_p2j

2 2
z

1
_2j;du (| arg(z) |< 7w/ 4) (see the

_(Lp). o
where P_(p 1j,and KO(Z)_L( Y

appendix) is used. The last result is equal to that using the cf derived earlier as expected.
Note that the integral representation in the second line of the last set of equations is as
simple as that of the second last one, whose expression is an integral representation of

K,(-). Note also that though K,(-) is a known function, for computation of K (-) some

numerical methods e.g., numerical integration and series expressions are required. So, in

this sense, the initial expression

L@ =" 1w 402/ )" 10, Py,

is comparable to the last one. One of the advantages of the expression using K (-) is that
we can use other representations for K (-).

Note that Springer (1979, Equation (4.8.22)) obtained the same pdf as above using the
Mellin transform though the result includes an error as noted by Gaunt (2022, p. 452).

However, the error seems to be a non-fatal one easily corrected by readers when obtained as
above: the factor exp{p|z|/(1-p*)} shouldbe exp{pz/(1—p*)}. Note also that Simon
(2002, Equation (6.15)) obtained the pdf with an error in that the factor 1/(1-p*)"* was
missing as found by Cui et al. (2016, p. 1664).

Example 2 (the pdf). The pdf was obtained by Cui et al. (2016) using a two-fold
infinite series with each term including K, (-). When Y =(Y,,Y,)" ~ N, {(z,,1,)", P}, the
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pdf of Z =YY, using the same variable transformation as in Example 1, we have

L@ = In T el — (21 7)) = 37 0,P1dy,
-[ !
=27z(1=p")" | 5|

y exp{_ (=)’ + {(z/yl)—gz(}f_— /)22/;(% — ) y) =} | g

whose value may be obtained by numerical integration.

12

Examples 3 (the pdf). The pdf of Z =Y,,; is given by Theorem 1 or Corollary 1 when

p = 3 with the same expression due to .., ,) = V., = V;:

f2(2)= J:w| Yis(p-1 |_1 ¢p {(Y(Tp—l)ﬂ z/ yl*(p—l))T | 0, 2'}dY(p—l)

_ _ o _ 1 _ o’z
= (272') r |Z | "2 J:w| Vis(p-2) | lexp __y(Tp—Z)E(p Z)Y(TP—Z) -
2 1%(p=2)
k
© 2 2j yT ) (P21 ) ik
xzz — '( j RATE) (—y(Tp,z)G(p 2”’2)
j=0 k=0 2]) : k yl*(p,2)

(k=j)/2 -1,p- /2
) K {0 Y 21 Yy 1Y )

pp 2,2 p-Lp-1
x(a Z Vi O

c®z 1

2 11
—-—yc
7 2)/1 j
w 2j 2 ; )
x2 ;[ ]j(—Gu)k(—ylauz)Z’_k

x(o7227 107) T K {00 |21 1y )

V2 3 X |71/2 J‘:| ¥, |71 exp[—

Expanding the exponential, we have

“1/2 _-3/2 BRI 1 2j
f,(z)=2" 77" % ZZZZW[l{j

m=0

b
I
(=)
~
I
(=}
]

=0
X(_GIZ)k (_0132)2]'—1( (033Z2 /022)(k—j)/2 (_O_Z3Z)l (_Gll /2)m
<[“ 1y P oD K, (6767 211y, I} dy.
Noting that the integrand of the last integral is an odd function when £ +/ is odd, it

follows that
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o 2j o o 1 2]
:21/2 -3/2 2 -1/2
f2@) =207 R ) ZZQj)!I!m![kj

j=0 k=0 [=0 m=0
X(_GIZ)/{(_GB)ijk (0_33 /622 )(kfj)/Z (—623)1 (—611 /2)msz+1 | z |k+j

xUk+1: even}j: yK {(0'22533)1/2 | z] /yl}dyla

where 1{:} is the indicator function.

Examples 4 (the pdf). Using the cf for Example 4 derived earlier, the pdf of Z =7,

at z is given by the inversion formula:
£,(2) =)' [ exp(-itz) p, (1)dt

_ o o . _ . . -1/2
=) [ [ exp(=itz)(2m) " {1=-2itpyyx, = (i)’ (1= p3,)x | exp(—x] / 2)dxdt,

1
where the factor {1 —2itp,,x, — (it)* (1 - ps)x; } s equal to that of Example 1 when

P, and tx; arereplaced by o andt, respectively with o, =0,, =0, =1.

Nadarajah and Pogany (2016, Theorem 2.1) gave the following associated formula for

the pdf of Y,,, atzin Example 1 using the cf:

Fn(@)= @) exp(—iuz) {1-2iup - () (1- p*)}du
={z(1-p*)} " exp{pz /(1= p* )} K, {| 2| /(1= p*)},
where K, {-} isthe modified Bessel function of the second kind of zero order (see e.g.,

DLMEF, 2023, https://dlmf.nist.gov/10.25) (the right-hand side of the above equation was
independently derived by Grishchuk, 1996, Equation (49) without using the cf). Employ the

variable transformation u =tx, with d¢/du =1/x,. Then, we obtain the pdf of Z =7Y,,,
at z:
£, =) [ @r) exp(mz/x,) {1-2itpy,x, ~ (i) (1- P}
x dtexp(—x. /2)dx,
=Q2x)"? j: J: (27) " exp(—uz/ x,) {1 —2iup,, — (i)’ (1- p;, )}71/2 EAE
x du exp(—x; / 2)dx,

18



—12 [ 1 Pz |z | 2
=Q2x)"? exp{ 32 }K {—}exp(—x /2)dx
wal A-p5)  (A=p5)x ] " A=p5)] x| 1 1

Y RS N S SCC I O o S 1
o ﬁxl(l_pjz)|:exp{(l_p322)x1}+exp{(l_p322)x1 }:|KO{(1—,0322)X1}¢(X1)(1X1’

where @(x,)=¢(x,]0,1)= Qr)"? exp(—xf /2).Since x, in z/x, isseen as a scale
parameter when 0 < x, <o is given, the above result is a scale mixture of the Bessel

function with an associated factor using the standard normal density.

4. Discussions

(a) Integral representation: As reviewed in Section 1, Nadarajah and Pogéany (2016)
stated that they solved “a problem that has remained unsolved since 1936 i.e., a closed-
form pdf of Example 2. However, the closed-form pdf was derived as early as in 1929 by
Pearson et al. Cui et al. (2016) obtained the pdf of the bivariate case with non-zero means
i.e., the pdf of Example 2 using an infinite series. Note that these results are for bivariate
normal variables.

In Results 1 and 2 of this paper, the cf and pdf of the product of more-than-two
correlated normal variables are given by integral representations. Though the results are
obtained by elementary integration, they are solutions to the problems of the cf’s and pdf’s
of the products of more-than-two normal variables since the pdf’s of the above known cases
using the Bessel functions require integral or series expressions for actual computations as
mentioned earlier (for the computational aspects and implementation of the pdf® of product
distributions, see Glen, Leemis & Drew, 2004). However, if the cf’s and pdf’s for the more-
than-2 cases can be expressed by some known or new functions having e.g., the
corresponding differential equations, they are useful and insightful. This is an open
problem.

(b) The McKay Bessel distribution: McKay (1932, Equations (1) and (2)) obtained the
Bessel function distribution, whose pdf is

1= """ exp(=cz/b) | z|"
772" T v+ (1/2)}

f,(2)= K.(z|/b) (b>0,v>-1/2,]c|<]).

When |c|>1, the factor K (]z|/b) should be replaced by 7! (|z|/b), where I (-) is
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the modified Bessel function of the first kind of order v (McKay, 1932, Equation (1);
Erdélyi, 1953, Section 7.2.2; DLMF, 2023, https://dlmf.nist.gov/10.25.E2). As McKay
(1932, p. 43) pointed out, it is easily found that the pdf of Example 1 is obtained as a special

case of the Bessel distribution when ¢ =-p and v =0 (for this equivalence using the cf

see also Wishart & Bartlett, 1932, p. 459). Due to the property of generality, the McKay
Bessel distribution has been investigated and extended (for historical works and recent
researches, see Thabane & Drekic, 2003; Jankov Masirevi¢ & Pogany, 2021 and the
references therein; Saieed & Altalib, 2023).

(c) The sum or mean of n independent products: In practice, we encounter more than

single independent products. Suppose that Z, (i =1,...,n) are independent copies of a

random product Z used earlier. Define Z, =Z,+..+Z, and Z=Z, /n (n=1,2,..).

Then, from general properties of a cf, the cf’s of the sum and mean become
0, (1) = E{exp(iiz.)} = [, E{exp(itZ,)}=[E{exp(itZ)}]" and
@7 (1) = Elexp(itZ, /n)} = ¢, (¢/n)=[E{exp(itZ / n)}]",
respectively. For instance, the cf’s with n independent products of Example 1 are
. % % . % * 0\ 2 —n/2

@, ()= {1 -2ito|,0,, - (ito|,0,,) } and

P, (1) = {1 —2itn "o \0;, — (itn"'o],03,)° }_n/z ,
respectively. The pdf’s using the cf’s with the inversion theorem are formally given by

f,.(2)=@m) [ exp(-itz){p, ()} dt and

f2(2)= Q)" [ exp(=itz)ip, (t/ m)}"dt

respectively. Nadarajah and Pogany (2016, Theorem 2.2) gave the pdf of Z for Example 1

using the cf and their lemma (see the appendix):

(n+1)/2 A (1-1)/2 (n=1)/2

n 2 | z | npz nlz|

fz(2)= 12 eXp( 2 jK(n—n/z( 2
U(n/2){z(1-p7)} 1-p 1-p

with their expression K, ,,,(-) replaced by an algebraically equal one K, () (see

Gaunt, 2022, Equation (2)). The pdf of Z, =nZ is given by the above density with the
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Jacobian dz /dz, =n"' as

n(n+1)/2 2(1,,,)/2

|nflz |(nfl)/2 B pZ | z |
= noex K
1 O Ry Pl=pr ) el

2(1,,,)/2 |Z |(n71)/2 pZ |Z|
= 2 OXP 7 | K 2 |
F(n/2){z(1-p7)} I-p I-p

Note that an essentially the same result as the above pdf of the Z, was obtained by

Wishart and Bartlett (1932, Equation (12)).
(d) The joint pdf of Y, =(Y,,,Y.,,--..7,. p)T. In practice, data are more or less non-
normally distributed especially in the behavioral and social sciences. Though so far we have

been assuming multivariate normality for 'Y = (¥},....Y, )", it is found that the pleasantly

simple result of Lemma 1 for the pdf of Y, holds under arbitrary distributions as long as
the distribution of Y, is defined since the Jacobian J(y —>y.) = Hj:ll| Vi, | does not

depend on normality. Then, it can be shown that the result of Theorem 1 for the pdf of
Z =Y,

1+, holds under e.g., elliptical symmetry (see Ogasawara, 2022a) including
multivariate normality as a special case:

Theorem 3. Suppose that 'Y = (1,,....Y, )" follows the elliptical distribution with the
joint pdf
LW =K, AT g(y'Ay),

where K is the normalizing constant, g(-) is a non-negative scalar function; and A is

a non-singular scale matrix. Then, the pdfof Z=Y,, when Y, , =Y, is

x [ -1 _ ~ 1~
f2(2)= KPJ:OO(H; | Visj | l)g {(y;r*(p—l)’Z/yl*(p—l))A I(Y1T*(p—1)az/yl*(p—l))T}dyMp—n-

where ¥,.,, was defined before Theorem 2.

Appendix
Al. An introduction of the modified Bessel function of the second kind
For beginning students or researchers in applied statistics, the Bessel function may not

be familiar. So, some introductory explanation associated with this article is given in this
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appendix. The Bessel functions are defined as solutions of the differential equation
(Bessel’s equation):

2
. d Z”+zd—w+(zz—v2)w:o,
dz dz

for a complex variable z and a complex parameter v (Abramowitz & Stegun, 1972, Section
9.1.1; DLMF, 2023, https://dlmf.nist.gov/10.2.E1). The modified Bessel function or the
Bessel function of imaginary argument is defined by the solutions when z in Bessel’s
equation is replaced by iz :

2
. d Z”+zd—w—(zz+v2)w:o,
dz dz

(Abramowitz & Stegun, 1972, Section 9.6.1; DLMF, 2023, https://dlmf.nist.gov/10.25.E1),

dw dw dz dwi o1
= =— ieldin
&z y g

which is given as follows. Let z =iz . Then,

dz" dz dz’
d . d . d’ d d d dw.)\d d*w . . )
i W . Similarly, we have v;/ =— W = (——le Z = Zvlz , which gives
dz dz dz dz dz dz dz )dz dz
d? ., d? s d ., d d? ., d? ..
VZV =i v;/ . Substituting z=iz , Wi Y ZV =i V; for the original
dz dz dz dz dz dz

Bessel function and re-expressing z as z, the modified Bessel function follows.

The modified Bessel function of the second kind of order v denoted by K (z) is given

when using e.g., an integral representation:

z/2) ¢ z7) 1
KV(Z):( 2) IO exp[—t—4—tjtv+1 dt (Jarg(z)|<x/4)

(Watson, 1944, Section 6.22, Equation (15); Zwillinger, 2015, Section 3.471-Equation 12,
Section 8.432-Equation 6; DLMF, 2023, https://dlmf.nist.gov/10.32.E10), which is also

givenusing t=u"/2 (0 <u <) as

(z/2)" = u>  z’ 1 dt
K = e —_— —d
(2 =25, exp| =5 2 |12 du

When v = 0, we have the modified Bessel function of zero order, whose integral expressions
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of use in statistics are

1 = 1 o ? )1
KO(Z):E.[O exp[—t—Z—J;dt:J.O exp(—u——%j;du (larg(z)|< 7z /4) and

4t 2 2
© CcOoS(xt
Ko(x):j0 ﬁdt (0< x <o),

where for K,(x) (0 <x <o) see Watson (1944, Section 6.22, Equation (14)), Abramowitz

& Stegun (1972, Section 9.6.21), Zwillinger (2015, Section 3.754, Equation 2) and DLMF
(2023, https://dlmf.nist.gov/10.32.E6).

A2. The Nadarajah-Pogany lemma
Another property for K,(z) useful in our problems is given by Nadarajah and Pogany

(2016, Lemma 3.1):

jwo .exp(izt.) l/zdt:26xp(b_azjKo(a+b|z|)
e {(—ia)(t+ib)} 2 2

(0<a<w,0<b<oo, —00<z<00).

Their derivation is didactically repeated here. Define ¢ =y +1{(a—»5)/2}. Then, we obtain

j-oo exp(izt)

= {(t —ia)(t +ib)}"?

_pe-itlasb)zy exp{izy —(1/2)(a—-b)z}
it [{y+(1/2)i(a—b)—ia}{y+(1/2)i(a—b)+ib}]

= exp(b = ijwi:{(“b)/z} eXP(iZy) 1/2 dy
2 )Feite i [ (1) 2)i(a +b)} {y +(1/2)i(a+b)}]

dy

1/2

) CXP(;zjr Xp(!) 172 dz,
2 = [{t—(1/2)i(a+b)}{t+(1/2)i(a+b)}]
where the last integral with the real variable from the second last integral is given by applying

Cauchy’s theorem (e.g., Davies, 2002, Section 1.2) to an associated contour integral. Then,

we have

23



on exp(izt)
= {(t —ia)(t +ib)}"”

:exp(b—azjj-w : exp(izt) —
2 = [{t"+(1/4)a+b)}]

_ exp(b_a ij-w 2cos(zt)+isin(zzt) _
2 = [{t"+(1/4)a+b)}]
=2exp b_az J-OO > cos(zt) —dt
O [{t"+(1/4)a+b)}]

i du
du

Cex b—aZ on cos{u(a+b)z/2}
P 0 (2 +1)(a+b)/2

b—a «cos{u(a+b)z/2}
=2exp z fo 11"

du

= 2exp z |K {(a+b)|z]/2},

where Euler’s formula exp(iu) =cosu +isinu (—oo <u <o) and the integral expression

of K,(x)= JOOO cos(xu)(u” +1)""*du (0 < x <) shown earlier with the variable

transformation ¢ =u(a+b)/2 are used.
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