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Abstract: Some reviews of the distribution of the product of two correlated normal random 

variables and the corresponding more-than-two uncorrelated cases are given with a 

historical perspective. The characteristic function of the product distribution of more-than-

two correlated normal variables is presented using the Cholesky decomposition and an 

integral representation. The probability density function (pdf) of the product of these 

correlated variables is shown with an improper multiple integral and discussed. The pdf of 

the product distribution of three normal correlated variables with zero means is obtained as 

a mixture of the modified Bessel function of the second kind. 

 

Keywords: tetrad equations, Cholesky decomposition, characteristic function (cf), inversion 

theorem, Mellin transform, modified Bessel function, Bessel distribution. 
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1. Introduction 

The distribution of the product of two normally distributed variables with zero means 

has a long history. Pearson, Jeffery and Elderton (1929, p. 187) and Wishart and Bartlett 

(1932, Equation (12)) gave the probability density function (pdf) in the correlated bivariate 

case using the Bessel function of the second kind with an imaginary argument (see 

McKay,1932; Watson, 1944/1995; Zwillinger, 2015, Sections 6.5 and 8.4; DLMF, 2023, 

https://dlmf.nist.gov/10.2.E4; for an introduction of the Bessel function see the appendix). 

For the pdf of the correlated case, Craig (1936, Equation (17)) derived a series expression. It 

is of interest to find that these earlier works were partially motivated by associated problems 

in the behavioral sciences e.g., “tetrad equations” for the factor analysis model in 

psychology (Pearson & Moul, 1927; Pearson et al., 1929, pp. 192-193). Craig (1936, p. 1) 

stated that he had inquiries “one from an investigator in business statistics and the other 

from a psychologist, concerning the probable error of the product of two quantities, each of 

known probable error”. Currently, many applications of the product distribution are found in 

the natural sciences e.g., physics and engineering (see Cui, Yu, Iommelli and Kong, 2016; 

Gaunt, 2022; and the references therein). 

The early findings seem to be unnoted by e.g., Gaunt (2019, Section 1) stating that “The 

exact distribution of the product Z = XY has been studied since 1936”, where X and Y are 

correlated normal variables and 1936 is Craig (1936) (see also Gaunt, 2022). This parallels 

Nadarajah and Pogány’s (2016, Abstract) statement “We solve a problem that has remained 

unsolved since 1936”. Later, Fischer, Gaunt and Sarantsev (2023) noted Pearson et al. 

(1929) as a work of the exact distribution of a sample covariance under bivariate normality 

in the review of the variance-gamma distribution. Seijas-Macías, Oliveira and Oliveira 

(2023, Section 1) referred to Wishart and Bartlett (1932) as the “First historical approach”. 

For general p-variate uncorrelated Gaussian cases, the pdf of the product was given by 

Springer and Thompson (1966, Section 6) using the Mellin transform and its inversion (for 

the transform see Epstein, 1948; Davies, 2002, Chapter 12; DLMF, 2023, 

https://dlmf.nist.gov/2.5), who stated that “it seems rather surprising that the distribution of 

products of more than two independent random Gaussian variables has never been derived” 

(p. 519) though their result was not given in closed form. Springer and Thompson (1970, 
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Theorems 5 and 6) gave the same result using the Meijer G-function (DLMF, 2023, 

https://dlmf.nist.gov/16.17) with a recursion formula (see also, Springer, 1979, Chapter 3). 

Recent researches on the correlated bivariate Gaussian case have been given by Ware 

and Lad (2003), Nadarajah and Pogány (2016), Cui et al. (2016), Oliveira, Oliveira and 

Seijas-Macías (2016), Seijas-Macías, Oliveira, Oliveira and Leiva (2020), Gaunt (2022) and 

Seijas-Macías et al. (2023). However, for general p-variate correlated cases, researches after 

Springer and Thompson (1970) do not seem to well develop as Gaunt (2022, p. 454) stated 

that “An exact formula for the PDF of the product of three or more correlated normal 

random variables is not available in the literature”. 

One of the purposes of this paper is to derive the characteristic function (cf) of the 

product distribution for correlated more-than-two normal variables with an integral 

expression, where the Cholesky decomposition is used for the unconstrained covariance 

matrix. Another purpose of this paper is to obtain a representation of the pdf of the product 

using improper multiple integration with discussions about the results. Then, a new result 

for the pdf of the correlated tri-variate case is obtained using a mixture of the Bessel 

function of the second kind. 

 

2. The cf of the product of correlated normal variables 

Let the random p-dimensional vector T
1( ,..., )pY YY  be multivariate normally 

distributed with zero means, which is denoted by ~ N ( , )pY 0 Σ  with E( ) Y 0  and 

cov( ) Y Σ , where Σ  is assumed to be non-singular. Consider the random quantity 

(1 )
j

i j kk i
Y Y i j p 

    . Let i 1  . 

Result 1. We obtain an integral expression for the cf of 1 pZ Y  . By definition, the cf 

is given by 

1 1 1

1

( ) E{exp(i )} exp(i ) ( | , )d d

exp(i ) ( | , )d ,

Z p p p p

p p

t tY ty y y

ty

 



 

  





 



 


y 0 Σ

y 0 Σ y

 
 

where 1 py   is defined similarly to 1 pY   and ( | , )p y 0 Σ  

/2 1/ 2 T 1(2 ) | | exp( / 2)p    Σ y Σ y  is the pdf of Y y . Let 1/2Y Σ X , where 
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1/2 T/2Σ Σ Σ  is the Cholesky decomposition with T/2 1/2 T( )Σ Σ ; and 

1/2 { } ( , 1, ..., )ij i j p  Σ  is a lower triangular matrix whose diagonal elements are defined 

to be positive for identification of the decomposition. Then, it can be shown that 

1/2 1 1/2( ) ~ N (0, )p p
  X Σ Y Σ Y I  with pI  being the p p  identity matrix. Using 

X , we have 

T T/2
1 1 1 ( ) ( )1 1

( ,..., )( ,..., )
p p

p i ii i i ii i
Y X X  

  
   σ X  

with T/2
( )( , 0,..., 0)iσ  being the i-th row of 1/2Σ . Define 1/2

( ) ( 1,..., ; 1,..., )i j i p j i σ  as the 

subvector of 1/2
( )iσ  consisting of the first j elements of 1/2

( )iσ . Then, we have 

    
 

1

T/2 T/2
( ) ( ) ( ) ( )1 1

T
/2 T/2

( ) ( )1

( ) ( )

E exp i exp i ( | , )d

(2 ) exp i d
2

pZ Y

p p

i i i i p pi i

pp
i ii

t t

t t

t

 









 

 




 

 
  

 

 



σ X σ x x 0 I x

x x
σ x x

 

 

 

T
1 ( 1) ( 1)( 1)/2 T/2 T/2

( ) ( ) ( ) 1 ( 1)1

2
11/2 T/2

( ) ( ) ( 1)1

(2 ) exp i
2

(2 ) exp i d d
2

p p pp
i i p p pi

p p
i i pp p p pi

t

x
t x x



 

    
 

  


    
  

    
  





x x
σ x σ x

σ x x

 

 

  
 

T
1 ( 1) ( 1)( 1)/2 T/2 T/2

( ) ( ) ( ) 1 ( 1)1

2
1 T/2

( ) ( ) ( 1)1

T
2 ( 2) ( 2)( 1)/2 T/2 T/2 T/2

( ) ( ) ( 1) 2 ( 2) ( ) 2 ( 2)1

(2 ) exp i
2

i (1 / 2) d

(2 ) exp i

p p pp
i i p p pi

p

i i pp pi

p p pp
i i p p p p p pi

t

t

t







    
 

 


   
    


 


 

 







x x
σ x σ x

σ x x

x x
σ x σ x σ x

   
 
 

2 2T/2 T/2 T/2 T/2
( ) ( ) 1, 1 1 ( ) 2 ( 2) ( ) ( ) ( 1) 2 ( 2) , 1 11 1

2
2 1T/2 2

( ) ( ) 1, 1 , 1 11

2 T/2 T/2
( ) ( ) ( 1) 2 ( 2)1

2

i i

i
2

i

p p

i i p p p p p p i i p p p p p pi i

p p
i i p p p p pi

p

i i p p p pi

t x t x

x
t x

t

 

 







  
          

  
   



  





 

 

 



 





σ x σ x σ x σ x

σ x

σ x σ x  2

1, 1 1 1 ( 2)(1 / 2) d d ,p p pp p px x 
    




x

 

where the following expansion of the first term in the exponential on the left-hand side of 
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the last equation is used: 

 
     

1 T/2 T/2
( ) ( ) ( ) 1 ( 1)1

2 T/2 T/2 T/2
( ) ( ) ( 1) 2 ( 2) 1, 1 1 ( ) 2 ( 2) , 1 11

i

i .

p

i i p p pi

p

i i p p p p p p p p p p p pi

t

t x x 



 

  
         

  





σ x σ x

σ x σ x σ x
 

Then, again using the method of completing the square we have 

 

  

 

T
2 ( 2) ( 2)( 2)/2 T/2 T/2 T/2

( ) ( ) ( 1) 2 ( 2) ( ) 2 ( 2)1

2
2 T/2 T/2

( ) ( ) ( 1) 2 ( 2)1

1/2

2 T/2
( ) ( ) 1,1

( )

(2 ) exp i
2

1
i

2

(2 )

1
exp 1 2i

2

Z

p p pp
i i p p p p p pi

p

i i p p p ppi

p

i i p pi

t

t

t

t











    
    

 
  

 





 


 


 



  










x x
σ x σ x σ x

σ x σ x

σ x   
   
  

2
2 T/2 2

1 , 1 ( ) ( ) 1, 1 11

2 2T/2 T/2 T/2 T/2
( ) ( ) 1, 1 ( ) 2 ( 2) ( ) ( ) ( 1) 2 ( 2) , 11 1

2
2 T/2 T/2

( ) ( ) ( 1) 2 ( 2) 1,1

i

i i

i

p

p p i i p p pp pi

p p

i i p p p p p i i p p p p pi i

p

i i pp p p p p pi

t x

t t

t

  

 

 

   
   

  
        

 
   

   
 





 



σ x

σ x σ x σ x σ x

σ x σ x 1 1 1 ( 2)d dp p px x
   


 

x

 

 

  
 

T
2 ( 2) ( 2)( 2)/2 T/2 T/2 T/2

( ) ( ) ( 1) 2 ( 2) ( ) 2 ( 2)1

2
2 T/2 T/2

( ) ( ) ( 1) 2 ( 2)1

2 T/2 T/2
( ) ( ) 1, 1 , 1 ( ) ( )1 1

(2 ) exp i
2

1
i

2

1 2i i

p p pp
i i p p p p p pi

p

i i p p p ppi

p p

i i p p p p i ii i

t

t

t t





 

    
    

 
  

  
   


 


 

  







x x
σ x σ x σ x

σ x σ x

σ x σ x  
1/22

2

1, 1p p pp 


  
 

 
  



 

    

   

12
2 2T/2 T/2

( ) ( ) 1, 1 , 1 ( ) ( ) 1, 11 1

2 2T/2 T/2 T/2 T/2
( ) ( ) 1, 1 ( ) 2 ( 2) ( ) ( ) ( 1) 2 ( 2) , 11 1

T/2
( ) (

1
exp 1 2i i

2

i i

i

p p

i i p p p p i i p p ppi i

p p

i i p p p p p i i p p p p pi i

i

t t

t t

t

   

 


    

     

  
        


      


 



 

 

σ x σ x

σ x σ x σ x σ x

σ x  
22

2 T/2
) ( 1) 2 ( 2) 1, 1 ( 2)1

d .
p

i pp p p p p p pi
 

  
     


 
  


 σ x x

 

Note that Result 1 gives the reduction of the initial dimensionality of multiple integral 

by 2. Consequently, when p = 2, the last result yields the known closed-form formula of the 
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cf without integration as will be repeated in Example 1. 

 

Example 1 (the cf). For confirmation, the known cf of the case with p = 2 and 

2~ N ( , )Y 0 Σ  (e.g., Ogasawara, 2023b, Remark S.2 when 11 22 1   ) for the cf is 

shown using Result 1: 

    

 
 

2 2T/2 T/2
( ) ( ) ( ) ( ) 2 21 1

T
1

11 1 21 1 22 2

1/2 2 2
11 21 1 1

1/2 2
11 22 1 2 2 2 1

( ) E exp i exp i ( | , )d

(2 ) exp i ( ) d
2

(2 ) exp i ( / 2)

(2 ) exp i ( / 2) d d

(2

Z i i i ii i
t t t

t x x x

t x x

t x x x x x

 

   

  

  



 

    



   



   



 

 
   

 

 

 



 






σ X σ x x 0 I x

x x
x

 
 

1/2 2 2 2
11 21 1 1 11 22 1 1

1/2 2 2
11 21 11 22 1 1

) exp i ( / 2) (i ) (1 / 2) d

(2 ) exp i (1 / 2) (i ) (1 / 2) d .

t x x t x x

t t x x

    

    

     



     



 

    




 

Noting that the integrand in the last expression is an even function of 1x  and employing 

the variable transformation 2
1u x  with 1/2

1d / d 1/ (2 )x u u  and the gamma function with 

the complex scale parameter   12
11 21 11 22(1 / 2) i (i ) (1 / 2)t t   

      and 1/2(1 / 2)   , 

we obtain 

 
 

 

1/ 2 1/2 1 2
11 21 11 220

1/21/2 2
11 21 11 22

1/22
11 21 11 22

( ) 2 (2 ) (2 ) exp i (1 / 2) (i ) (1 / 2) d

=2 (1 / 2) i (i ) (1 / 2)

1 2i (i ) ,

Z t u t t u u

t t

t t

     

   

   

      

    

   

    

 

  


 

which is equal to Wishart and Bartlett (1932, Equation (9)), when 21 11 22     with 

* *
11 11 21 22,       and * 2

22 22 (1 )    , and is algebraically equal to 

2 1/2 2 2 1/2(1 ) / [1 { (1 )i } ]t       when 11 22 1    (Ogasawara, 2023b, 

Remark 2). 

 

Example 2 (the cf; Craig, 1936, Equation (10); Ware & Lad, 2003, Subsection (3.3.2), 
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Appendix A; Oliveira, Oliveira & Seijas-Macías, 2016, Proposition 2.1; Seijas-Macías, 

Oliveira & Oliveira, 2023, Equation (1)). In this example, the case of p = 2 with a relaxed 

condition of non-zero means i.e., 2~ N ( , )YY μ Σ  is dealt with. Using the same 

decomposition 1/2 T/2Σ Σ Σ  as in Example 1, 1/2 1/2~ N ( , )p p
  YX Σ Y Σ μ I

N ( , )p p Xμ I . Let T
1( ,..., )p  Xμ μ  for simplicity of notation. Then, the cf is 

 

 
 

2 T/2
( ) ( ) 2 21

T
1

11 1 21 1 22 2

1/2 2 2
11 21 1 1 1

1/2 2
11 22 1 2 2 2 2 1

( ) exp i ( | , )d

( ) ( )
(2 ) exp i ( ) d

2

(2 ) exp i ( ) / 2

(2 ) exp i ( ) / 2 d d

(2

Z i ii
t t

t x x x

t x x

t x x x x x

 

   

   

   







    



   



   





  
   

 

    

    










σ x x μ I x

x μ x μ
x

 
 

1/2 2 2 2
11 21 1 1 1 11 22 1 2 11 22 1 1

1/2 2 2
11 21 11 22 1

2
1 11 22 2 1 1 1

) exp i ( ) / 2 i (i ) (1 / 2) d

(2 ) exp 1 2i (i ) ( / 2)

( i ) ( /2) d

t x x t x t x x

t t x

t x x

       

    

    

       



     



 

     

   
   




 

   
 

2 2
1/22 1 1 11 22 2

11 21 11 22 2
11 21 11 22

1/22
11 21 11 22

2 2 2 2
11 21 1 22 1 2 11 22 1 2

11 21 11

( i )
1 2i (i ) exp +

2 2 1 2i (i )

1 2i (i )

2i ( ) (i ) ( )
exp

2 1 2i (i

t
t t

t t

t t

t t

t t

       
   

   

         
  

 
   

   

   

    

 

 
    

   

  

  


  2
22

.
) 

 
 
  

 

Noting that 

1 1
T 1/2 11 11

1 2 1 1
21 22 21 11 22 22

1/2
111

1/2 2 1/2 1/2 2 1/ 2
211 22

1/2
11 1

1/2 1/2 2 1/ 2
11 1 22 2

0 ( ) 0
( , )

( ) ( )

0

(1 ) (1 )

( )(1 )

Y

Y

Y

Y Y

 
 

     


    

 
    

  


       



   



  

   
      

   
   

         
 

 
   

X Y Y Yμ Σ μ μ μ

,

 

we also have 
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1/22
11 21 11 22

2 2 2 2
11 21 1 22 1 2 11 22 1 2

2
11 21 11 22

( ) 1 2i (i )

2i ( ) (i ) ( )
exp

2 1 2i (i )

Z t t t

t t

t t

    

         
   

   

    

   

  

   
 

   

 

 




1/ 21/2 1/2 2 2
11 22 11 22

1/ 2 1/ 2 1/2 2
11 22 11 1

1/2 2 1/ 2 1/2 1/2 1/2 2 1/2
22 11 1 11 1 22 2

2 2 1/2 2 1/2 1/2 2 2
11 22 11 1 11 1 22 2

1 2i (i ) (1 )

2i ( )

(1 ) ( )(1 )
exp

(i ) (1 ) ( ) ( ) (1

Y

Y Y Y

Y Y Y

t t

t

t

     

    

        

         





   

  

   



    


      
 

1

1
1/ 2 1/2 2 2
11 22 11 22

)

2 1 2i (i ) (1 )t t     





 
 
 
 
  
 

       

 

 
 

 

1/21/ 2 1/2 2 2
11 22 11 22

2 1/2 2 1/2 2 1/2 1/2
1 2 11 22 11 1 22 2 11 1 22 2

1/2 1/2 2 2
11 22 11 22

1 2i (i ) (1 )

2i (i ) ( ) ( ) 2
exp ,

2 1 2i (i ) (1 )

Y Y Y Y Y Y

t t

t t

t t

     

           

     



   

   

   
 

    

 

which is found to be algebraically equal to the results cited at the beginning of this example 

for the moment generating function (mgf) when it is replaced by t supporting their result. 

Note that they used the formulation 1 0 1Y X X   and 2 0 2Y X X  , where 

0 1 1 1N (0, ) N(0, ), N( ,1 )X X       and 2 2N( ,1 ) (0 1)X       are 

uncorrelated normal variables. Note also that there are three latent variables for two 

manifest variables 1Y  and 2Y . It is found that the formulation is a saturated one-factor 

model with positive   in exploratory factor analysis (EFA). The inflated dimensionality 

over that of manifest variables is known to be a property of latent variable models (see e.g., 

Ogasawara, 2022a, p. 252; Ogasawara, 2023c, Section 1). Although they did not mention, 

when 1Y  and 2Y  have negative correlation, 2 0 2Y X X    (or 1 0 1Y X X   ) with 

unchanged 1Y  (or 2Y , respectively) should be used. On the other hand, in our formulation 

using the Cholesky decomposition, the dimensionality of X  is the same as that of Y . The 

EFA model has also been used in the definitions of the multivariate gamma (Cherian, 1941; 

Prékopa and Szántai, 1978; Mathai and Moschopoulos, 1991, Definition 1; Royen, 1991, 

2007) and multivariate power-gamma (Ogasawara, 2023c) distributions. 
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Example 3 (the cf). Consider the case of p = 3 when 3~ N ( , )Y 0 Σ . The cf becomes 

    3 3T/2 T/2
( ) ( ) ( ) ( ) 3 31 1

T
3/2

11 1 21 1 22 2 31 1 32 2 33 3

1 3 2
11 21 31 1 21 32 22 31 1 2 22 32

( ) E exp i exp i ( | , )d

(2 ) exp i ( )( ) d
2

(2 ) exp i ( )

Z i i i ii i
t t t

t x x x x x x

t x x x

 

      

         



 

       



        

 

 
     

 

   

 



σ X σ x x 0 I x

x x
x

 
 

 

2 T
1 2 (2) (2)

1/2 2 2
11 21 33 1 22 33 1 2 3 3 3 (2)

1 3 2 2 T
11 21 31 1 21 32 22 31 1 2 22 32 1 2 (2) (2)

11 21 33

( / 2)

(2 ) exp i ( ) ( / 2) d d

(2 ) exp i ( ) ( / 2)

exp i (

x x

t x x x x x x

t x x x x x

t

     

         

  

 



      



          



 

  

  

      







x x

x

x x

 22
1 22 33 1 2 (2)) / 2 dx x x      

x

 

  
 

 

21/2 3 2 2
11 21 31 1 11 21 33 1 1

1/2 2 2
11 21 32 22 31 1 2 22 32 1 2

2 2 3 2 2 2 2
11 21 22 33 1 2 22 33 1 2 2 2 1

(2 ) exp i i (1 / 2) ( / 2)

(2 ) exp i ( )

+(i ) ( ) +( ) (1/2) ( / 2) d d

(2

t x t x x

t x x x x

t x x x x x x x

      

       

     



       



        



     

  

  
 







  
 

 

21/2 3 2 2
11 21 31 1 11 21 33 1 1

1/2 2 2 2 2
11 22 32 1 11 22 33 1 2

2 2 2 3
11 21 32 22 31 1 11 21 22 33 1 2 2 1

) exp i i (1 / 2) ( / 2)

(2 ) exp (1 / 2) 1 2i (i ) ( )

i ( ) (i ) ( ) d d

t x t x x

t x t x x

t x t x x x x

     

      

        

       



       



        

 

   
   





 

 
 

 

1/21/ 2 2 2 2
11 22 32 1 11 22 33 1

222
11 21 33 131

11 21 31 1

22 2 2 3
11 21 32 22 31 1 11 21 22 33 1

2
11 22 32 1 11

(2 ) 1 2i (i ) ( )

i
exp i

2 2

i ( ) (i ) ( )

2 1 2i (i ) (

t x t x

t xx
t x

t x t x

t x t

      

  
  

        

   

       



  
  

        

   

  


   



 


 



  12 2
22 33 1

d .
)

x
x  






 

 

Example 4 (the cf). In this example, we deal with a tri-variate model situated between 

the independent and unconstrained dependent models. Note that Example 3 is a fully 

dependent model in that non-singular Σ  is unconstrained. Assume that in Example 3, 1Y  

is independent of possibly correlated 2Y  and 3Y . Without loss of generality, suppose that 
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11 22 33 1     . Then, under this partially dependent model Σ  becomes the correlation 

matrix: 

23

32

1 0 0
0 1
0 1




 
  
 
 

Σ Ρ  with 

*
11

1/ 2 * * 1/2
21 22

2 1/2* * *
32 3231 32 33

0 0 1 0 0
0 0 1 0

0 (1 )


 

   

   
            

Σ Ρ . 

Noting that this example is a special case of Example 3, using the above expressions, we 

have 

  
 

1 3

1/21/2 2 2 2 2
32 1 32 1 1 1

( ) E exp i |

(2 ) 1 2i (i ) (1 ) exp( / 2)d ,

Z t tY

t x t x x x



  



 



 

    

Σ Ρ
 

which is seen as a mixture of the cf of Example 1 using the normal density. 

 

3. The pdf of the product of correlated normal variables 

In this section, the pdf of the product of correlated normal variables is considered. 

Result 2. The pdf of 1 pZ Y  , as defined in Result 1, at z is derived using the inversion 

theorem (see e.g., Anderson, 2003, Theorem, 2.6.3), which is formally given as: 

1 1
1

1
1

( ) (2 ) exp( i ) ( )d (2 ) exp( i )E{exp(i )}d

(2 ) exp{i ( )} ( | , )d d ,

Z Z p

p p

f z tz t t tz tY t

t y z t

  

 

  
 




   

 

 
 y 0 Σ y

 

which is a (p + 1)-fold integral, and tends to be complicated unless 1( ) E{exp(i )}Z pt tY   

is explicitly given as a tractable function of t. On the other hand, the same pdf is obtained by 

using the variable transformation from e.g., pY  to 1 pZ Y   and unchanged 1,..., pY Y  with 

the Jacobian 1 ( 1)| d / d | 1/ | |p py z y   , which gives 

1 T
1 ( 1) 1 1 1 ( 1) 1 1

1 T T
1 ( 1) ( 1) 1 ( 1) ( 1)

( ) | | {( ,..., , / ) | , }d d

| | {( , / ) | , }d ,

Z p p p p p

p p p p p

f z y y y z y y y

y z y





 
     

 
     








0 Σ

y 0 Σ y


 

where T
( 1) 1 1( ,..., )p py y y  for simplicity of notation. The above representation is an 

improper ( 1)p  -fold multiple integral whose dimensionality is smaller than that using the 

cf by 2. The above result is seen as an extension of the Mellin convolution for the bivariate 

independent cases (Epstein, 1948, Equation (2); Springer & Thompson, 1966, Equation (4), 
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Section 6; Springer, 1979, Section 4.1) or the bivariate correlated cases (Rohatgi, 1976, 

Section 4.4, Theorem 7, Equation (16); Rohatgi & Saleh, 2015, Section 4.4, Theorem 3, 

Equation (4); Cui et al., 2016, Theorem 2.1) to the p-dimensional correlated case. 

   Another convenient integral representation of the pdf of 1 pY   is given by the joint pdf 

of 1 ( 1,..., 1)jY j p   : 

   Lemma 1. The joint pdf of T
1 1 1 2 1( , , ..., )pY Y Y   Y  with 1 1 1Y Y   at 

T
1 1 1 2 1( , , ..., )py y y   y  when T

1( ,..., ) ~ N ( , )p pY YY 0 Σ  is 

 
T

1 11 1 2
1 1 11

1 1 1 ( 1)

( ) | | , ,..., | ,
p p

j pj
p

yy
f y y

y y




  
  

  

          
Y y 0 Σ . 

   Proof. Employ the variable transformation Y Y , where the Jacobian matrix 

Td / dy y with T
1( ,..., )py yy  is a lower-triangular one whose diagonal elements are 

1 1 1 ( 1)1, ,..., py y   . Then, the Jacobian becomes T( ) 1/ | det(d / d ) |J   y y y y  

1 1
11

| |
p

jj
y

 


 . Using the Jacobian we have the pdf of  Y y : 

 

 

1 1 T
1 1 21

T

1 11 1 2
1 1 11

1 1 1 ( 1)

( ) | | {( , , ..., ) | , }

| | , , ..., | , ,

p

j p pj

p p
j pj

p

f y y y y

yy
y y

y y







 
 

  
 

  



          





Y y 0 Σ

0 Σ
 

which is the required result. Q.E.D. 

   The integral representation of the pdf of 1 pY   using Lemma 1 is given as follows: 

   Theorem 1. The pdf of 1 pZ Y   is 

 1 1
11

T

1 ( 1)1 2
1 1 1 ( 1)

1 1 1 ( 2) 1 ( 1)

( ) | |

, , ..., , | , d

p

Z jj

p
p p

p p

f z y

yy z
y

y y y


  


 
  

    



          



0 Σ y
 

where 1 ( 1) 1 1 1 2 1 ( 1)d d d dp py y y     y  . 

   Proof. The pdf of 1 pY   is given by the corresponding marginal distribution in the joint 
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pdf of Y  obtained by Lemma 1, yielding the required result. Q.E.D. 

   The pdf of 1 pY   using the modified Bessel function of the second kind of order v 

denoted by ( )vK   (for this function, see the appendix) is derived. Let 

( 1) ( 1)
1

( 1) T
{ } ( , 1,..., )

p p p
ij

p p pp
i j p



 




 
   
 

Σ σ
Σ

σ
, where 

( 2) ( 2) 1
( 1)

( 2) 1T 1, 1

p p p
p

p p p p

  


   

 
  
 

Σ σ
Σ

σ
 is 

the ( 1) ( 1)p p    submatrix; ( 1)p pσ  is the ( 1) 1p    vector with 

( 1) T ( 1) T( )p p p p σ σ . Define 

T

11 2
1 1 1

1 1 1 ( 1)

, , ..., p
p

p

yy
y

y y


 
  

 
   
 

y  for simplicity of notation. Then 

we obtain the following result. 

   Theorem 2. The pdf of 1 pZ Y   is 

 

 

1,
2/ 2 1/2 1 T ( 2) T

1 1 ( 2) 1 ( 2)1
1 ( 2)

T ( 2) 12
21 ( 2) T ( 2)

1 ( 2)
0 0 1 ( 2)

2 2
1 ( 2)

1
( ) (2 ) | | | | exp

2

21
2

(2 )!

/

p p
pp p

Z j p pj
p

kp pj
j kp p p

p
j k p

pp
p

z
f z y

y

j
z

kj y

z y





    
    

 

    
 

   

 

 
    

 

  
         







Σ y Σ y

y σ
y σ

 




   ( ) /21, 1 1, 1 1/2
1 ( 2) 1 ( 2)( ) | | / | | d .

k jp p p p pp
k j p pK z y  

   
    y

 

Proof. Using Theorem 1, we have 

 

 

1

T

1 1 ( 1)1 T
1 1 ( 2) 1 ( 1)1

1 ( 2) 1 ( 1)

1,
2/2 1/2 1 T ( 2) T

1 1 ( 2) 1 ( 2)1
1 ( 2)

1

( ) ( )

| | , , | , d

1
(2 ) | | | | exp

2

|

pY Z

p p
j p p pj

p p

p p
pp p

j p pj
p

f z f z

y z
y

y y

z
y

y

y







   
    

   

    
    

 



          
 

    
 







y 0 Σ y

Σ y Σ y



 

1 ( 1)1 T ( 2) 1 T ( 2)
( 1) 1 ( 2) 1 ( 2)

1 ( 2) 1 ( 1)

1, 1 2 2
1 ( 1)

1 ( 1) 1 ( 2)2 2
1 ( 2) 1 ( 1)

| exp

1 1
d d .

2 2

pp p p p
p p p

p p

p p pp
p

p p
p p

y z

y y

y z
y

y y

 

     
     

   

 
 

   
   


 




  


 y σ y σ

y

 

 

As in Cui et al. (2015, Equations (6) and (7)) expand the following factor in the last result: 
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1 ( 1)T ( 2) 1 T ( 2)
1 ( 2) 1 ( 2)

1 ( 2) 1 ( 1)

T ( 2) 1
1 ( 2) T ( 2)

1 ( 1) 1 ( 2)
0 1 ( 2) 1 ( 1)

T ( 2) 1
1 ( 2)

0 1 ( 2)

exp

1

!

1

!

pp p p p
p p

p p

jp p
p p p

p p
j p p

p pj
p

k p

y z

y y

z
y

j y y

j

kj y

   
   

   

 
  

   
    

 
 

  

 
   
 

 
    

 

 
  

 





y σ y σ

y σ
y σ

y σ

 




  T ( 2) 2
1 ( 2) 1 ( 1)

0

.

k
j kp p k j

p p
j

z y
  

   


 
  

 
 y σ

 

Then, we obtain 

 

 

1,
2/ 2 1/ 2 1 T ( 2) T

1 1 ( 2) 1 ( 2)1
1 ( 2)

T ( 2) 1
1 ( 2) T ( 2) 2 1

1 ( 2) 1 ( 1) 1 ( 1)
0 0 1 ( 2)

1
( ) (2 ) | | | | exp

2

1
| |

!

p p
pp p

Z j p pj
p

kp pj
j kp p p k j

p p p
j k p

z
f z y

y

j
z y y

kj y


    

    
 

      
     

   

 
    

 

  
         





Σ y Σ y

y σ
y σ

 




1, 1 2
2
1 ( 1) 1 ( 1) 1 ( 2)2 2

1 ( 2) 1 ( 1)

1 1
exp d d .

2 2

p p pp

p p p
p p

z
y y

y y

 





 

     
   

 
    

 



y

 

In the term by term integral with respect to 1 ( 1)py   , we find that when j is odd, the 

integral vanishes, which gives 

 

 

1,
2/ 2 1/ 2 1 T ( 2) T

1 1 ( 2) 1 ( 2)1
1 ( 2)

T ( 2) 12
21 ( 2) T ( 2)

1 ( 2)
0 0 1 ( 2)

2 2 1
1 ( 1)

1
( ) (2 ) | | | | exp

2

21
2

(2 )!

p p
pp p

Z j p pj
p

kp pj
j kp p p

p
j k p

k j
p

z
f z y

y

j
z

kj y

y


    

    
 

    
 

   

 
 

 
    

 

  
         







Σ y Σ y

y σ
y σ

 




1, 1 2
2
1 ( 1) 1 ( 1) 1 ( 2)2 20

1 ( 2) 1 ( 1)

1 1
exp d d .

2 2

p p pp

p p p
p p

z
y y

y y

  

     
   

 
   

 
 y

 

It is known that the Mellin transform of exp( )h hx x     is 

1 1 /(2 ) 1/2 1/2
/0

exp( )d 2 ( / ) (2 ) ( 0, 0, 0)s h h s h
s hx x x x h K h       

          

(Erdélyi, 1954, Section 6.3, Equation 17, p. 313; Zwillinger, 2015, Section 3.478, Equation 

4). Using this formula when 1 ( 1)px y   , 2 2s k j  , 1, 1 2
1 ( 2)/ (2 )p p

py   
  , 2 / 2pp z   

and 2h   for the integral with respect to 1 ( 1)py   , we have 
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1,
2/ 2 1/2 1 T ( 2) T

1 1 ( 2) 1 ( 2)1
1 ( 2)

T ( 2) 12
21 ( 2) T ( 2)

1 ( 2)
0 0 1 ( 2)

2 2
1 ( 2)

1
( ) (2 ) | | | | exp

2

21
2

(2 )!

/

p p
pp p

Z j p pj
p

kp pj
j kp p p

p
j k p

pp
p

z
f z y

y

j
z

kj y

z y





    
    

 

    
 

   

 

 
    

 

  
         







Σ y Σ y

y σ
y σ

 




   ( ) /21, 1 1, 1 1/2
1 ( 2) 1 ( 2)( ) | | / | | d ,

k jp p p p pp
k j p pK z y  

   
    y

 

which is the required result. Q.E.D. 

An alternative expression comparable to that of Theorem 2 is obtained by the following 

corollary. 

Corollary 1. The pdf of 1 pY   in Theorems 1 and 2 is also given by 

 

 

1,
/ 2 1/2 1 T ( 2) T

1 ( 2) ( 2) ( 2)
1 ( 2)

T ( 2) 12
2( 2) T ( 2)

( 2)
0 0 1 ( 2)

( )/ 22 2 1, 1
1 ( 2)

1
( ) (2 ) | | | | exp

2

21
2

(2 )!

/

p p
p p

Z p p p
p

kp pj
j kp p p

p
j k p

k jpp p p
p

z
f z y

y

j
z

kj y

z y



 

   
   

 

   


   

 
 

 
    

 

  
         







Σ y Σ y

y σ
y σ

 1, 1 1/2
1 ( 2) ( 2)( ) | | / | | d .p p pp

k j p pK z y  
   y

 

Proof. For the result of Theorem 2, use the inverse variable transformation 

1 ( 2) ( 2)p p  y y  with the Jacobian 
3

11
| |

p

jj
y



 . Q.E.D. 

Note that in Corollary 1 the scalar variable 1 ( 2)py    is unchanged since it is the 

unchanged product 1 ( 2)py y   , while 1 ( 2)p y  becomes ( 2)py  due to the definition. 

Recall that Theorem 2 was obtained by fully using Lemma 1 or Theorem 1 whereas 

Corollary 1 is given by the partial transformation T T
( 2) 1 ( 1) 1( , , )p p py y   y y . 

 

Example 1 (the pdf). The known pdf using the modified Bessel function of the second 

kind of zero order i.e., 0 ( )K   (Wishart & Bartlett, 1932, Equation (12); Springer, 1979, 

Equation (4.8.22); Grishchuk, 1996, Equation (49); Simon, 2002, Equation (6.15); 

Nadarajah & Pogány, 2016, Theorem 2.1) is derived in two ways with or without using the 

cf when 11 22 1    and 21  . The first one uses the cf of 1 2Z Y Y  as derived 

earlier: 
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1

1/21 2 2

1 1/2 1/2

1/2 1/2

1 2 1/ 2

( ) (2 ) exp( i ) ( )d

(2 ) exp( i ) 1 2i (i ) (1 ) d

(2 ) exp( i ){1 i(1+ ) } {1 i(1 ) } d

1 1
(2 ) (1 ) exp( i ) d

i(1+ ) i(1 )

(

Z Zf z tz t t

tz t t t

tz t t t

tz t t t

 

  

  

 
 





 



  



 
 



 

    

    

   
          








1/2 1/2

1 2 1/ 2 i i
2 ) (1 ) exp{i( ) } d .

1+ 1
z t t t t 

 

 
 



   
         



 

In the above result, using Nadarajah and Pogány (2016, Lemma 3.1) i.e., 

01/2

exp(i )
d 2 exp | |

{( i )( i )} 2 2

(0 , 0 , ),

zt b a a b
t z K z

t a t b

a b z





             
         

  

whose didactic derivation is given in the appendix, when 1 / (1 )b    and 1 / (1 )a   , 

we obtain 

1/ 2 1/2

1 2 1/2

1 2 1/2
02 2

i i
( ) (2 ) (1 ) exp{i( ) } d

1+ 1

| |
(1 ) exp .

1 1

Zf z z t t t t

z z
K

 
 

 
 

 
 



 

   
          

   
         


 

Note that the Nadarajah-Pogány lemma is of use in that while the integrand is complex-

valued, the result is real-valued as expected since the latter corresponds to the pdf of the 

product. The method of Wishart and Bartlett (1932, (12)) to have the essentially the same 

pdf is to employ the variable transformation 2(i ) / (1 )z t     using our notation and 

the integration over the line from i   to i   , which reduces to the integral along 

the real line from   to  , whose explicit justification may be given by the Nadarajah-

Pogány lemma. 

The second method without using the cf to have the pdf is given by Result 2, which is 

easily obtained by the variable transformation from 2Y  to 1 2Z Y Y  and unchanged 1Y  

with the Jacobian 1
1| |y   as used by Grishchuk (1996): 
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1 T
1 2 1 1 1

2 2 2
1 1

12 1/2 20
1

2 2 2
1 1

12 1/2 2 20
1

2 2

2 1/2 2

( ) | | {( , / ) | , }d

( / ) 21
exp d

(1 ) | | 2(1 )

( / )1 1
exp exp d

(1 ) 1 | | 2(1 )

1 1 {
exp exp

(1 ) 1 | |

Zf z y y z y y

y z y z
y

y

y z yz
y

y

z u z

u




  


   


  

 









  
    

   
        

  
    







0 P

2 2 2

0

02 1/2 2 2

/ (1 ) }
d

2

1 | |
exp ,

(1 ) 1 1

u
u

z z
K




   

  
 
 

   
         



 

where 
1

1



   
 

P ; and 
2 2

0 20

1
( ) d (| arg( ) | / 4)

2 2

u z
K z u z

u u


  
    

 
  (see the 

appendix) is used. The last result is equal to that using the cf derived earlier as expected. 

Note that the integral representation in the second line of the last set of equations is as 

simple as that of the second last one, whose expression is an integral representation of 

0 ( )K  . Note also that though 0 ( )K   is a known function, for computation of 0 ( )K   some 

numerical methods e.g., numerical integration and series expressions are required. So, in 

this sense, the initial expression 

1 T
1 2 1 1 1( ) | | {( , / ) | , }dZf z y y z y y

 


  0 P  

is comparable to the last one. One of the advantages of the expression using 0 ( )K   is that 

we can use other representations for 0 ( )K  . 

Note that Springer (1979, Equation (4.8.22)) obtained the same pdf as above using the 

Mellin transform though the result includes an error as noted by Gaunt (2022, p. 452). 

However, the error seems to be a non-fatal one easily corrected by readers when obtained as 

above: the factor 2exp{ | | /(1 )}z   should be 2exp{ / (1 )}z  . Note also that Simon 

(2002, Equation (6.15)) obtained the pdf with an error in that the factor 2 1/21 / (1 )  was 

missing as found by Cui et al. (2016, p. 1664). 

 

Example 2 (the pdf). The pdf was obtained by Cui et al. (2016) using a two-fold 

infinite series with each term including ( )vK  . When T T
1 2 2 1 2( , ) N {( , ) , }Y Y  Y P , the 
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pdf of 1 2Z Y Y  using the same variable transformation as in Example 1, we have 

1 T
1 2 1 1 1 2 1

2 1/2
1

2 2
1 1 1 2 1 1 1 2

12

( ) | | [{ , ( / ) } | , ]d

1

2 (1 ) | |

( ) {( / ) } 2 ( ){( / ) }
exp d ,

2(1 )

Zf z y y z y y

y

y z y y z y
y

  

 

    


 







  




      
   





0 P

 

whose value may be obtained by numerical integration. 

 

Examples 3 (the pdf). The pdf of 1 3Z Y   is given by Theorem 1 or Corollary 1 when 

p = 3 with the same expression due to 1 ( 2) 1 1 1py y y    : 

1 T T
1 ( 1) ( 1) 1 ( 1) ( 1)

1,
/2 1/2 1 T ( 2) T

1 ( 2) ( 2) ( 2)
1 ( 2)

T ( 2) 12
( 2)

(
0 1 ( 2)

( ) | | {( , / ) | , }d

1
(2 ) | | | | exp

2

21
2

(2 )!

Z p p p p p

p p
p p

p p p
p

kp pj
p

k p

f z y z y

z
y

y

j

kj y





 
     

   
   

 

 


  



 
    

 

  
       







y 0 Σ y

Σ y Σ y

y σ
y 

   

2T ( 2)
2)

0

( )/22 2 1, 1 1, 1 1/2
1 ( 2) 1 ( 2) ( 2)

23
1/2 3/2 1/2 1 2 11

1 1
1

2
12 13 2

1
0 0

33 2

/ ( ) | | / | | d

1
2 | | | | exp

2

21
( ) ( )

(2 )!

j kp p
p

j

k jpp p p p p pp
p k j p p

j
k j k

j k

z

z y K z y

z
y y

y

j
y z

kj

z

   

 

 



 




   
     

   






 



 
   

 
 

   
 









σ

y

Σ

   ( )/22 22 22 33 1/2
1 1 1/ ( ) | | / | | d .

k j

k jy K z y y  




 

Expanding the exponential, we have 

 

2
1/2 3/2 1/2

0 0 0 0

12 13 2 33 2 22 ( )/2 23 11

1 2 2 ( 2 )/2 22 33 1/2
1 1 1 1 1

21
( ) 2 | |

(2 )! ! !

( ) ( ) ( / ) ( ) ( / 2)

| | ( ) ( ) | | / | | d .

j

Z
j k l m

k j k k j l m

j k l k j m
k j

j
f z

kj l m

z z z

y y y K z y y



     

 

  
  

   

 

     


 
  

 
    







Σ

 

Noting that the integrand of the last integral is an odd function when k l  is odd, it 

follows that 
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2
1/2 3/2 1/2

0 0 0 0

12 13 2 33 22 ( )/2 23 11

2 1 22 33 1/2
1 1 10

even

21
( ) 2 | |

(2 )! ! !

( ) ( ) ( / ) ( ) ( / 2) | |

{ : } ( ) | | / d ,

j

Z
j k l m

k j k k j l m k l k j

j m l
k j

j
f z

kj l m

z z

k l y K z y y



     

 

  
 

   

    

   


 
  

 
    

 





Σ

1

 

where {}1  is the indicator function. 

 

Examples 4 (the pdf). Using the cf for Example 4 derived earlier, the pdf of 1 3Z Y   

at z is given by the inversion formula: 

 

   

1

1/21 1/2 2 2 2 2
32 1 32 1 1 1

( ) (2 ) exp i ( )d

(2 ) exp i (2 ) 1 2i (i ) (1 ) exp( / 2)d d ,

Z Zf z tz t t

tz t x t x x x t

 

   





   

 

 

     


 

 

where the factor   1/22 2 2
32 1 32 11 2i (i ) (1 )t x t x 


    is equal to that of Example 1 when 

32  and 1tx  are replaced by   and t, respectively with 11 22 33 1     . 

Nadarajah and Pogány (2016, Theorem 2.1) gave the following associated formula for 

the pdf of 1 2Y   at z in Example 1 using the cf: 

  
1 2

1/21 2 2

2 1 2 2
0

( ) (2 ) exp i 1 2i (i ) (1 ) d

{ (1 )} exp{ / (1 )} {| | /(1 )},

Yf z uz u u u

z K z

  

    


 





    

   

  

where 0{ }K   is the modified Bessel function of the second kind of zero order (see e.g., 

DLMF, 2023, https://dlmf.nist.gov/10.25) (the right-hand side of the above equation was 

independently derived by Grishchuk, 1996, Equation (49) without using the cf). Employ the 

variable transformation 1u tx  with 1d / d 1 /t u x . Then, we obtain the pdf of 1 3Z Y   

at z: 

  

  

1/21/2 1 2 2 2
1 1 32 1 32 1

2
1 1

1/21/2 1 2 2 1
1 32 32 1

2
1 1

( ) (2 ) (2 ) exp / 1 2i (i ) (1 )

d exp( / 2)d

(2 ) (2 ) exp / 1 2i (i ) (1 ) | |

d exp( / 2)d

Zf z tx z x t x t x

t x x

uz x u u x

u x x
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1/2 232
0 1 12 2 2

1 32 32 1 32 1

32 32
0 1 12 2 2 20

1 32 32 1 32 1 32 1

1 | |
(2 ) exp exp( / 2)d

| | (1 ) (1 ) (1 ) | |

1 | |
exp exp ( )d ,

(1 ) (1 ) (1 ) (1 )

z z
K x x

x x x

z z z
K x x

x x x x


   

  
    







   
         

      
                




 

where 1/2 2
1 1 1 1( ) ( | 0,1) (2 ) exp( / 2)x x x      . Since 1x  in 1/z x  is seen as a scale 

parameter when 10 x    is given, the above result is a scale mixture of the Bessel 

function with an associated factor using the standard normal density. 

 

4. Discussions 

(a) Integral representation: As reviewed in Section 1, Nadarajah and Pogány (2016) 

stated that they solved “a problem that has remained unsolved since 1936” i.e., a closed-

form pdf of Example 2. However, the closed-form pdf was derived as early as in 1929 by 

Pearson et al. Cui et al. (2016) obtained the pdf of the bivariate case with non-zero means 

i.e., the pdf of Example 2 using an infinite series. Note that these results are for bivariate 

normal variables. 

In Results 1 and 2 of this paper, the cf and pdf of the product of more-than-two 

correlated normal variables are given by integral representations. Though the results are 

obtained by elementary integration, they are solutions to the problems of the cf’s and pdf’s 

of the products of more-than-two normal variables since the pdf’s of the above known cases 

using the Bessel functions require integral or series expressions for actual computations as 

mentioned earlier (for the computational aspects and implementation of the pdf’ of product 

distributions, see Glen, Leemis & Drew, 2004). However, if the cf’s and pdf’s for the more-

than-2 cases can be expressed by some known or new functions having e.g., the 

corresponding differential equations, they are useful and insightful. This is an open 

problem. 

(b) The McKay Bessel distribution: McKay (1932, Equations (1) and (2)) obtained the 

Bessel function distribution, whose pdf is 

2 (1/2)

1/2 1

|1 | exp( / ) | |
( ) (| | / ) ( 0, 1 / 2, | | 1)

2 { (1 / 2)}

v v

Z vv v

c cz b z
f z K z b b v c

b v





 
    

 
. 

When | | 1c  , the factor (| | / )vK z b  should be replaced by (| | / )vI z b , where ( )vI   is 
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the modified Bessel function of the first kind of order v (McKay, 1932, Equation (1); 

Erdélyi, 1953, Section 7.2.2; DLMF, 2023, https://dlmf.nist.gov/10.25.E2). As McKay 

(1932, p. 43) pointed out, it is easily found that the pdf of Example 1 is obtained as a special 

case of the Bessel distribution when c    and v = 0 (for this equivalence using the cf 

see also Wishart & Bartlett, 1932, p. 459). Due to the property of generality, the McKay 

Bessel distribution has been investigated and extended (for historical works and recent 

researches, see Thabane & Drekic, 2003; Jankov Maširević & Pogány, 2021 and the 

references therein; Saieed & Altalib, 2023). 

(c) The sum or mean of n independent products: In practice, we encounter more than 

single independent products. Suppose that ( 1,..., )iZ i n  are independent copies of a 

random product Z used earlier. Define 1 ... nZ Z Z     and / ( 1, 2,...)Z Z n n  . 

Then, from general properties of a cf, the cf’s of the sum and mean become 

1
( ) E{exp(i )} E{exp(i )}=[E{exp(i )}]

n n
Z ii

t tZ tZ tZ
  

   and 

( ) E{exp(i / )} ( / ) [E{exp(i / )}]n
ZZ t tZ n t n tZ n 
   , 

respectively. For instance, the cf’s with n independent products of Example 1 are 

  /22
11 21 11 22( ) 1 2i (i )

n

Z t t t    


       and 

  /21 1 2
11 21 11 22( ) 1 2i (i )

n

Z t tn tn    
        , 

respectively. The pdf’s using the cf’s with the inversion theorem are formally given by 

1( ) (2 ) exp( i ){ ( )} dn
Z Zf z tz t t 





   and 

1( ) (2 ) exp( i ){ ( / )} dn
ZZf z tz t n t 




  , 

respectively. Nadarajah and Pogány (2016, Theorem 2.2) gave the pdf of Z  for Example 1 

using the cf and their lemma (see the appendix): 

( 1) /2 (1 )/2 ( 1)/2

( 1)/22 1/2 2 2

2 | | | |
( ) exp

( / 2){ (1 )} 1 1

n n n

nZ

n z n z n z
f z K

n


   

  



   
          

 

with their expression (1 )/ 2 ( )nK    replaced by an algebraically equal one ( 1)/ 2 ( )nK    (see 

Gaunt, 2022, Equation (2)). The pdf of Z nZ   is given by the above density with the 



21 

 

Jacobian 1d / dz z n
   as 

( 1) /2 (1 )/2 1 ( 1)/2
1

( 1)/22 1/2 2 2

(1 )/2 ( 1)/2

( 1)/22 1/2 2 2

2 | | | |
( ) exp

( / 2){ (1 )} 1 1

2 | | | |
exp .

( / 2){ (1 )} 1 1

n n n

Z n

n n

n

n n z z z
f z n K

n

z z z
K

n


   


   



   




 



   
          

   
          

 

Note that an essentially the same result as the above pdf of the Z  was obtained by 

Wishart and Bartlett (1932, Equation (12)). 

(d) The joint pdf of T
1 1 1 2 1( , , ..., )pY Y Y   Y . In practice, data are more or less non-

normally distributed especially in the behavioral and social sciences. Though so far we have 

been assuming multivariate normality for T
1( ,..., )pY YY , it is found that the pleasantly 

simple result of Lemma 1 for the pdf of Y  holds under arbitrary distributions as long as 

the distribution of Y  is defined since the Jacobian 
1 1

11
( ) | |

p

jj
J y

 
 

 y y  does not 

depend on normality. Then, it can be shown that the result of Theorem 1 for the pdf of 

1 pZ Y   holds under e.g., elliptical symmetry (see Ogasawara, 2022a) including 

multivariate normality as a special case: 

Theorem 3. Suppose that T
1( ,..., )pY YY  follows the elliptical distribution with the 

joint pdf 
* 1/ 2 T 1( ) | | ( )pf K g Y y Λ y Λ y , 

where *
pK  is the normalizing constant; ( )g   is a non-negative scalar function; and Λ  is 

a non-singular scale matrix. Then, the pdf of 1 pZ Y   when 1 1p p Y y  is 

   1* 1 T 1 T T
1 1 ( 1) 1 ( 1) 1 ( 1) 1 ( 1) 1 ( 1)1

( ) | | ( , / ) ( , / ) d
p

Z p j p p p p pj
f z K y g z y z y

   
          

  y Λ y y  . 

where 1 ( 1)p y  was defined before Theorem 2. 

 

Appendix 

A1. An introduction of the modified Bessel function of the second kind 

For beginning students or researchers in applied statistics, the Bessel function may not 

be familiar. So, some introductory explanation associated with this article is given in this 
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appendix. The Bessel functions are defined as solutions of the differential equation 

(Bessel’s equation): 

2
2 2 2

2

d d
( ) 0

d d

w w
z z z v w

z z
    , 

for a complex variable z and a complex parameter v (Abramowitz & Stegun, 1972, Section 

9.1.1; DLMF, 2023, https://dlmf.nist.gov/10.2.E1). The modified Bessel function or the 

Bessel function of imaginary argument is defined by the solutions when z in Bessel’s 

equation is replaced by iz : 

2
2 2 2

2

d d
( ) 0

d d

w w
z z z v w

z z
    , 

(Abramowitz & Stegun, 1972, Section 9.6.1; DLMF, 2023, https://dlmf.nist.gov/10.25.E1), 

which is given as follows. Let *z iz . Then, * *

d d d d
i

d d d d

w w z w

z z z z
   yielding 

1
*

d d
i

d d

w w

z z
 . Similarly, we have 

2 2
2

*2 * * * 2

d d d d d d d
i i

d d d d d d d

w w w z w

z z z z z z z
    
 

, which gives 

2 2
2

2 *2

d d
i

d d

w w

z z
 . Substituting *z iz , 1

*

d d
i

d d

w w

z z
  and 

2 2
2

2 *2

d d
i

d d

w w

z z
  for the original 

Bessel function and re-expressing *z  as z , the modified Bessel function follows. 

The modified Bessel function of the second kind of order v denoted by ( )vK z  is given 

when using e.g., an integral representation: 

2

10

( / 2) 1
( ) exp d (| arg( ) | / 4)

2 4

v

v v

z z
K z t t z

t t






 
    

 
  

(Watson, 1944, Section 6.22, Equation (15); Zwillinger, 2015, Section 3.471-Equation 12, 

Section 8.432-Equation 6; DLMF, 2023, https://dlmf.nist.gov/10.32.E10), which is also 

given using 2 / 2 (0 )t u u     as 

2 2

2 2 10

2 2

2 2 10

( / 2) 1 d
( ) exp d

2 2 2 ( / 2) d

1
exp d .

2 2

v

v v

v
v

z u z t
K z u

u u u

u z
z u

u u









 
   

 
 

   
 




 

When v = 0, we have the modified Bessel function of zero order, whose integral expressions 
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of use in statistics are 

2 2 2

0 20 0

1 1 1
( ) exp d exp d ( | arg( ) | / 4)

2 4 2 2

z u z
K z t t u z

t t u u


    
         

   
   and 

0 2 1/20

cos( )
( ) d (0 )

( 1)

xt
K x t x

t


   

 , 

where for 0 ( ) (0 )K x x    see Watson (1944, Section 6.22, Equation (14)), Abramowitz 

& Stegun (1972, Section 9.6.21), Zwillinger (2015, Section 3.754, Equation 2) and DLMF 

(2023, https://dlmf.nist.gov/10.32.E6). 

 

A2. The Nadarajah-Pogány lemma 

Another property for 0 ( )K z  useful in our problems is given by Nadarajah and Pogány 

(2016, Lemma 3.1): 

01/2

exp(i )
d 2 exp | |

{( i )( i )} 2 2

(0 , 0 , ).

zt b a a b
t z K z

t a t b

a b z





             
         

  

Their derivation is didactically repeated here. Define i{( ) / 2}t y a b   . Then, we obtain 

 

1/2

i{( )/2}

1/2i{( )/2}

exp(i )
d

{( i )( i )}

exp{i (1 / 2)( ) }
d

{ (1 / 2)i( ) i }{ (1 / 2)i( ) i }

a b

a b

zt
t

t a t b

zy a b z
y

y a b a y a b b





 

 

 
 


     




 

 

 

i{( )/2}

1/2i{( )/2}

1/2

exp(i )
exp d

2 { (1 / 2)i( )}{ (1 / 2)i( )}

exp(i )
exp d ,

2 { (1 / 2)i( )}{ (1 / 2)i( )}

a b

a b

b a zy
z y

y a b y a b

b a zt
z t

t a b t a b

 

 





   
     

   
     




 

where the last integral with the real variable from the second last integral is given by applying 

Cauchy’s theorem (e.g., Davies, 2002, Section 1.2) to an associated contour integral. Then, 

we have 
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1/2

2 2 1/2

2 2 1/2

2 2 1/20

exp(i )
d

{( i )( i )}

exp(i )
exp d

2 [{ (1 / 4)( ) }]

cos( ) i sin( )
exp d

2 [{ (1 / 4)( ) }]

cos( )
2 exp d

2 [{ (1 / 4)( ) }]

zt
t

t a t b

b a zt
z t

t a b

b a zt zt
z t

t a b

b a zt
z t

t a b















 

      
       
      









 

2 1/20

2 1/20

0

cos{ ( ) / 2} d
2 exp d

2 ( 1) ( ) / 2 d

cos{ ( ) / 2}
2 exp d

2 ( 1)

2 exp {( ) | | /2},
2

b a u a b z t
z u

u a b u

b a u a b z
z u

u

b a
z K a b z





       
      
   

 



  

where Euler’s formula exp(i ) cos i sin ( )u u u u       and the integral expression 

of 2 1/2
0 0
( ) cos( )( 1) d (0 )K x xu u u x

       shown earlier with the variable 

transformation ( ) / 2t u a b   are used. 
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