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Abstract: For communality estimation in factor analysis, a method called anti-ridge (AR) 

regression using a negative ridge parameter is presented to improve the squared multiple 

correlation coefficient (SMC) for a lower bound of the communality. It is shown that the 

optimal improved SMC called the ARSMC is given when the anti-ridge parameter (the 

absolute value of the negative ridge parameter) is the smallest uniqueness in a correlation 

matrix. When the one-factor model holds, a method to have the smallest uniqueness is 

provided, which gives the exact communalities. For the multi-factor model, a communality 

estimator using the Moore-Penrose generalized inverse in the ARSMC is provided. 

 

Keywords: ridge parameter, uniqueness, correlation matrix, positive semidefinite, Moore-

Penrose generalized inverse. 
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1. Introduction 

Let T Σ ΛΛ Ψ  be a covariance matrix for a p-dimensional random vector X 

following the exploratory factor analysis (EFA) model with ( )k p  common factors, where 

T
1( ,... )pΛ λ λ  with T

1( ,..., ) ( 1, ..., )i i ik i p  λ ; and Ψ  is the positive definite (p.d.) 

p p  diagonal matrix with the diagonal elements ( 1,..., )i i p  , which is denoted by 

1diag( ,..., )p  Ψ O  in Löwner’s sense. Suppose that ( 1,..., )i i pλ  are not zero 

vectors. Then, we have Σ Ψ  or  Σ Ψ O , which indicates that Σ Ψ  is positive 

semidefinite (p.s.d). Let 2 T ( 1,..., )i i ih i p λ λ  be communalities typically defined when 

1 ( 1,..., )ii i p    with { }( , 1,..., )ij i j p Σ . In the following 1ii   is assumed 

unless otherwise stated. Define ( )iΛ  as the ( 1)p k   matrix removing the i-th row in Λ . 

Similarly, the ( 1) ( 1)p p    diagonal matrix ( )iΨ  is defined with 

T
( ) ( ) ( ) ( ) ( 1,..., )i i i i i p      Σ Λ Λ Ψ O .  

It has been known that the squared multiple correlation coefficient (SMC) of the i-th 

variable of X in multiple regression on the remaining 1p   variables denoted by SMCi  is a 

lower bound of 2
ih  (Roff, 1936, Corollary) i.e., 2 T 1

( ) ( ) ( )SMCi i i i ih 
    σ Σ σ , where 

T
( ) 1 , 1 , 1( ,... , ,..., )i i i i i i ip     σ ( 1,..., )i p . When k common factors consist of major 1k  

and relatively minor 2k  ones with 1 2k k k  , we have the minimum trace factor analysis 

(MTFA; Bentler, 1972; ten Berge, Snijders & Zegers, 1981) and minimum-rank FA 

(MRFA; ten Berge & Kiers,1991; Shapiro & ten Berge, 2002) giving largest communalities 

in some similar senses with 2
ih  defined for k common factors. These results are seen as 

exact expressions of 2
ih .  However, generally they require iterative computations as in low 

rank FA or semidefinite optimization (Bertsimas, Copenhaver & Mazumder, 2017; 

Bertsimas, Cory-Wright & Pauphilet, 2023; Tunçel, Vavasis & Xu, 2023). 

Non-iterative methods by Gibson (1963), Ihara and Kano (1986) and Kano (1989, 1990) 

gave exact 2
ih  when there are two off-diagonal submatrices of rank k satisfying Anderson 

and Rubin’s condition (1956, Theorem 5.1) under correct model specification. Yanai and 
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Ichikawa (1990) gave an improved lower bound for 2
ih  based on the eigenvalues of Σ . 

However, they admitted the difficulty of using their result when there are more-than-one 

common factors. Ramsey and Gibson (2006) provided modifications of the Ihara-Kano 

method. 

The purpose of this paper is to propose a method of estimating 2
ih in EFA. The 

remainder of this paper is organized as follows. Section 2 gives theoretical considerations 

for lower bounds based on a modified SMC using a negative ridge parameter, which is 

called anti-ridge regression. In Section 3, a method of deriving the exact communalities in 

the one-factor model is provided while in Section 4, a method of communality estimation in 

the multi-factor model is shown. Section 5 gives numerical illustrations of the one- and 

multi-factor models. In Section 6, some discussions are given. 

 

2. Lower bounds for the communality 

As mentioned earlier, SMCi  gives a lower bound of 2
ih , whose derivation is shown to 

have an extension later. Note that ( ) ( )i i i σ Λ λ . Then, using the Guttman (1946, Equation 

(13)) formula (often called the Woodbury formula due to the rediscovery by Max A. 

Woodbury in 1950), we have 

 

2 T T 1 T T 1
( ) ( ) ( ) ( ) ( ) ( )

T T 1 1 T 1 1 T 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T 1 T 1 T
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

SMC ( )

( )

(

i i i i i i i i k i i i i

i k i i i i i i i k i i i i

i k i i i i i i i i

h  
     

    
         

 
       

    

     

  

λ λ σ Σ σ λ I Λ Σ Λ λ

λ I Λ Ψ Ψ Λ Λ Ψ Λ I Λ Ψ Λ λ

λ I Λ Ψ Λ Λ Ψ Λ Λ Ψ 1 1 T 1
( ) ( ) ( ) ( )) ,i k i i i i

  
   Λ I Λ Ψ Λ λ

 

where kI  is the k k  identity matrix. In the above expression, take the spectral 

decomposition 

T 1 T
( ) ( ) ( ) 1diag( ,..., )i i i i i ik i 
   Λ Ψ Λ Γ Γ  with T T

i i i i k Γ Γ Γ Γ I  and 1 0i ik    . 

Then, we obtain 

2 2
2 T T1

1
1

T T

1

SMC diag( ,..., ) diag ,...,
1 1

1 1
diag ,..., 0 ( 1,..., ),

1 1

i ik
i i i i k i ik i i

i ik

i i i i
i ik

h

i p

 
 

 

 

            
 

     

λ Γ I Γ λ

λ Γ Γ λ
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which are the required inequalities. 

Consider the re-expression of the communalities in the following way: 

2 T T T T
( ) ( ) ( ) ( )( ) ( 1,..., )i i i i i i i i ih i p
     λ λ λ Λ Λ Λ Λ λ , 

where A  is the generic expression for a generalized (g-) inverse of  A  satisfying 

 A A A A . The above equation is derived by the definition 

T T T
( ) ( ) ( ) ( ) ( ) ( )( )i i i i i i


     Λ Λ Λ Λ Λ Λ  T

( ) ( )i i  Λ Λ  and pre- and post-multiplying the both sides 

of the equation by T 1 T
( ) ( ) ( ) ( )( )i i i i
 
   Λ Λ Λ Λ  and T T

( ) ( )( )i i
 
 Λ Λ , respectively, yielding 

T T
( ) ( ) ( ) ( )( )i i i i k


    Λ Λ Λ Λ I . Note that T 1 T

( ) ( ) ( )( )i i i


  Λ Λ Λ  is known as the left-inverse of 

( )iΛ  of full column rank (Browne, 1974/1977, Equation (7)), which is also the Moore-

Penrose g-inverse of ( )iΛ  denoted by ( )i

Λ  (see e.g., Yanai, 1990) with 

T + T
( ) ( )( ) ( )i i


 Λ Λ  in this case. Then, we have 

2 T T 1 T T 1
( ) ( ) ( ) ( ) ( ) ( )

T T T T 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

SMC ( )

{( ) ( ) } .

i i i i i i i i k i i i i

i i i i i i i i i

h  
     

 
      

    

  

λ λ σ Σ σ λ I Λ Σ Λ λ

λ Λ Λ Λ Λ Λ Ψ Λ λ
 

An improved lower bound for 2
ih  may be obtained when we can find a matrix iA  from 

( )iΣ  satisfying 

T T T T T 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )k i i i i i i i i i i i i

 
              I Λ Λ Λ Λ Λ A Λ Λ Λ Λ Ψ Λ O , 

which gives 2 T T 2
( ) ( ) A SMCi i i i i i i ih h   λ Λ A Λ λ . Note that T

( ) ( )( )i i


 Λ Λ  of rank k is 

positive semidefinite (p.s.d.), whose convenient special case is 

T T 2 T
( ) ( ) ( ) ( ) ( ) ( )( ) ( )i i i i i i

 
     Λ Λ Λ Λ Λ Λ . 

In order to have iA  with T
( ) ( )i i i Λ A Λ  hopefully close to kI , consider the 

decomposition 

T
( ) ( ) ( ) ( ) S( ) P( )i i i i i i        Σ Λ Λ Ψ Σ D , 

where S( )iΣ  is a p.s.d. matrix of rank 2p   or smaller; and P( ) ( ) 1 1i i p p   D I  is the 

positive definite (p.d.) diagonal matrix whose common diagonal element ( ) 1i p    is the 
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smallest eigenvalue of ( )iΣ  with multiplicity ( )im  . The positive eigenvalues of S( )iΣ  of 

rank ( ) 1ip m    are 
( )( )1 ( ) 1 ( ) 1 ( ) 1 0

ii i p i p m i p   
             with similar 

definitions of ( ) ( 1,..., 2)i k k p    . When P( )iD  is relaxed to be a p.s.d. diagonal matrix 

with a single positive diagonal element given by the corresponding 1 SMC  from 

regression on the 2p   remaining variables, 1p   cases of S( )iΣ  are similarly obtained, 

as was discussed by Guttman (1958, p. 300). 

An intriguing candidate is given from S( )iΣ  as S( )i i

A Σ  when P( ) ( ) 1 1i i p p   D I  

i.e., S( ) ( ) P( ) ( ) ( ) 1 1( ) ( )i i i i i p p  
         Σ Σ D Σ I . In the special case of 

T
( ) 1 1 1(1 )i p p pa a     Σ 1 1 I  ( 0 1a  ) with compound symmetry or mutually 

exchangeable 1p   variables with respect to the covariance matrix, and T
1 (1,...,1)p 1  

( 1p   times of 1), there are two distinct eigenvalues i.e., the single largest 

( )1 ( 1) 1i p a a       and ( )2 ( ) 1 1i i p a        with ( ) 2im p   . In this case, 

using P( ) 1(1 )i pa  D I , we exactly obtain T T
S( ) 1 1 ( ) ( )i p p i ia     Σ 1 1 Λ Λ . On the other 

hand, the method using the diagonal matrix with a single positive diagonal element of the 

associated 1 SMCi  does not restore T
S( ) ( ) ( )i i i  Σ Λ Λ  in this case. 

However, generally the diagonal elements of ( )iΨ  are not the same, which does not 

satisfy a necessary condition for an improved lower bound 

T T T 1
( ) ( ) ( ) ( ) ( ) ( ) ( )( )i i i i i i i i


       Λ A Λ Λ Λ Λ Ψ Λ  

when ( ) ( ) 1 1( )i i i p p 
    A Σ I . This is found from the following theorem. 

Theorem 1 (Milliken & Akdeniz, 1977, Theorem 3.1). Let ,A B  and A B  be 

p p  p.s.d. matrices. Then, a necessary and sufficient condition for  B A  to be p.s.d. 

or equivalently   B A O  is that rank( ) rank( )A B . 

Note that the rank of ( ) ( ) 1 1i i p p   Σ I  in ( ) ( ) 1 1( )i i i p p 
    A Σ I  is less than or 

equal to 2p   as addressed earlier while that of T
( ) ( ) ( ) ( )i i i i    Σ Λ Λ Ψ  is 1p   by 

assumption, which does not satisfy the condition of the Milliken-Akdeniz (M-K) theorem. 
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Consequently, ( ) ( ) 1 1( )i i i p p 
    A Σ I  does not satisfy the condition for an improved 

lower bound over SMCi  though it can give a reasonable estimator of 2
ih . The M-K 

theorem for the Löwner ordering   B A O  has been well known in linear algebra (see 

Neudecker, 1989; Baksalary, Nordström & Styan, 1990; Wang & Dai, 2010). In 

psychometrics, however, to the author’s knowledge the M-K theorem has not been used in 

the literature. 

An alternative candidate of iA  with the same rank as that of 1
( )i

Σ  or ( )iΣ  satisfying 

the condition 1
( ) ( )i i i
 
  A Σ Σ  is easily found as 1

( ) ( ) 1( )i i i p 
   A Σ I , when 

( ) ( ) 10 i i p     . Recall the other condition for an improved lower bound  

T T T T T
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )k i i i i i i i i i i i

 
           I Λ Λ Λ Λ Λ Λ Λ Λ Λ A Λ . 

Whether 1
( ) ( ) 1( )i i i p 
   A Σ I  satisfies the above condition depends on the choice of 

( )i   among ( ) ( ) 10 i i p     . We have the following result: 

Theorem 2 (Anti-ridge regression for lower bounds of the communalities). Define 

1
( ) ( ) 1( )i i i p 
   A Σ I , when ( )i   with ( ) ( ) 10 i i p      is sufficiently close to 0, we 

have an improved lower bound T
( ) ( )i i i σ A σ  of the communality over SMCi  as 

2 T T T 1
( ) ( ) ( ) ( ) ( ) SMC ( 1,..., )i i i i i i i i i ih i p
        λ λ σ A σ σ Σ σ . 

Proof. When ( )i   is sufficiently close to 0, by continuity 1
( ) ( ) 1( )i i i p 
   A Σ I  

satisfies the condition T
( ) ( )k i i i I Λ A Λ . The remaining condition 

T T T 1
( ) ( ) ( ) ( ) ( ) ( ) ( )( )i i i i i i i i


       Λ A Λ Λ Λ Λ Ψ Λ  can be shown to be satisfied by the M-K 

theorem. Q.E.D. 

Remark 1. Note that T 1
( ) ( ) ( )SMCi i i i


   σ Σ σ  is given by usual multiple regression. 

When using ridge regression, the SMCi  counterpart (ridge SMCi ) becomes e.g.,  

T 1
( ) ( ) 1 ( )( )i i p i 
   σ Σ I σ  or T 1 1

( ) ( ) 1 ( ) ( ) 1 ( )( ) ( )i i p i i p i  
       σ Σ I Σ Σ I σ , where the 

ridge parameter   is a positive constant. The ridge SMCi  is majorized by SMCi  and is a 
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poorer lower bound than SMCi . From the form of T 1
( ) ( ) 1 ( )( )i i p i 
   σ Σ I σ  for the 

improved lower bound, the term “anti-ridge (AR) regression” is used with a positive “anti-

ridge parameter”   and the notation T 1
( ) ( ) 1 ( )ARSMC ( ) ( )i i i p i  
    σ Σ I σ . 

Theorem 2 is given for theoretical purposes since when ( )i   is sufficiently close to 0, 

the amount of improvement as a lower bound of the communality is small. On the other 

hand, when ( )i   in ( ) ( ) 10 i i p      is close to ( ) 1i p   , while the condition 

T T 1
( ) ( ) ( ) ( ) ( )i i i i i i


    Λ A Λ Λ Σ Λ  is satisfied, T

( ) ( )k i i i I Λ A Λ  may not always  be satisfied. 

For this property, the following theorem is provided. 

Theorem 3 (Beckenbach & Bellman, 1965, Chapter 2, Section 26, Theorem 19, 

Equation (3)). Let ( )i A  be the i-th largest eigenvalue of the p p  matrix ( 1,..., )i pA . 

Suppose that A  is symmetric and the p p  matrix B  is p.s.d. Then, ( ) ( )i i  A B A

( 1,..., )i p . 

When ( )iA Ψ  and T
( ) ( )i i B Λ Λ  in the Beckenbach-Bellman (B-B) inequality, the 

smallest eigenvalue  1 1 ( ) 1 ( )( ) ( ) ( ) min{ | 1,..., , }p p i p i j j p j i            A B Σ Ψ . 

That is, the smallest eigenvalue ( ) 1 1 ( )( ( ))i p p i     Σ  of  ( )iΣ  is larger than or equal to 

the smallest value of ( 1,..., , )j j p j i   . Consequently, when the strict inequality 

1 ( ) 1 ( )( ) ( )p i p i    Σ Ψ  holds and ( )i   in 1
( ) ( ) 1( )i i i p 
   A Σ I  with 

( ) ( ) 10 i i p      is close to ( ) 1i p   , at least a diagonal element of ( ) ( )i i p Ψ I  in 

1 T
( ) ( ) ( ) 1 ( ) ( ) ( ) ( )i i i p i i i i p 
           A Σ I Λ Λ Ψ I  

becomes negative. Note that the B-B inequality was used in the communality problem for 

Σ  rather than ( )iΣ  by Yanai and Ichikawa (1990, Theorem 1). 

Let ( )
( ) ( ) ( )i i i p
    Ψ Ψ I  for simplicity of notation. When ( )i   is close to ( ) 1i p   , and 

when no diagonal element of ( )
( )i

Ψ  is zero, consider the spectral decomposition 

T ( ) 1 ( ) ( ) ( ) ( )T ( ) ( )T ( )T ( )
( ) ( ) ( )) 1

( ) ( )
1

diag( ,..., ) ,

( ; 1,..., )

i i i i i ik i i i i i k

i ik i p

        

 

 

 


    

  

Λ Ψ Λ Γ Γ Γ Γ Γ Γ I
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corresponding to that of T 1
( ) ( ) ( )i i i


 Λ Ψ Λ  given earlier. Since at least a diagonal element of 

( )
( )i

Ψ  is negative, the smallest eigenvalue ( )

ik
  among ( ) ( )

1 ,...,i ik
    can be negative. Then, 

as before 

2 T 1
( ) ( ) 1

( )2 ( )2
T ( ) ( ) ( ) ( )T1

1 ( ) ( )
1 1

T ( ) ( )T
( ) ( )
1

( )

diag( ,..., ) diag ,...,
1 1

1 1
diag ,..., ( 1,..., ).

1 1

i i i i p i

i ik
i i k i ik i i

i i

i i i i
i ik

h

i p

 
   

 

 
 



  
 

 


   

           
 

    

σ Σ I σ

λ Γ I Γ λ

λ Γ Γ λ

 

In the above result, when ( ) 1ik
   , which can happen, 2 T 1

( ) ( ) 1( ) 0i i i i p ih  
    σ Σ I σ  

is not always satisfied, which shows that when ( )i   is close to ( ) 1i p   , T
i i iσ A σ  

T 1
( ) ( ) 1( )i i i p i 
   σ Σ I σ  cannot be a lower bound of the communality. 

Theorem 4 (the largest anti-ridge parameter for a lower bound). When

1 ( ) ( ) 1( )p i i p    Ψ , the largest ( )i   among ( ) ( ) 10 i i p      to be a lower bound is 

( ) 1 ( )( )i p i    Ψ . When  1 ( ) ( ) 1( )p i i p    Ψ , this value is the supremum of the lower 

bound. 

Proof. When 1 ( ) ( ) 1( )p i i p    Ψ , ( ) ( ) 1 ( ) 1 ( )( )i i p i p i        Σ I Σ Ψ  is p.d. since  

( ) 1 1 ( ) 1 ( )( ) ( )i p p i p i        Σ Ψ  though ( ) ( ) 1 ( ) 1 ( ) 1( )i i p i p i p         Ψ I Ψ Ψ I  is 

p.s.d. or singular. When 1 ( ) ( ) 1 ( )( )p i i p i       Ψ , this value cannot be used as a lower 

bound since ( ) ( ) 1i i p  Σ I  becomes singular. However, ( ) ( ) 0 1( )i i p    Σ I  with 0  

being arbitrarily small positive constant is p.d. and can be used as a lower bound. Q.E.D. 

Of course, in practice, it is not easy to obtain 1 ( )( )p i  Ψ , since ( )iΨ  is unknown. 

  

3. A method of deriving the communalities in the one-factor model 

To find 1 ( )( )p i  Ψ , when the one-factor model with ( )iΛ  being a column vector 

holds, we can use a property of 

1 T T (S) (S)
( ) ( ) ( ) 1 ( ) 1 ( ) ( ) ( ) ( )( )i i i i p i p i i i i
              A Λ Λ Ψ Ψ I Λ Λ Ψ Σ  
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with (S)
( ) ( ) 1 ( ) 1( )i i p i p     Ψ Ψ Ψ I  being singular. Suppose that when 1 ( )( )p i  Ψ  is given 

by the j-th original variable(s) ( )j i  among the 1p   variables yielding (S)
( )iΣ . Then, 

when the j-th original variable is partialed out in the covariance matrix (S)
( )iΣ , the residual 

covariance matrix of (S)
( )iΣ  for the remaining 2p   variables  become diagonal, since the j-

th original variable has no uniqueness in (S)
( )iΣ  and becomes a scaled single common factor. 

When the eigenvalue 1 ( )( )p i  Ψ  has more-than-one multiplicity i.e., ( ) 1im   , the residual 

covariance matrix for the remaining ( )1 ip m   variables becomes diagonal. 

When the one-factor model holds, the above finding gives the following results. Define 

the submatrices of 
T

( )11 ( )12
( )

( )21 ( )22

i i
i

i i

  


 

 
   
 

σ
Σ

σ Σ
 with ( )11 1i   , where the first variable is 

partialed out from the covariance matrix for the remaining 2p   variables. When the j-th 

( 2,..., 1)j p   variable is partialed out, the 1p   variables in ( )iΣ  are reordered with the 

j-th variable moved to the first one, followed by the redefinition of  ( )iΣ  as 

( ) ( )T
( )11 ( )12( )

( ) ( ) ( )
( )21 ( )22

j j
i ij

i j j
i i

  


 

 
   
 

σ
Σ

σ Σ
 with ( )

( )11 1j
i    ( 1,..., 1)j p  . 

Theorem 5 (the anti-ridge parameter for the communality in the one-factor 

model). When the one-factor model holds for the p p  correlation matrix Σ  and 

1 ( ) ( ) 1( )p i i p    Ψ  in ( )iΣ , the communality 2
ih  of the i-th variable  is given by  

2 T 1
( ) ( ) 1( )i i i i p ih  
   σ Σ I σ , where 

( )T ( ) ( )T ( )
( )12 ( )21 ( )12 ( )21

( ) ( )T ( ) ( )
( )12 ( )22 ( )21

Off-diag( )
1

Off-diag( )

j j j j
i i i i

i j j j
i i i

    


  

 
σ σ σ σ

σ Σ σ
 ( 1,..., ; )i p i j  ; 

Off-diag( ) Diag( ) A A A ; Diag( )  is the diagonal matrix with the same diagonal 

elements of a matrix in parentheses; the variable j  is chosen such that the right-hand side 

of the above equation becomes the smallest among the 1p   variables in ( )iΣ ; all the off-

diagonal elements of ( ) ( ) 1 ( )T
( )22 ( )12 ( ) ( )21(1 )j j j

i i i i 
    Σ σ σ  ( , 1,..., ; )i j p i j   including the 
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matrices not giving the smallest right-hand side vanish. When 1 ( ) ( ) 1( )p i i p    Ψ , the 

value less than 1 ( ) ( ) 1( )p i i p    Ψ  by an arbitrarily small amount can be used for ( )i   

yielding a lower bound with the difference 2 T 1
( ) ( ) 1( ) ( 0)i i i i p ih  
    σ Σ I σ  being made 

as small as desired. 

Proof. Let 

T
( ) T 11 12
( ) ( ) 1 ( ) ( ) ( ) ( )

12 22

j
i i p i i i i p

c
       

 
      

 

c
Σ I Λ Λ Ψ I

c C
 

for simplicity of notation as long as confusion does not occur including possible reordering 

of the rows and columns of ( )iΛ  and ( )iΨ . When the j-th variable in ( )iΣ  is partialed out, 

the residual covariance matrix corresponding to 22C  becomes * 1 T
22 22 12 11 12c C C c c . 

Define the function 

  
 

2
( ) ( ) 1 ( )T

( ) ( )22 ( ) 2 ( )21 ( ) ( )12

21 T
22 12 11 12

( ) (1 / 2)tr Off-diag (1 )

(1 / 2)tr Off-diag( ) .

j j j
j i i i p i i ig

c

   
      



      
    

Σ I σ σ

C c c
 

Due to the one-factor model, when a variable in the 1p   variables is partialed out, the 

residual covariance matrix 1 T
22 12 11 12cC c c  for the remaining 2p   variables becomes 

diagonal though 1 T
22 12 11 12cC c c  may not be p.d. Since  ( )( ) 0j ig    , by continuity we have 

the necessary condition of ( )i   for the vanishing off-diagonal elements of 1 T
22 12 11 12cC c c  

as 

 
 

( ) 1 T 1 T
22 12 11 12 22 12 11 12

( ) ( )

1 T 2 T
22 12 11 12 2 12 11 12

1 T 2 T
22 12 11 12 12 11 12

( )
0 tr Off-diag( ) Off-diag( )

tr Off-diag( )Off-diag( )

tr Off-diag( )Off-diag( )

j i

i i

p

g
c c

c c

c c


 

  

 

 


 

          

   

  



C c c C c c

C c c I c c

C c c c c

T 1 T 2
12 22 12 11 12 12 11Off-diag( ) .c c  c C c c c

 

where T T Ttr{Off-diag( ) Off-diag( )} tr{Off-diag( ) } Off-diag( ) A a a A a a a A a  is used. 

Noting that 11 ( )1 ic    , ( )
21 ( )21

j
ic σ , T

12 21c c  and ( )
22 ( )22 ( ) 2

j
i i p   C Σ I , we obtain 
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( ) ( )

( )T ( ) ( ) 1 ( )T 2
( )12 ( )22 ( ) 2 ( )21 ( ) ( )12 ( )21 ( )

( )T ( ) ( ) ( ) 1 ( )T
( )12 ( )22 ( )21 ( )11 ( ) ( )12 ( )21 ( )

0 ( ) /

Off-diag (1 ) (1 )

Off-diag ( ) (1 )

j i i

j j j j
i i i p i i i i i

j j j j j
i i i i i i i i

g  

  

  

 

 
        


       

  

     

    

σ Σ I σ σ σ

σ Σ σ σ σ 2 ,

 

The value of ( )i   satisfying the above equation is 

( )T ( ) ( )T ( )
( )12 ( )21 ( )12 ( )21

( ) ( )T ( ) ( )
( )12 ( )22 ( )21

Off-diag( )
1

Off-diag( )

j j j j
i i i i

i j j j
i i i

    


  

 
σ σ σ σ

σ Σ σ
. 

Among the 1p   values of ( )i   when j i , the smallest value can be chosen as the smallest 

uniqueness. 

The remaining property to be derived is that the smallest uniqueness i.e., 1 ( )( )p i  Ψ  for 

the anti-ridge parameter ( )i   gives 2 T 1
( ) ( ) ( ) 1 ( ){ }i i i i p ih  
     σ Σ I σ . For the one-factor 

model, consider the case when  ( )i   goes to 1 ( )( )p i  Ψ  from below but not reach 

1 ( )( )p i  Ψ . Since the spectral decomposition T ( ) 1 T ( ) 1 ( )
( ) ( ) ( )) ( ) ( ) ( ) 1i i i i i i i

   
     Λ Ψ Λ λ Ψ λ  

with ( )
( ) ( ) ( ) 1i i i p
    Ψ Ψ I  becomes a scalar, the Guttman formula gives 

2 T 1 T ( ) ( )T T
( ) ( ) 1 ( ) ( )

1 1

1 1
( ) diag

1 1i i i i p i i i i i i i
i i

h  
 

 


  

 
      

σ Σ I σ λ Γ Γ λ λ λ  

with ( ) 1i
 Γ . When ( )i   goes to 1 ( )( )p i  Ψ , ( )

1i
 goes to  . The above equation shows 

that in this limiting case, T 1
( ) ( ) 1( )i i i p i 
  σ Σ I σ   goes to 2

ih . Though ( ) 1
( )i
 
Ψ  with 

( ) 1 ( )( )i p i    Ψ  cannot be taken in the Guttman formula because 

( )
( ) ( ) 1 ( ) 1( )i i p i p
      Ψ Ψ Ψ I  is singular, T 1

( ) ( ) ( ) 1 ( ){ }i i i p i 
    σ Σ I σ  with 

( ) 1 ( )( )i p i    Ψ  can be taken since ( ) ( ) 1i i p  Σ I  is p.d. due to the assumption 

1 ( ) ( ) 1( )p i i p    Ψ . That is, the limiting value 2 T 1
( ) ( ) 1( )i i i i p ih  
   σ Σ I σ  is attained. 

When 1 ( ) ( ) 1( )p i i p    Ψ , the value  ( )i   less than 1 ( ) ( ) 1( )p i i p    Ψ  by an 

arbitrarily small amount can be used, yielding a lower bound of 2
ih  with the difference 

2 T 1
( ) ( ) 1( ) ( 0)i i i i p ih  
    σ Σ I σ  made as small as desired. Q.E.D. 
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Remark 2. In Theorem 5, there are 1p   candidates of the optimal ( )i   for the i-th 

variable. Each of them becomes equal to a uniqueness in ( )iΣ  since even when 

*

*
( ) ( )( ) ( 1,..., 2)i ip

p p    Ψ  and ( )i   goes to * ( )( )ip
 Ψ , ( )

1i
 goes to   as in 

( ) 1 ( )( )i p i    Ψ . As addressed earlier, the optimal ( )i   can be obtained from the 

smallest ( )i   in the 1p   candidates as will be shown in a numerical illustration. The value 

of ( )i   for variable ( 1,..., ; )j j p j i   in Theorem 5 is shown to be equal to j  as 

follows. Note that ( )
( )21 ( ) ( , )
j

i j i j  σ λ  with 2 2
( )j jh  , where ( )j  is the j-th element of 

Λ λ  ( )j i  to avoid confusion with ( )i    defined earlier; ( , )i j λ  is λ  whose  i- and j-

th elements are deleted. Then, from Theorem 5, 

 

( )T ( ) ( )T ( )
( )12 ( )21 ( )12 ( )21

( ) ( )T ( ) ( )
( )12 ( )22 ( )21

4 T T T
( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

2 T T
( ) ( , ) ( , ) ( , )

Off-diag( )
1

Off-diag( )

Diag( )
1

{

j j j j
i i i i

i j j j
i i i

j i j i j i j i j i j i j

j i j i j i j







   


  

           

     

 


 



σ σ σ σ

σ Σ σ

λ λ λ λ λ λ

λ λ λ T
( , ) ( , ) ( , )

2 2
( )

Diag( )}

1 1 ( 1,..., ; ).

i j i j i j

j j jh j p j i 
     

      

λ λ λ  

 

4. A method of communality estimation in the multi-factor model 

In Section 2, it was argued that an extension of  ARSMCi  i.e., 

T
( ) ( ) ( ) 1 1 ( )( )i i i p p i 
     σ Σ I σ  with ( ) 1i p    being the smallest eigenvalue of ( )iΣ   cannot 

be a lower bound of 2
ih  since the extension can be greater than 2

ih . Suppose that Σ  is p.d. 

though the EFA model may or may not hold. Note that ( )p p p p   Σ Σ I Σ I  with p  

being the smallest eigenvalue of Σ  is p.s.d. of rank 1p   or smaller. Then, 

( ) ( ) 1 1i i p p   Σ I  similar to p pΣ I  in the extended ARSMCi  is p.s.d. of rank 2p   or 

smaller depending on the multiplicity ( )im   of ( ) 1i p   . The following property is easily 

found. 

Property 1 (the conjugate, maximum-rank or spherical FA model). Suppose that Σ  

is p.d., then the following FA model always holds even when the EFA model does not hold: 
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( )* *T * *T p

p p

   Σ Λ Λ I Λ Λ Ψ , 

where *Λ  is the ( )pp p m   loading matrix of rank pp m  with pm  being the 

multiplicity of ( )p p  Σ  and 
( )pΨ  of full rank has the common uniqueness 

(0 1)p p   . In this case, the communalities are also the same as 1 p . The case 

1p   yielding pΣ I  with pm p  is included as a FA model with no common factors. 

Suppose that the EFA model T Σ ΛΛ Ψ  holds with (1 )k k p  common factors. 

Then, it is found that we generally have a pair of the FA models satisfying 

( )* *T Tp   Σ Λ Λ Ψ ΛΛ Ψ . 

The case of *Λ Λ  and consequently 
( )pΨ Ψ  when k = 1 with 1pm p   was 

mentioned earlier as the compound symmetric model. The model 
( )* *T pΛ Λ Ψ  may be 

called the conjugate, maximum-rank or spherical FA model. 

Using the conjugate FA model defined in Property 1 for 1( )* *T
( ) ( ) ( )

p

i i i

 

   Σ Λ Λ Ψ , the 

extended ARSMCi  given by T T * *T
( ) ( ) ( ) 1 1 ( ) ( ) ( ) ( ) ( )( ) ( )i i i p p i i i i i  
          σ Σ I σ σ Λ Λ σ  is 

called the Moore-Penrose ARSMC (MPSMC )i i . Though 

( ) ( ) 1 1 ( ) ( ) 1 ( ) ( ) 1(0 )i i p p i i p i i p                Σ I Σ I  since 

( ) ( ) 1 ( ) ( ) 1 1 ( ) 1 ( ) 1( ) ( )i i p i i p p i p i p                  Σ I Σ I I O  

by construction, the inequality 

1
( ) ( ) 1 ( ) ( ) 1 1( ) ( )i i p i i p p  
        Σ I Σ I  

does not always hold since the necessary condition of the rank equality of the two matrices 

in the M-K theorem (see Theorem 1) is not satisfied. That is, MPSMCi  can be smaller than 

the ARSMCi  with ( ) ( ) ( ) 1(0 )i i i p        as will be illustrated in a numerical example. 

However, this property may be seen as an advantage since ARSMCi  when ( )i   is slightly 

smaller than ( ) 1i p    tends to become too large as will be illustrated later. The following 

gives another reassuring property of MPSMCi . 

Property 2 (A lower bound of MPSMCi ). Noting that the conjugate FA model 
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associated with MPSMCi  is a FA model for p.d. ( )iΣ , we can use the Guttman formula as 

in the usual EFA, yielding 

MPSMC SMC ( 1,..., )i i i p  , 

which will be numerically illustrated in the next section. Note that the common 

communality of the conjugate FA model behind MPSMCi  is 1 ( )1 ( )p i   Σ , where 

1 ( )( )p i  Σ  is the smallest eigenvalue of ( )iΣ . 

 

5. Numerical illustrations 

An artificial example of the one-factor model with p = 6 is given for illustration. Table 1 

shows the correlation matrix and related values. The communalities have a relatively wide 

range i.e., from 0.04 to 0.49. It is found that ( ) 0.51 0.57 ( )p p   Ψ Σ  as theory 

indicates. Table 2 gives ( 1)p p   values of ( )i   minimizing 

 21 T
22 12 11 12(1/ 2)tr Off-diag( )c   

C c c  with 1p   values for each ( ) ( 1,..., )i i p Σ . It is 

found a value of ( )i   is equal to the corresponding ( )j j i   when variable j is a 

dependent one in regression. Mostly, only the smallest value ( )i   among 2p   values of 

( )i   is smaller than the smallest eigenvalue of 22C  with an exceptional case when i = 4 and  

j = 2 giving 2 22 ( )( ) 0.641 0.64p i    C . As expected, *
22C  is p.d. only when ( )i   is 

the smallest among 2p   values. It is to be noted the smallest ( )i   can be the smallest or 

the second smallest i.e., 0.51 or 0.64 of the uniquenesses depending on i = 1 or i = 2,...,6, 

respectively since the variables are ordered with the ascending uniqueness. 

Table 3 shows the computational values of ( )ARSMC ( )i i   using the values of ( )i   

which are the smallest i.e., 0.51 or 0.64 in each ( )iΣ  of Table 2. It is found that they 

correctly give the corresponding communalities. Note also that the ( )i  ’s are smaller than 

the corresponding smallest eigenvalues of ( ) ( 1,..., )i i p Σ  due to Theorem 3. 

Table 4 gives an artificial correlation matrix used by Yanai and Ichikawa (1990, p. 409) 
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when the 3-factor model holds with p = 6. The values of ( )ARSMC i  are shown as 

maximum lower bounds of  2
ih  when  ( )i    is the smallest uniqueness in ( )iΣ  though in 

practice they are unknown. It is of interest to find that when i = 1, 2 and 6, the 

( )ARSMC i ’s are close to the corresponding 2
ih ’s. 

In Table 4, the lower bounds by Yanai and Ichikawa (Y-I for short; 1990, Table 1) are 

shown. The lower bounds were obtained by their Theorem 1 i.e., 

2
11 ( ) ( 1,..., )i p ih i p    Σ  based on the B-B inequality (see our Theorem 3). Note that 

only the four lower bounds are presented by Y-I since the remaining two become lower than 

the SMCi ’s. For instance, when i = 5, 11 ( ) 1 0.648 0.352 0.45 SMCp i i       Σ  

and similarly when i = 6. Y-I also gave Theorem 2 i.e., 1 ( ) SMC ( 1,..., )p i i p  Σ  and 

stated that “Theorem 2 implies that out of the p variables, at least one highest communality 

has a lower bound at least as good as using the SMC, although we do not know in general to 

which bound the proposed bound shous be assigned” (p. 406). In Table 4, it is found that the 

maximum lower bounds ( )ARSMC i  when i = 1,...,4 are greater than the corresponding Y-I 

lower bound, indicating that there is some room to improve their lower bounds. Note also 

that their Theorem 3 gave improved lower bounds of 2
ih ’s when the one-factor model holds, 

while our Theorem 5 gives the exact values of 2
ih  in this case. 

In Table 4, the values of MPSMCi  are also shown, where except for 

2
1 1 1MPSMC 0.8030 0.77 ARSMC 0.7675h      ,  

ARSMCi  and MPSMCi  are comparable. It is to be noted that ARSMCi  is not available 

in practice since ARSMCi  uses the unknown smallest uniqueness in Table 4 while 

MPSMCi  can always be obtained from ( )iΣ . As Property 2 shows, we find that 

MPSMC SMC ( 1,..., )i i i p  . Table 4 also gives ARSMCi , which is the 

( )ARSMC ( )i i  when ( ) 4 ( )0.99 ( )i i   Σ , a slightly smaller value than the smallest 

eigenvalue of ( )iΣ  retaining the p.d. property of ( ) ( ) (5)i i Σ I . All the values of 
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ARSMCi  are larger than the corresponding MPSMCi ’s. Note that 2ARSMC  is as large 

as 2.83. The values MPSMCi ( 1, 2,5,6)i   are closer to the corresponding 2
ih ’s than 

ARSMCi  suggesting an advantage of MPSMCi . 

 

6. Discussions 

(a) The method of minimizing the sum of the squared off-diagonal elements of the 

residual covariance matrix: In Remark 2, when the one-factor model holds, the following 

result was shown:  

( )T ( ) ( )T ( )
( )12 ( )21 ( )12 ( )212

( )T ( ) ( )
( )12 ( )22 ( )21

Off-diag( )
( , 1,..., ; )

Off-diag( )

j j j j
i i i i

j j j j
i i i

h i j p j i   

  

  
σ σ σ σ

σ Σ σ
, 

which was used in the context of deriving the optimal anti-ridge parameter in each

( ) ( 1,..., )i i p Σ . We find that the result is seen as a special case of 

* * * *

* * *

( )T ( ) ( )T ( )

( )12 ( )21 ( )12 ( )212 * * *
( )T ( ) ( )

( )12 ( )22 ( )21

Off-diag( )
( {1, 2,..., }; 3 card( ) ; )

Off-diag( )

j j j j

p p p p
j j j j

p p p

h p p p p j p    
σ σ σ σ

σ Σ σ
, 

where *p  is a subset of {1, 2,..., }p  whose cardinality or the number of the members 

denoted by *card( )p  is larger than 2. The number of subsets *p ’s becomes 

2 { ( 1) / 2} 1p p p p     due to the binomial expansion. In each subset, member j is 

chosen from *p . The simplest case is given when p = 3, *card( ) 3p   with three subsets

{1, 2},{1,3}  and {2,3} . Then, the above formula gives 2
12 13 23 1/ h    , which is seen as a 

special case of Gibson (1963) and Ihara and Kano (1986). The “largest” case is given when 

*card( )p p  or when Σ  is employed in place of ( ) ( 1,..., )i i p Σ  used earlier. 

(b) The case of the B-B inequality when the FA model holds: For generality, using 

Σ  rather than ( )iΣ , Theorem 3 gives ( ) ( )p p Σ Ψ  , which was used by Y-I (1990). As 

addressed earlier, when pΨ I  with Σ  showing compound symmetry, the equality 

( ) ( )p p Σ Ψ  (“the eigenvalue-uniqueness equality” or “the E-U equality” for short) 

holds with the multiplicity 1pm p   for the smallest eigenvalue i.e.,   of Σ . Note that 
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this is a case when the EFA model and the corresponding conjugate or spherical FA model 

defined in Property 1 coincide. Other cases with the E-U equality when the one-factor 

model holds are those with block diagonal correlation matrices, where a single block shows 

compound symmetry while the remaining block(s) with no common factor are simple 

diagonal element(s) with possible more-then-one multiplicity of the smallest eigen value. 

Note that the smallest eigenvalue is equal to the that of the single block showing compound 

symmetry or that of the remaining diagonal elements. The author conjectures that the E-U 

equality in the one-factor model with 3p   holds only in these cases. Note that when the 

conjugate FA model satisfying the one-factor model is considered, the model is restricted to 

the compound symmetric one after possible reflection of observable variable(s), since the 

sums of the squared loadings are the same when the uniquenesses are the same for 

correlation matrices. 

Consider the cases with (0 )k k p   common factors in a block diagonal correlation 

matrix. Suppose that the i-th i ip p  block 1( 1,..., ; ... )Bi B p p p     has the conjugate 

FA model with ik  common factors 0 i ik p  . It is found that when 1 ... Bk k k   , the 

correlation matrix has the E-U equality. Note that the smallest possibly multiple eigenvalue 

( )p Σ  is the smallest among the B smallest ones in the diagonal blocks. The cases of the 

one-factor model given earlier are special cases with 1 1k   and 0( 2,..., )ik i B  . When 

0k  , we have pΣ I  without common factor yielding ( ) ( ) 1 ( 1,..., )i i i p   Σ Ψ  as 

well as the E-U equality. It is unknown whether other cases in the k-factor model have the 

E-U equality. 

(c) The problem to obtain the maximum anti-ridge parameter or the smallest 

uniqueness in the multi-factor cases: While the optimal anti-ridge parameters to yield 

exact 2
ih ’s when the one-factor model holds were obtained, the corresponding counterpart 

in the general multi-factor model was not derived. The optimal value is given when 

(S)
( ) ( ) ( )i i i   Ψ I Ψ  becomes p.s.d. or singular with ( ) 1 ( )( )i p i    Σ  . A property of the 

model  T (S)
( ) ( ) ( )i i i  Λ Λ Ψ , which may be called the p.s.d. factor model, is that at least one 

variable has no unique factor. For the derivation of the optimal ( )i  , some semidefinite 
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mathematical programming may be required as mentioned in the introductory section. 

(d) An elementary proof of Y-I’s (1990) Theorem 2 using the conjugate FA model: 

Recall that the common communality of the conjugate FA model for * *T
p p Σ Λ Λ I  

defined in Property 1 is 1 p  with ( )p p  Σ . As addressed in Section 5, Y-I’s (1990) 

Theorem 2 gave 1 SMC ( 1,..., )p i i p   , which was obtained using a corollary of the 

Poincaré separation theorem (Magnus & Neudecker, 2007, Chapter 11, Theorems 10 and 

12; for the separation theorem and its applications, see Rao, 1979, Takane & Shibayama, 

1991, Section 2.2 and Appendix A, Rolle, 2000, and Yanai, Takeuchi & Takane, 2011, 

Theorem 5.8). An alternative elementary short proof of this result is given as follows. 

Noting that the conjugate FA model with the common communality 1 p  satisfies 

1 SMC ( 1,..., )p i i p    due to the property of SMCi  as a lower bound of the common 

communality for each variable, the required result follows. 
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                 Table 1. An artificial correlation matrix when the one-factor model holds 

 
                             Σ   

                                  Eigen- 

λ        2
ih        ψ      values 

 1.00 
 .42 1.00  symmetric 
 .35 .30 1.00 
 .28 .24 .20 1.00 
 .21 .18 .15 .12 1.00 
 .14 .12 .10 .08 .06 1.00 

 .7 .49 .51 2.07 
 .6 .36 .64 .95 
 .5 .25 .75 .89 
 .4 .16 .84 .81 
 .3 .09 .91 .70 
 .2 .04 .96 .57 

                  Note. diag( )Ψ ψ . 
 
  



 

 

 
Table 2. The values of ( )i   giving the zero off-diagonal elements of the ( 2) ( 2)p p    

               residual covariance matrix * 1 T
22 22 21 11 12c C C c c  in the one-factor model 

Variable i 
Variable j in ( )iΣ   

 1 
 2 3 4 5 6 

 2 
 1 3 4 5 6 

 3 
 1 2 4 5 6 

 
Eigenvalues of  

22C  

 1.37 1.42 1.48 1.55 1.61 
 .95 .95 .95 .95 .89 
 .89 .88 .87 .81 .81 
 .79 .745 .70 .69 .69 

1.37 1.47 1.54 1.62 1.68 
 .95 .95 .95 .95 .89 
 .89 .88 .87 .81 .80 
 .79 .69 .64 .63 .63 

1.42 1.47 1.62 1.69 1.75 
 .95 .95 .95 .95 .89 
 .88 .88 .86 .79 .78 
 .75 .69 .58 .58 .58 

( )i    .64 .75 .84 .91 .96  .51 .75 .84 .91 .96  .51 .64 .84 .91 .96 

 
Eigenvalues of  

*
22C  

 .11 -.11 -.20 -.27 -.32 
 .20 .09 -.09 -.16 -.21 
 .27 .16 .07 -.07 -.12 
 .32 .21 .12 .05 -.05 

 .24 -.24 -.33 -.40 -.45 
 .33 .09 -.09 -.16 -.21 
 .40 .16 .07 -.07 -.12 
 .45 .21 .12 .05 -.05 

 .13 -.13 -.33 -.40 -.45 
 .33 .20 -.20 -.27 -.32 
 .40 .27 .07 -.07 -.12 
 .45 .32 .12 .05 -.05 

Variable i 
Variable j in ( )iΣ   

 4 
 1 2 3 5 6 

 5 
 1 2 3 4 6 

 6 
 1 2 3 4 5 

 
Eigenvalues of  

22C  

 1.48 1.54 1.62 1.77 1.83 
 .95 .95 .95 .94 .89 
 .87 .87 .86 .71 .71 
 .70 .641 .58 .57 .57 

1.55 1.62 1.69 1.77 1.91 
 .95 .95 .95 .94 .82 
 .81 .81 .79 .71 .71 
 .69 .63 .58 .57 .57 

 1.61 1.68 1.75 1.83 1.91 
 .89 .89 .89 .89 .82 
 .81 .80 .78 .71 .71 
 69 .63 .58 .57 .57 

( )i    .51 .64 .75 .91 .96  .51 .64 .75 .84 .96  .51 .64 .75 .84 .91 

 
Eigenvalues of  

*
22C  

 .13 -.13 -.24 -.40 -.45 
 .24 .11 -.11 -.27 -.32 
 .40 .27 .16 -.16 -.21 
 .45 .32 .21 .05 -.05 

 .13 -.13 -.24 -.33 -.45 
 .24 .11 -.11 -.20 -.32 
 .33 .20 .09 -.09 -.21 
 .45 .32 .21 .12 -.12 

 .13 -.13 -.24 -.33 -.40 
 .24 .11 -.11 -.20 -.27 
 .33 .20 .09 -.09 -.16 
 .40 .27 .16 .07 -.07 

 
 
  



 

 

 
                      Table 3. The values of ( )ARSMC ( )i i   when 

( ) ( )min( )i i   ψ  and 

associated results in the one-factor model 
Variable i  1 2 3 4 5 6 
 
Eigenvalues of ( )iΣ  

 1.66 1.73 1.81 1.89 1.96 2.02 
 .9519 .9519 .9518 .9514 .9500 .90 
 .89 .89 .89 .88 .81 .81 
 .81 .80 .78 .71 .71 .70 
 .69 .63 .58 .5712 .5697 .5690 

( ) ( )min( )i i   ψ   .64 .51 * * * * 
2

( )ARSMC ( )i i ih     .49 .36 .25 .16 .09 .04 

SMCi   .27 .22 .16 .11 .06 .03 

                      Note. ( ) ( )diag( )i i Ψ ψ . The asterisk indicates the same value as 
( 2) .51   . 

 
 
  



 

 

 
   Table 4. Yanai and Ichikawa’s (1990) artificial correlation matrix and associated results 

 Eigen-                Y-I 
                      Σ   Λ        values    ψ     2

ih   ARSMCi
    LB   SMCi MPSMCi

 ARSMCi  

1.00 
 .72 1.00  symmetric 
 .62 .56 1.00 
 .61 .56 .64 1.00 
 .62 .56 .54 .50 1.00 
 .58 .54 .44 .42 .48 1.00 

 .6 .5 .4 3.810 .23 .77 .7675 .735 .654 .803 .818 
 .6 .4 .4 .648 .32 .68 .6758 .645 .573 .632 2.83 
 .2 .6 .5 .490 .35 .65 .583 .568 .518 .593 .652 
 .2 .5 .6 .432 .35 .65 .568 .510 .498 .581 .626 
 .4 .6 .2 .355 .44 .56 .510  .453 .497 .815 
 .5 .4 .2 .265 .55 .45 .444  .384 .434 .713 

Note. 
( )ARSMC ARSMC ( )i i i   when 

( )i 
 is the smallest uniqueness in 

( )iΣ . Y-I LB = Yanai and Ichikawa’s 

(1990) lower bound. 
( )ARSMC ARSMC ( )i i i   when 

( ) 5 ( ).99 ( )i i   Σ  with 
5 ( )( )i Σ  being the smallest 

eigenvalue of 
( )iΣ . 
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