論文

査読有り
2017年5月

Calcification in dermal fibroblasts from a patient with GGCX syndrome accompanied by upregulation of osteogenic molecules

PLOS ONE
  • Yumi Okubo
  • ,
  • Ritsuko Masuyama
  • ,
  • Akira Iwanaga
  • ,
  • Yuta Koike
  • ,
  • Yutaka Kuwatsuka
  • ,
  • Tomoo Ogi
  • ,
  • Yosuke Yamamoto
  • ,
  • Yuichiro Endo
  • ,
  • Hiroshi Tamura
  • ,
  • Atsushi Utani

12
5
開始ページ
e0177375
終了ページ
e0177375
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1371/journal.pone.0177375
出版者・発行元
PUBLIC LIBRARY SCIENCE

Gamma-glutamyl carboxylase (GGCX) gene mutation causes GGCX syndrome (OMIM: 137167), which is characterized by pseudoxanthoma elasticum (PXE)-like symptoms and coagulation impairment. Here, we present a 55-year-old male with a novel homozygous deletion mutation, c. 2,221delT, p. S741LfsX100, in the GGCX gene. Histopathological examination revealed calcium deposits in elastic fibers and vessel walls, and collagen accumulation in the mid-dermis. Studies of dermal fibroblasts from the patient (GGCX dermal fibroblasts) demonstrated that the mutated GGCX protein was larger, but its expression level and intracellular distribution were indistinguishable from those of the wild-type GGCX protein. Immunostaining and an enzyme-linked immunosorbent assay showed an increase in undercarboxylated matrix gamma-carboxyglutamic acid protein (ucMGP), a representative substrate of GGCX and a potent calcification inhibitor, indicating that mutated GGCX was enzymatically inactive. Under osteogenic conditions, calcium deposition was exclusively observed in GGCX dermal fibroblasts. Furthermore, GGCX dermal fibroblast cultures contained 23-and 7.7-fold more alkaline phosphatase (ALP)-positive cells than normal dermal fibroblast cultures (n = 3), without and with osteogenic induction, respectively. Expression and activity of ALP were higher in GGCX dermal fibroblasts than in normal dermal fibroblasts upon osteogenic induction. mRNA levels of other osteogenic markers were also higher in GGCX dermal fibroblasts than in normal dermal fibroblasts, which including bone morphogenetic protein 6, runt-related transcription factor 2, and periostin (POSTN) without osteogenic induction; and osterix, collagen type I alpha 2, and POSTN with osteogenic induction. Together, these data indicate that GGCX dermal fibroblasts trans-differentiate into the osteogenic lineage. This study proposes another mechanism underlying aberrant calcification in patients with GGCX syndrome.

リンク情報
DOI
https://doi.org/10.1371/journal.pone.0177375
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000401314300095&DestApp=WOS_CPL
ID情報
  • DOI : 10.1371/journal.pone.0177375
  • ISSN : 1932-6203
  • Web of Science ID : WOS:000401314300095

エクスポート
BibTeX RIS