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Abstract
This article aims to provide a broad coverage of over 300 studies on T helper 17 (Th17) cells published mainly between 2011 and 2016, with a focus on factors 
negatively regulating Th17 cell differentiation and functions. During the last decade, processes underlying Th17 cell differentiation and activation, as well as Th17-
specific cytokines, chemokines, and transcription factors, have been characterized. Diverse modalities controlling Th17 cells range from factors modulating the state 
of regulatory T (Treg) cells or dendritic cells and indirectly regulating Th17 cells to cell-intrinsic factors, such as those that repress genes encoding Th17 signature 
cytokines, including artificial products. Since IL-17 is a major player in tissue-specific immune pathology, Th17 cells, a major source of the cytokine, have been a 
subject of intensive research and have been at the forefront of clinical studies. New approaches, including conditional knockout mice as well as transcriptome profiling, 
have revealed closely related developmental states in Th17 cells, reflecting their plasticity. For example, given that Th17 cells share a differentiation pathway with 
Treg cells that, in turn, control Th17 cells, the Treg/Th17 axis is important for fine-tuning the intensity of inflammatory responses. An emerging picture shows that a 
combination of many factors involving IL-23, IL-2, CCR6, the mammalian target of rapamycin (mTOR)-hypoxia-inducible factor (HIF) axis, metabolism (glycolysis 
and lipid synthesis), retinoic acid, glucocorticoids, melatonin, Wnt pathways, and salt act in synergy to regulate the Th17/Treg balance and inter-Th17 subset balance. 
Therapeutic interventions that can tune such balances would be efficacious when accompanied by our attentiveness to the spatial and temporal dynamics of Th17 cells. 
A comprehensive understanding of biochemical and cellular factors underlining these subtle regulations would give us a more integrated view that would hopefully 
help increase therapeutic options for many cases of autoimmune and inflammatory diseases and predisposed individuals. 
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Introduction - an overview of immunotherapy, IL-17, 
and Th17 biology 

An understanding of the cytokines responsible for autoimmune 
diseases has changed the concept of their treatment. Prior to the 
identification of IL-17, several cytokines crucial for autoimmune 
diseases had been identified. The treatment of autoimmune diseases, 
including rheumatic arthritis (RA), has been revolutionized by 
the advent of targeted biological agents as well as improved use of 
conventional drugs. Inhibitors of TNF-α have shown benefits in many 
patients with RA and psoriasis [1-3]. This success was followed by 
the development of drugs targeting IL-6 and IL-1 [2,4,5]. After the 
discovery and characterization of IL-17A demonstrating that it induces 
IL-6 secretion from synoviocytes in patients with RA [6], blockade of 
IL-17A has been assessed in RA, psoriasis, and other related diseases 
and has shown some successful results [7]. (Henceforth “IL-17” 
indicates IL-17A, the founding member of the IL-17 family, unless 
otherwise noted.) Pathological roles of IL-17 in autoimmune diseases, 
as well as clinical trials targeting IL-17 or IL-23, have been reviewed by 
Beringer et al. [7], Waisman et al. [8], and Kim et al. [3]. Roles for IL-17 
in central nervous system (CNS) diseases, including multiple sclerosis 
(MS) and infarction [8], and in cardiovascular diseases [9] have also 
been discussed. To avoid redundancy, we focus on T helper 17 (Th17) 
biology and mechanisms that inhibit Th17 cell development and 
activity, with emphasis on their therapeutic relevance. Notably, Th17 is 
not the only cell capable of producing IL-17; other types of cells, such 
as γδ-T cells and innate lymphoid cells (ILCs), are likely to be the main 
source of IL-17 in some cases [10,11]. 

Upon activation by an antigen, naive CD4+ T cells proliferate and 
differentiate into various subsets of T helper (Th) cells, including Th1, 
Th2, and Th17 cells. Th17 cells develop mostly from naive T cells, 
produce proinflammatory cytokines IL-17A, IL-17F, and IL-22, and 

coordinate inflammatory responses for host defense [8,12]. Th17 cells 
have been shown to be important for mucosal host defense against 
microbial and fungal pathogens [13], but, on the other hand, are 
present at tissue inflammation sites and contribute to the pathogenesis 
of human autoimmune and chronic inflammatory disorders [12,14-
17]. In mice, Th17 cells express the transcription factor retinoic acid-
related orphan receptor γt (RORγt, corresponding to human RORc) 
as a master transcriptional regulator [18] along with the chemokine 
receptors CCR6 [19] and CCR2 [20]. Both RORγt and RORα, a closely 
related family member, are necessary for full Th17 cell development [18]. 
Multiple cytokines, including TGF-β, IL-6, IL-1β and IL-21 are known 
to induce differentiation of naive T cells to Th17 cells [12]. In particular, 
this differentiation can be initiated by a combination of TGF-β and IL-6 
in mice [12], and is maintained by IL-23 [21,22]. It is now known that 
Th17 cells consist of subsets with differential inflammatory potential, 
ranging from a subset that is induced by TGF-β and IL-6, produces 
IL-10, and is a weak inducer of inflammation, to a highly inflammatory 
subset that produces GM-CSF/IFN-γ and is induced by IL-23 [23]. IL-
23R is required for effector Th17 cell responses in vivo [24], and IL-23 
appears to be a promising therapeutic target [25]. The importance of 
pleiotropic cytokine TGF-β for Th17 (as well as inducible regulatory T 
[Treg] cell) development was established by early findings [26]. As the 
differentiation state of dendritic cells (DCs) has profound effects on 
Th17 differentiation, the extrinsic effect of TGF-β mediated by TGF-β-
signaling in DCs is also important [27]. 
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We do not discuss IL-22, a Th17 signature cytokine, in detail, but 
instead suggest recent articles [28,29]. Both IL-17 and IL-22 play a 
central role in the pathogenesis of MS [30,31] and RA [32]. A recently 
proposed subset, Th22, shows similarity with Th17 [33], yet, one feature 
of Th22 cells is their dependency on aryl hydrocarbon receptors (AHR), 
rather than RORγt. Th22 cells play a pathological role in psoriasis, but 
their role in RA is less clear [34].

Cytokines and other factors present during T cell priming events 
can direct differentiation by inducing lineage-specifying transcription 
factors that act as master regulators. T-bet, signal transducer and 
activator of transcription (STAT)1, and STAT4 are the master 
regulators for Th1 cells; GATA3 and STAT6 direct the Th2 lineages, 
and STAT3 and RORγt direct differentiation of Th17 cells [18,35]. The 
induction of RORγt is dependent on STAT3, which is mainly activated 
by IL-6. PI3K/AKT signaling acts upstream to positively regulate the 
activation of protein kinase mammalian target of rapamycin (mTOR)
C1, and this axis is a positive regulator of Th17 development [36,37]. 
mTORC1 positively modulates IL-17 expression through several 
pathways involving STAT3 and hypoxia-inducible factor 1α (HIF1α) 
[36,38]. 

This article focuses on recent reports of negative regulators that 
inhibit Th17 cell development or suppress their functions, with a 
limited coverage of the basics revealed in earlier studies. Nonetheless, 
given the therapeutic relevance of the overall tone of inflammation, 
and the indirect effect of non-T cells such as DCs, the macroscopic 
mechanisms governing the balance of various subsets of T cells are also 
important. Therefore, we begin with Th17/Treg balance, to which we 
aim to endow an introductory purpose. After the factors modulating 
Th17 development in an extrinsic manner are discussed, the regulatory 
factors intrinsic to T cells (i.e., without the aid of other cell types) are 
considered. 

Cytokines, hormones, and vitamins that negatively regulate Th17 
cells include retinoic acid [39,40], IFN- β, IL-10 [41,42], IL-27, Th1 and 
Th2 cytokines, IFN-γ and IL-4 [43,44]. Many of these factors act, at 
least in part, in an extrinsic manner, i.e., mediated by DCs and other 
cells. On the other hand, Th17 cell-intrinsic negative regulators include 
Foxp3 [45], interferon regulatory factor 4 (IRF4)-binding protein 
(also known as Def6 or SLAT) [46], peroxisome proliferator-activated 
receptor γ PPAR-γ [47], liver X receptors (LXRs) [48], and STAT5 [49], 
which we discuss in some depth. Other negative factors include NR2F6 
(Ear-2) [50], growth factor independence 1 (Gfi-1) [51], suppressor 
of cytokine signaling 3 (SOCS3) [52], TNF receptor–associated factor 
6 (TRAF6) [53], protein kinase B (PKB)/Akt signals [54], and E26 
transformation-specific sequence 1 (Ets-1) [55,56], but we only briefly 
mention them in related sections, as these may be integrated into some 
axes. For example, Ets-1 is involved in the Ets-1-IL-2 axis [56]. 

IL-23 signaling as a target

IL-23 consists of the p40 subunit of IL-12 and an unrelated p19 
peptide. There is a consensus that, in the presence of TGF-β IL-6 
triggers differentiation of Th17 cells in mice. IL-23 is essential to 
establish and stabilize the differentiated states of Th17 cells. In support 
of this view, IL-23 is important in vaccination models [57]. In Khader 
et al.’s study, despite no involvement of IL-23 in primary resistance 
to Mycobacterium tuberculosis, vaccination with a defined peptide 
from M. tuberculosis established persistent IL-17-producing T cells in 
a manner dependent on IL-23 [57]. Thus-established IL-17-producing 
T cells, which appeared to accumulate in the lung, allowed accelerated 
recall response and protection against infection [58].

Setting aside evidence for IL-23 involvement, several studies have 
elucidated roles of memory Th17 cells in protection from several 
microbes. Wüthrich et al. showed the importance of Th17 cells in recall 
responses against several fungi, specifically, Coccidioides posadasii, 
Histoplasma capsulatam, and Blastomyces dermatitidis [59]. Chen et 
al. [60] showed the importance of memory Th17 cells established by 
vaccination for Klebsiella pneumoniae. In that study, Th17, but not 
IFN-γ was required for broader (i.e., serotype-independent) protection 
against K. pneumoniae. Using a baboon model of Bordetella pertussis 
infection, Warfel and Merkel showed the presence of IL-17-producing 
memory T cells and IFN-γ-producing memory T cells >2 years after 
infection [61].

Using an experimental autoimmune encephalomyelitis (EAE) 
model, Haines et al. [25] showed that memory cells were generated from 
IL-17+RORγt+ precursors, not noncommitted precursors. Compared 
to the cells on day 8 (after primary immunization), the cells on day 18 
showed better Th17 phenotype stability in an IL-23-dependent manner, 
implying that the time length of primary immunization is critical for 
stability of the differentiation state of Th17 cells. Short immunization 
times allowed differentiation into IFN-γ-producing cells in their 
setting [25]. IL-23 promoted proliferation of memory Th17 cells and 
upregulated genes required for cell-cycle progression in Th17 cells. IL-
23 also induced T-bet and IFN-γ in Th17 cells. 

These findings implicated the therapeutic potential of blocking 
IL-23. Notably, tildrakizumab (MK-3222), a humanized anti-IL23p19 
mAb improved psoriasis in a phase IIb randomized, placebo-
controlled trial, although adverse effects, including bacterial arthritis, 
were reported [62].

Tregs, non-pathogenic Th17, and pathogenic Th17

After naive T cells were shown to differentiate into Th17 cells, 
it was noted that Treg and Th17 cells emerge from an overlapping 
developmental program (Figure 1) [63]. This close relationship between 
Treg and Th17 cells, along with the developmental plasticity of Th17 
cells, led to recognition that Th17 cells play not only proinflammatory 
and defensive roles but also have regulatory roles. Treg cells are broadly 
classified into two groups: nTregs that develop in the thymus and iTregs 
that are induced in peripheral organs by TGF-β. Thus, both iTreg and 
Th17 cells can be induced from naive CD4+ T cells in the periphery 
upon antigen stimulation and exposure to TGF-β. The notion that Treg 
and Th17 have a reciprocal (mutually exclusive) relationship [39] leads 
us to surmise that subtle modulations of Th17-iTreg cell balance can 
exert immense effects on the outcome of therapeutic interventions. 
Physiologically, switching differentiation between Treg and Th17 
cells is mainly regulated by IL-6 [53]. TGF-β signaling alone leads to 
Foxp3 expression and induction of Treg, but costimulation with IL-6 
can suppress Foxp3 and, therefore, release RORγt from inhibition by 
Foxp3, promoting Th17 development.

Th17 cells can be derived from Treg cells if appropriate conditions 
are provided. In Veldhoen et al.’s study, in the presence of DC and 
ligands for TLR3, 4, or 9, coculture of naive CD4+ T cells with Tregs 
resulted in the development of Th17 cells [64]. In another study, TGF-β 
likely produced by Tregs and DCs, was a key cytokine that promoted 
Th17 differentiation from naive CD4 T cells in the presence of dectin-1 
agonists [65]. Later, Xu et al. used Foxp3-IRES-GFP knock-in mice, 
which ensured that only CD4+CD25+Foxp3+ cells were used, and 
showed that these cells undergo self-induced Th17 differentiation [66]. 
Treg cells not only expressed TGF-β but also induced DCs to produce 
increased amounts of TGF-β [66]. A differentiation pathway from the 



Seki R (2016) Factors regulating Th17 cells: a review

 Volume 1(4): 126-147Biomed Res Clin Prac, 2016         doi: 10.15761/BRCP.1000122

Foxp3+ passing through the Foxp3+/IL-17+ double positive stage and 
then to the IL-17 single positive stage was also observed [66]. Thus, 
Treg cells can differentiate into Th17 cells in a manner dependent on 
TGF-β.

Several studies have focused on the relevance of IL-2 in Th17-
iTreg balance. IL-2 is a cytokine that normally suppresses Th17 cell 
differentiation and function. Later, rather than TGF-β production 
by Treg cells, IL-2 depletion by Treg cells was proposed to be the key 
factor promoting early stages in Th17 development. Using an in vivo 
Candida albicans infection model, Pandiyan et al. found that the effect 
of Treg cells on the induction of IL-17 production from responding 
CD4+ T cells is dependent on consumption of IL-2 by Treg cells at early 
time points [67]. Further, using a system in which diphtheria toxin 
can kill Foxp3+ Tregs at a specific stage, Chen et al. showed that Treg 
cells promote Th17 cell development in vivo and this is mediated by 
consumption of IL-2. Strikingly, their analysis with TGFb knockout 
mice conditional to Foxp3 expression showed that Treg cell production 
of TGF-β was not required for Th17 induction in vivo [68]. Cejas et 
al. showed that TRAF6-deficient mice exhibited enhanced Th17 cell 
differentiation, and this was at least partly explained by the finding 
that TRAF6-deficient CD4+ T cells showed lower expression levels 
of IL-2 compared to those of wild-type CD4+ T cells [53]. Thus, it is 
possible that negative regulation by IL-2 is playing a central role in 
suppressing Th17 cell differentiation in many unknown cases. In any 
case, Pandiyan et al. [67] and Chen et al. [68] showed that Treg cells are 
likely to promote priming of Th17 in vivo, although further evaluation 
appears to be necessary to establish the significance of Tregs as a source 
of TGF-β in vivo. The role of TGF-β in Th17 development is still 
controversial for human T cells [69]. Effects of IL-2 are also discussed 
in the following section. 

Thus, several findings indicated or suggested derivation of Th17 
cells or Foxp3+IL-17+ “double positive” cells from Foxp3+ Treg cells. 
Of clinical importance, fate-mapping analysis by Komatsu et al. 
showed that Th17 cells arise from Foxp3+ Treg cells by the loss of 
Foxp3 expression in the presence of synovial fibroblast-derived IL-6 
in collagen-induced arthritis (CIA) model mice, suggesting that T cell 
plasticity, combined with the inflammatory rheumatic environment, 
facilitates Th17 polarization, altering the balanced Treg/Th17 ratio 
[70]. In another study using peripheral blood from patients with 
RA, Th17 cells were enriched with Helios-producing Foxp3- IL2RA- 
cells, suggestive of nTreg cells that had presumably lost suppressive 
capability [71]. Notably, Helios expression is indicative of the recent 
thymic origin of the cells, and IL-2RA-  is abundantly expressed in Treg 
cells. Thus, in patients with RA, nTreg cells appear to have anomalously 
high chances of transdifferentiating into IL-17-producing cells.

Ueno et al. observed that the prevalence of circulating double 
positive (IL-17+ Foxp3+) CD4+ T cells is increased in patients with 
inflammatory bowel diseases (IBDs) [72]. Basu et al. further showed 
that IL-1 signaling represses SOCS3, a molecule that normally inhibits 
STAT3. This was suggested to be the molecular basis for IL-1β-
dependent increases in phosphorylated STAT3 and alterations of the 
STAT3/STAT5 balance resulting in Th17 generation, even in retinoic 
acid-mediated iTreg induction that is predominant in the normal 
intestine [63]. 

It is recognized that Th17 cells have functional plasticity, but can 
Th17 cells transdifferentiate into Tregs? By using a triple reporter 
mouse model that reports expression of IL-17A, IL-10, and Foxp3 
genes, Gagliani et al. [73] showed that Th17 cells generated during 

Staphylococcus aureus infection can be converted into IL-10high Foxp3lo 
Tr-1-like cells. Besides being positive for lymphocyte-activation 
gene 3 (LAG-3) and negative for CCR6, the latter cells (referred to 
as Tr-1exTh17 cells) showed features of Tr-1 in transcriptome analyses. 
TGF-β promoted Th17 to Tr-1 conversion [73]. AHR ligand 
6-formylindolo[3,2-b]carbazole (FICZ) also promoted Th17 to Tr-1 
cell conversion [73]. Thus, Th17 cells can transdifferentiate into 
regulatory cells.

Recent notable reports include those of Gaublomme et al. [74] and 
Wang et al. [75]. Reflecting the functional diversity of Th17, in vitro 
polarized Th17 cells can either cause severe autoimmune responses 
upon adaptive transfer (“pathogenic,” polarized with IL-1β + IL-6 + 
IL-23) or have little or no effect in inducing autoimmune responses 
(“non-pathogenic,” polarized with TGF-β + IL-6) [76,77]. RNA-seq 
was performed for single CD4+IL-17+cells isolated in vivo from EAE 
model mice. Significant cellular variation was observed, and in vivo 
Th17 showed cell states were progressively changed from the lymph 
nodes (LNs) to the central nervous system (CNS) [74]. The in vitro 
Th17 cells were also analyzed after activation under non-pathogenic 
(TGF-β + IL-6) or pathogenic (IL-1β+ IL-6 + IL-23) conditions. The 
profiles of these sets of cells formed a spectrum with distinctions and 
similarities when compared with the profile of the in vivo Th17 [74]. 
Interestingly, pathogenic Th17 cells expressed T-bet, GM-CSF, and 
IL-23R, for example, while non-pathogenic Th17 cells expressed IL-10. 
Exposure of non-pathogenic Th17 cells to IL-23 converted them to a 
pathogenic phenotype (Figure 1). In humans, Th17 cells that coproduce 
IL-17 and IFN-γ are generated upon infection with C. albicans, and this 
state of Th17 appears to be similar to that of pathogenic Th17 cells [75]. 
Further, in humans, Th17 cells that coproduce IL-17 with IL-10 are 
induced upon S. aureus infection [78], and this state is more similar to 
the non-pathogenic Th17 cells [75]. Wang et al. further reported CD5L/
AIM expression in non-pathogenic, but not in pathogenic, Th17 cells. 
CD5L behaved as a functional switch; its loss converted non-pathogenic 
Th17 cells into pathogenic Th17 cells. CD5L inhibits this conversion in 
a manner mediated by modulation of the intracellular lipidome, such 
as maintaining a high ratio of poly-unsaturated fatty acids (PUFA)/
saturated fatty acids (SFA) and restriction of cholesterol synthesis, and, 
thereby, ligand availability of RORγt. Notably, cholesterol synthesis is 
considered to be linked to the production of RORγt ligands, including 
oxysterol [79]. Thus, it is reasonable to consider that lipid metabolism 
plays important roles in T cell-mediated immunity, helping Th17 cells 
adapt to protective, as well as inflammatory, immune responses. 

IL-2 
Treg cells are highly dependent on IL-2 for survival, and the number 

of Treg cells can be dramatically reduced by neutralization of IL-2 [80]. 
In contrast, Th17 cell responses have been shown to be inhibited by 
IL-2. As considered above, Chen et al. showed that IL-2 depletion by 
Tregs acts as a positive regulator in the priming of Th17 cells [68]. In an 
attempt to utilize the immunosuppressive effect of IL-2, several authors 
administered low-dose IL-2 treatments in animal models and patients 
with type I diabetes [81]. To cite a few reports, in an application for type 
I diabetes therapy/prevention, IL-2 induced a dose-dependent increase 
in the proportion of Treg cells, without inducing deleterious changes in 
glucose-metabolism variables [82]. Webster et al. found that the in vivo 
activity of IL-2 can be enhanced by coinjection of anti-IL-2 mAbs and, 
intriguingly, one particular IL-2 mAb, when injected into mice as IL-2/
anti-IL-2-mAb complexes, selectively expanded Treg cells in many 
organs [83]. Thus-expanded Treg cells showed excellent suppressive 
functions, inducing resistance to EAE induction and conferrence of 
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tolerance to islet allografts. Further studies using IL-2/anti-IL-2-mAb 
complexes include that by Wang et al. that showed that this complex 
attenuates lung inflammation and heart failure progression in a 
congestive heart failure mouse model [84]. 

Ets-1 is a transcription factor belonging to the Ets family and is 
important in hematopoietic cell development [85]. Moisan et al. 
showed that Ets-1 is a negative regulator of Th17 development [55]. 
Ets-1-deficient cells produced less IL-2 than wild-type cells, and Ets-
1-deficient mice expressed abnormally high levels of IL-17 in the 
lung [55]. Tsao et al. showed that Ets-1 promotes IL-2 expression, 
synergizing with nuclear factor of activated T-cells (NFAT) in the 
transcription of IL-2 [86].

Zelante et al. focused on a role of IL-2, especially from DCs, to 
adjust Th17 activity [87]. Using a mouse model of invasive pulmonary 
aspergillosis, the authors showed that lung CD103+ DCs produce IL-2, 
leading to an optimally protective Th17 response. Mice conditionally 
lacking IL-2 in CD11c+ DC cells exhibited unrestrained production of 
IL-23 and fatal hyperinflammation, which was characterized by the 
emergence of a Th17 stem-cell-like population [87].

IL-4

Early studies have shown that systemic IL-4 immunotherapy 
improves Th1/Th17- or Th17-mediated diseases, such as EAE [88], 
experimental colitis [89], nonobese diabetes [90], and psoriasis in 
humans [91]. Using several DC populations, Guenova et al. found 
that IL-4 abolished the capacity of DCs to produce IL-23 while 
promoting IL-12p70. Further, an IL-4 therapy attenuated Th17-
related diseases through STAT6- and activating transcription factor 3 
(ATF3)-dependent suppression of the IL-23/Th17 responses, despite 
simultaneous enhancement of IL-12/Th1 responses [92]. One merit of 
such cytokines for clinical use would be their long history of research, 
which could help prevent adverse effects.

STAT3 and a subset of Foxp3+ Tregs regulating Th17 cells

STAT3 is a molecule responsible for programming Th17 effector 
cells; activation of STAT3 serves as the primary input to the genetic 
network that governs Th17 differentiation. In an influential study on a 
subset of Treg cells that regulate Th17, Chaudhry et al. [93] showed that 
STAT3 expression is important for a subset of Tregs that specifically 
regulate Th17 cells. Unlike Foxp3 knockout mice that show generalized 
lymphadenopathy, STAT3-deficient mice conditional to Foxp3 
promoter activation showed only splenomegaly and enlargement of the 
mesenteric lymph nodes, suggesting specific deregulation of Th17, as 
Th17 cells are mainly located in the intestine. The conditional knockout 
did not affect the number of Treg cells, but led to a selective increase in 
Th17 responses. Th1 and Th2 were kept in check by the conditionally 
STAT3-deficient Treg cells. Intriguingly, their gene expression analysis 
showed that 20% of Foxp3-dependent genes are also dependent on 
STAT3 expression in Treg cells. 

Koch et al. showed that Th1 immunity is under the control of Th1-
specialized Tregs, namely, Treg1 cells, proposing the concept of lineage-
specific Tregs [94]. Thus, Th1 and Treg1 share T-bet, and Th17 and 
Treg17 share STAT3. Key mediators of differentiation signals specific 
to a helper T cell subgroup are also utilized in a corresponding subgroup 
of Foxp3+ Tregs, likely endowing unique homeostatic and migratory 
properties optimized for suppression of the corresponding Th cells. 
Such examples include CXCR3 in Th1 and Treg1, IRF4 for Th2 and 
Treg2, and CCR6 in Th17 and Treg17 [94-97]. Thus, a developmentally 
related Treg subgroup may have been evolutionarily integrated into 

the homeostasis of each Th subgroup. This could provide benefits to 
immune system homeostasis as inappropriate distribution of Treg cells 
in vivo leads to tissue-specific inflammatory disease [98]. 

Using STAT3-knockout mice conditional to Foxp3 expression, 
Kluger et al. recently showed that these mice showed increased 
peritoneal Th17 responses, compared to wild-type controls, after i.p. 
pristane injection that is known to induce SLE in mice [99]. They 
reported that the lack of Treg17 cells also caused severe pulmonary 
vasculitis, as well as, at 4 and 9 months after the injection, aggravation of 
lupus nephritis, accompanied by enhanced Th17 responses [99]. They 
also found a reduced level of CCR6 in the Tregs from the conditional 
KO mice, supporting the CCR6-dependent anti-inflammatory effect of 
Treg17 cells.

Antigen stimulation and anergy induction 

A major part of this article discusses cytokines, reflecting our 
understanding that pathophysiological Th17 differentiation is 
profoundly regulated by cytokines. Yet, TCR signaling triggered by self-
antigen as causative for autoimmune diseases has long been considered 
of pathological importance, although it is not easy to identify specific 
causative antigens in most settings. Using cell transfer analysis between 
SKG mice that develop autoimmune arthritis (due to the ZAP-70 
mutation) and Rag2-knockout mice, Ito et al. presented a method 
to isolate arthritogenic TCR and revealed that the self-antigen was a 
ribosomal protein, RPL23A. The presence of anti-RPL23A antibody 
was confirmed in the serum of 16.8% of patients with RA, signifying 
the importance of this self-antigen [100]. Yet, although this work seems 
outstanding, it is generally difficult to determine such antigens due to 
ethical and technical problems. Even in the case of SKG mice, TCRs 
on arthritogenic CD4+ T cells were found to be highly polyclonal and 
varied among individual mice. Is it possible to identify and use peptides 
to induce Th17 cell tolerance in a TCR-specific manner? 

In general, successful vaccination requires targeting antigens 
to DCs as an appropriate method to stimulate immune responses 
[101].  As DCs express various receptors  on their surface, including 
TLRs, mannose receptors, and DC-SIGN receptors,  targeting 
such receptors for efficient delivery of antigens has been utilized 
for efficient anticancer immunotherapy [101].  DCs can take up 
mannosylated proteins, and present peptide antigen thereof, with a 
very high efficiency. Different stimulation methods of DCs, and their 
combinations (in receptor type and strength, for example), can lead to 
different immune responses. Hawiger et al. [102] showed that in vivo 
targeting of antigens selectively to steady-state (immature) DCs, by 
fusing them to an antibody against the DEC-205 endocytosis receptor, 
induced peripheral T cell tolerance in mice [102]. In Tseveleki et al.’s 
study, DCs loaded with myelin peptide conjugated to oxidized mannan 
induced anergy in antigen-specific Th1 and Th17 cells and tolerance in 
EAE in a transfer analysis [103]. Although further studies are needed 
to characterize the mechanism for the anergy induction, these findings 
suggest the potential usefulness of tolerance induction for therapeutic 
intervention in MS. 

B7/CD28 costimulation - unexpected suppression

CD28 was the first costimulatory receptor identified on T cells, and 
signaling through this receptor usually initiates potent T cell activation 
[104]. CTLA4 expressed on Treg cells is considered to compete with 
CD28 on effector T cells for costimulatory ligands and, in the hope of 
utilizing this effect, treatment with CTLA-4–Ig (abatacept) has been 
attempted in both RA and psoriatic arthritis [e.g., 105]. Paradoxically, 
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treatment of EAE with Abs against B7 family members (i.e., anti-CD80 
or anti-CD86 Abs) or injections of CTLA4-Ig actually exacerbated 
disease [106]. Moreover, the development of ulcerative colitis during 
CTLA4-Ig (abatacept) therapy in a patient with RA was reported 
[107]. These findings led to Bouguermouh et al.’s study showing that 
CD28 stimulation has a suppressive effect on Th17 cells. In a system 
with conventional plate-bound anti-CD3 stimulation of mouse 
peripheral CD4+ T cells under Th17-polarizing conditions, CD28 
costimulation decreased the proportion of IL-17-producing cells [108]. 
CD28 costimulation did not inhibit fully differentiated Th17 cells, 
but inhibited the polarization of naive CD4+ T cells into Th17 [108]. 
The inhibitory effect of CD28 stimulation was dependent on IL-2 and 
IFN-γ, likely secreted by the T cells used (CD4+ T cells) [104]. In support 
of the inhibition by CD28, coculture with bone marrow-derived DC 
(BMDC) and CTLA4-Ig showed that interrupting the B7 costimulatory 
pathway favored Th17 differentiation [108]. This CTLA4-Ig effect can, 
at least in part, explain the early observation that Tregs facilitate the 
differentiation of Th17 cells in a proinflammatory cytokine milieu 
[64,65]. Note, however, that a conflicting result has been reported; 
Ying et al. argued that addition of human (h)CTLA-Ig, that would 
mainly block CD28-CD80 interaction, suppressed the production of 
IL-17, as well as IL-4 and IFN-γ by anti-CD3-stimulated WT CD4+ T 
cells. When it was applied to CD28-/- CD4 T cells, it enhanced IL-17 
production, presumably by blocking CTLA4-CD80 interaction [109]. 
The cause for this discrepancy between the two studies [108,109] is not 
clear, but it may be due to differences in population or differentiation 
stage of T cells used.

Another case in which Tregs can enhance Th17-dependent 
inflammation has recently been reported by Watanabe et al. [110]. 
In their system, ovalbumin (OVA) epitope-specific iTregs, Th1, 
Th2, and Th17 cells were independently prepared in vitro and 
intravenously transferred to wild-type mice. Various combinations 
of cotransfer showed that the cotransferred iTregs suppressed 
Th1- and Th2-mediated colon thickening, but stimulated Th17-
mediated colon thickening. Prior oral administration of OVA led to 
immunosuppression of Th2- and Th1-mediated colon thickening, but 
instead accelerated Th17-mediated colon thickening. The augmentation 
by iTregs of Th17-mediated intestinal inflammation depended on 
CTLA4 [110]. This  corroborates Bouguermouh et al.’s results [108] 
showing an adverse effect of CD28 signaling on Th17 differentiation.

Dendritic cells (DCs) and extrinsic effects of TGF-β

As we have seen above, TGF-β promotes Th17 cell differentiation 

Veldhoen et al. showed that mice expressing dominant-negative TGF-β 
receptor (TGF-βR)II showed resistance to EAE through a reduction in 
Th17 cells [26,64]. The inhibition of the protease thrombospondin-1 
(TSP-1), that normally activates TGF-β delayed the onset of EAE [111], 
in accordance with the role of TGF-β-induced Th17 in EAE. However, 
TGF-β has long been considered to be an anti-inflammatory factor. 
In fact, early studies had shown that TGF administration reduced 
incidence and severity of EAE [112,113] and that injections of anti-
TGFβ1 antibody worsened EAE both in incidence and severity [113]. 
How can we explain such disparity? 

DCs can provide a microenvironment suitable for Th17 
differentiation. DC development induced by retinoic acid has an 
impact on Treg and Th17 development, as discussed in the next section. 
Here, we focus on Speck et al.’s study that used mice with DC-specific 
knockout of TGF-βR to investigate the role of TGF-β in their EAE model 
[27]. DCs lacking TGF-β signaling showed a highly mature DC profile 
and caused severe inflammation and Th17 response in CNS [27]. Using 
in vitro experiments with bone-marrow precursors, the authors also 
showed that TGF-β controls (limits) DC numbers at a precursor level, 
but not at the mature stage. This study is important because, while the 
promotive effect of TGF-β on Th17 cannot be doubted, extrinsic effects 
of TGF-β on Th17 are complex, and this careful experimental setting 
revealed a rather suppressive extrinsic effect of TGF-β via DCs. For 
efficacious therapeutic intervention in the future, analyses addressing 
differences due to tissue/compartment, cell type, and timing should be 
helpful. Complexity of TGF-β effects is likely to manifest as sensitivity 
to details of intervention protocol such as timing, dose, and methods of 
delivery chosen for treatment.

Retinoic acid in intestinal mucosal immunity

Retinoic acid, a vitamin A metabolite, plays important roles in 
embryonic and adult tissue development including immune cells 
[114]. Retinoic acid promotes the differentiation of iTreg cells, 
and, in mucosal immunity, fine-tunes the Treg-Th17 balance 
[115,116]. Retinoic acid generally can: 1) suppress IL-12-mediated 
Th1 differentiation, 2) enhance IL-4-mediated Th2 response, and 3) 
enhance TGF-β-induced Treg differentiation by upregulating Foxp3 
[114,116]. 

Retinoic acid potentiates induction of gut-homing Foxp3+ 
Treg cells, reciprocally inhibiting Th17 cells in vitro. Mucida et al. 
observed that exogenous retinoic acid inhibited TGF-β- and IL-6-
dependent Th17 induction in vivo in an infection model, allowing 
Treg differentiation, but injection of retinoic acid receptor (RAR) 
antagonists caused a decrease in Foxp3+Tregs in the lamina propria 
[39]. Thus, in conjunction with TGF-β, retinoic acid enhances the 
expression of Foxp3. Analyses of lamina propria by Denning et al. 
showed that there is normally a high production of cytokine TGF-β 
and IL-10 [117].

However, retinoic acid is not always immunosuppressive, its effect 
varying depending on the balance of various cytokines. Physiological 
concentrations of retinoic acid promote Th17 differentiation in vitro, 
whereas higher concentrations of retinoic acid inhibit Th17-cell 
responses in vitro and in vivo [118]. It is also unlikely that the findings 
in gut analyses can be extrapolated to non-gut phenomena; Pino-Lagos 
et al. showed that retinoic acid signaling in CD4+ T cells is necessary for 
T cell tissue accumulation and skin-graft rejection, which represents a 
role of retinoic acid opposite to tolerance induction [119]. 

DCs and their expression of retinaldehyde dehydrogenase 
Figure 1. A simplified model of developmental pathway of Th17 and related cells.
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(RALDH) activity are considered important for the immunological 
environment of the intestine. Broadly, the majority of retinoic acid 
functions in immunity are considered to be mediated by canonical 
RAR/retinoid X receptor (RXR) heterodimers, and by all-trans retinoic 
acid (ATRA) produced by retinaldehyde dehydrogenase 2 (RALDH2) 
and acting through RARα [116]. It is noted that most molecular studies 
highlighted immunosuppressive roles of retinoic acid. Xu et al. showed 
that retinoic acid stimulation leads to binding of RAR/RXR to the 
conserved enhancer region (enhancer I), causing increased histone 
acetylation in the region of the Smad3 binding site and subsequently 
increased binding of phosphorylated Smad3, thereby leading to Foxp3 
expression [120]. 

In the intestine, DCs, stromal cells, epithelial cells, and macrophages 
are sources of retinoic acid as shown by high RALDH activity [121,122]. 
CD103+ DCs in small intestine lamina propria and mesenteric LNs 
have higher Raldh2 expression relative to DCs in other tissues [123]. 
Retinoic acid levels correlate with the ability of the intestinal DCs to 
induce gut-homing potential in T cells [121,124]. 

Retinoic acid induces T cell homing to mesenteric LNs and gut via 
the enhanced expression of the gut-homing receptors α4β7 integrin 
and CCR9 [114,121]. The intestine, lamina propria, and mesenteric 
LNs have CD103+ DCs that produce TGF-β and retinoic acid, aiding 
development of Foxp3+ Treg cells. In particular, CD103+ CD11b+ DCs 
are the most numerous DCs in the small intestinal lamina propria, 
and are major constituents of the tolerogenic CD103+ DC population 
[125]. Although the impact of this subset (CD103+CD11b+) on Treg 
cells is difficult to isolate because of functional redundancy with 
CD103+CD11b- DCs, a decrease in intestinal Treg cells was observed 
in animals lacking all CD103+ intestinal DCs [126]. Many recent 
studies have focused on the effect of retinoic acid on differentiation 
and modulation of DCs. As an example, Klebanoff et al. showed that 
mice deprived of retinoic acid signaling show selective loss of splenic 
endothelial cell-specific adhesion molecule (Esam)high CD11b+ cells 
that are developmentally related to the small intestine lamina propria 
CD103+CD11b+ DC subset [127]. Transferred pre-DCs differentiated 
into the CD11b+ CD8a- subset, but transfer into vitamin A-deficient 
hosts caused differentiation to the CD11b+CD8a+ lineage [127].

Retinoic acid production and signaling in DCs can be enhanced 
by many factors, including retinoic acid itself [123], TLR signaling 
[128], GM-CSF [129], and IL-4 [129,130]. TLR2 signaling in DCs, in 
particular, appears to be important for maintaining host-microbiota 
mutualism [128]. Wang et al. showed that signaling of TLR1/2 induces 
retinoic acid-producing activity in splenic DCs, conferring the ability 
to imprint T cells for gut-homing [131].

Direct effects of retinoic acid on T cells have also been studied. 
Lu et al. showed that all-trans retinoic acid (ATRA) increased 
histone methylation and acetylation within the region including 
the promoter of Foxp3a, thereby promoting TGF-β-induced Treg 
development [132]. Nguyen et al. showed that retinoic acid treatment 
enhances TLR2-dependent IL-10 production by T cells and this, in 
turn, potentiates Treg cell generation [133]. Round et al. showed that 
symbiosis factor (PSA) from Bacteroides fragilis can induce Foxp3+, IL-
10-secreting Treg cells via TLR2 expressed on CD4+ T cells, promoting 
immunological tolerance and colonization of B. fragilis on mucosal 
surfaces [134]. More cases showing synergy with other cytokines and 
signals for retinoic acid are likely to emerge in the near future.

Unlike vitamin D, whose in-serum level can be measured as 
25-hydroxyvitamin D (25(OH)D), serum retinol level does not reflect 

the intracellular retinoic acid concentration, making clinical studies 
difficult. Nonetheless, several studies focused on the clinical relevance 
of retinoic acid. In a mouse model of allergic airway inflammation, 
ATRA treatment attenuated airway inflammation and decreased Th2- 
and Th17-related transcription factors [135]. In vitro analyses also 
showed that ATRA modified Treg/Th17 balance in favor of Treg cells 
[135]. Vitamin A level (measured as the retinol binding protein (RBP)/
transthyretin (TTR) ratio) was negatively correlated with CD4+ T cell 
proliferation in patients with MS [136], and vitamin A supplementation 
in patients with MS upregulated TGF-β and Foxp3 expression in 
PBMCs [137]. Therapeutic modulation of RALDH activity appears to 
be a worthwhile approach. Manicassamy et al. [138] showed that Wnt/
β-catenin signaling in intestinal DCs is required for Raldh1 and Raldh2 
expression, as well as IL-10 and TGF-β and that β-catenin deletion in 
DCs led to lower Treg and higher Th1/Th17 cell differentiation making 
the host susceptible to inflammatory bowel diseases (IBD) [138].

Some studies have focused on retinoic acid receptors. Of note, RXRs 
(RXRα, RXRβ, and RXRγ) can form homo- as well as heterodimers 
with several nuclear receptors including RARs, vitamin D receptor 
(VDR), LXR, and PPARγ. CD4+ T cells mainly express RXRα. ATRA 
binds to RAR and 9-cis–retinoic acid can bind to both RAR and RXR 
[139]. Recently, Chandraratna et al. showed that RXR activation by 
IRX4204 promotes iTreg formation, inhibits Th17 development, and 
can profoundly alleviate disease in EAE mouse models [140]. Brown 
et al. used mice carrying a dominant negative form of RARα and 
showed that loss of retinoic acid signaling in fully committed Th1 
cells leads to transdifferentiation to cells that have features of Th17 
lineage, implying that retinoic acid stabilizes the differentiation state 
of Th1 and suppresses Th17 pathways [141]. This suppression was 
necessary to prevent pathogenic Th17-biased responses in Listeria 
monocytogenes infection and OVA-specific TCR model mice. Retinoic 
acid-RARα antagonized the activity of transcription factors important 
for Th17 differentiation (IRF4, basic leucine zipper transcription factor 
(BATF), STAT3, and RORγt), without any signs of antagonizing Th2-
cell-associated genes [141]. Taken together, RALDH, retinoic acid, 
and its receptors could be a target for therapeutic intervention for the 
suppression of Th17 cells. It is likely that in the near future further 
progress will be made in various subareas of vitamin A research.

Vitamin D

Vitamin D, or specifically, its active form 1,25(OH)2-cholecalciferol 
(1,25-(OH)2D3) is known for its role in maintaining systemic levels of 
calcium and phosphate. 1,25-(OH)2D3 is derived from 25(OH)D by 
CYP27B1-mediated reactions and exerts its effects through VDRs. 
25(OH)D is commonly used as a marker for vitamin D status. The 
1,25-(OH)2D3-VDR-RXR complex recruits coactivator or corepressor 
complexes, depending on the type of cell, thereby determining the 
transcriptional response from vitamin D response element (VDRE)-
containing genes [142]. Several studies reported a negative correlation 
between circulating 25(OH)D and MS disease activity [e.g., 143]. In 
patients with MS with low vitamin D levels, an intervention with 
supplementary vitamin D significantly reduced disease progression 
[144]. However, the evidence for vitamin D as a treatment for MS is 
inconclusive, as all studies were underpowered due to small sample 
sizes [145]. Notably, Pozuelo-Moyano et al. suggested stratifying by 
HLA-DR15 (MS risk allele) status in future trials and including patients 
with progressive forms of MS, considering that the possible protective 
effect of vitamin D could be masked by subgroups of nonresponders.

Correlations between VDR alleles and MS susceptibility have 
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been reported [146,147], yet no association with VDR alleles was 
observed in a genome-wide association study despite the identification 
of 57 regions significantly associated with MS, suggesting weak or 
no appreciable association of VDR alleles [148]. For several specific 
alleles of VDR, functional impacts have been shown [142]. Although 
CYP27B1 mutations are rare and do not contribute a genetic risk in the 
majority of disease cases, an analysis using an in vitro system allowing 
differentiation of DCs demonstrated that the risk allele of CYP27B1 is 
underexpressed in tolerizing DCs [149]. Overall, while genetic evidence 
for vitamin D involvement in autoimmune pathogenesis is increasing, 
it seems challenging to pinpoint the causative genes, due to the limited 
resolution hampering dissection of linkage disequilibrium blocks 
[149]. There could be multiple causative alleles with weak predisposing 
effects.

More unequivocal results on the protective effects of vitamin D 
have been obtained in rodent models. Th1, Th2, and Th17 cells were all 
shown to express Vdr transcripts and can be modulated by vitamin D 
[150]. 1,25-(OH)2D3 is likely to have no impact on fully differentiated 
rodent CD4+Foxp3+ T cells [151], although VDR-dependent 
downregulation and upregulation of Foxp3 transcription in rodent 
CD4+Foxp3+ T cells have also been reported [142]. Mixed bone marrow 
chimera studies showed that 1,25-(OH)2D3 inhibited EAE induction in 
a manner dependent on Vdr expression in hematopoietic cells [151]. 
1,25-(OH)2D3 failed to inhibit EAE induction in mice with knockout 
of Vdr specific to CD4+ T cells [151]. On the other hand, mice with 
global knockout of Vdr had Th17 cells that overproduced IL-17 and a 
reduced number of tolerogenic DC cells [152]. These results support 
the suppressive role of vitamin D against Th17 functions.

Using cells from patients with hereditary vitamin D–resistant 
rickets (HDVRR), Tiosano et al. showed that TNF-α and IL-17 
concentrations were significantly higher in HVDRR lymphocyte 
cultures than in controls. 25(OH)D suppressed IL-17 only in control, 
and not in HVDRR, lymphocytes [153]. However, as the authors 
discuss, the cohort of 35 patients with HVDRR did not show a higher 
incidence for infectious or autoimmune diseases, suggesting the 
presence of compensatory mechanisms that protect patients with 
HVDRR from such diseases. 

Smad3 is a member of the Smad family that transmits TGF-β 
signaling [154]. Smad3 interacts with the VDR and promotes its 
function in transcriptional regulation. A recent study by Nanduri et 
al. showed that 1,25-(OH)2D3-VDR-RXR heterodimer directly binds to 
the VDRE in the Smad7 promoter and inhibits its expression in Th17 
cells [155]. Notably, Smad7 is known as one of the inhibitory Smads 
that negatively regulate TGF-β signaling in a feedback regulatory 
mechanism [156]. The VDR axis also activated extracellular signal-
regulated kinase (ERK), inhibiting expression of Th17-specific genes.

Both animal and human studies have implicated 1,25-(OH)2D3 as a 
positive regulator of genes encoding receptor activator of nuclear factor 
kappa-B ligand (RANKL) and of cutaneous IL-10-producing iTreg cell 
induction, suggesting the usefulness of phototherapy during periods 
of light starvation for immune-mediated diseases [142,157]. Overall, 
however, vitamin D and human Th17 studies have so far provided 
conflicting data [142]. One relatively unnoticed confounding factor 
could be melatonin, a hormone that controls circadian rhythms and is 
immunosuppressive, as we discuss below. Specifically, it could be that 
the melatonin level is high in winter, assisting the maintenance of an 
immunotolerant environment, complementing the light starvation in 
winter that would lower the level of 1,25-(OH)2D3. In general, besides 

the direct effects on Th17, extrinsic effects mediated by Treg and other 
immune cells appear important for Th17 regulation by vitamin D. 

STAT3 vs STAT1

STAT3 is the primary input to the genetic network that governs 
Th17 differentiation [158]. The effect of IL-6 on Th17 differentiation 
is mediated by JAKs that in turn activate STAT members, including 
STAT3. In contrast, STAT1 reacts negatively to Th17 differentiation. 
IL-27 is considered to be a potent inhibitor of Th17 differentiation and 
exerts its inhibitory effect in a STAT-1-dependent manner [159].

However, it was puzzling that IL-10 and IL-27, neither of which 
supports Th17 differentiation, can activate STAT3. Do other factors 
enable differential functions of the latter cytokines [158]? Recently, 
Peters et al. showed that, in STAT1-knockout mice, IL-27 “induced” 
Th17, suggesting that the ratio of activated STAT3/activated STAT1 is 
important for the Th17 differentiation program [158].

Hirahara et al. performed genome-wide transcriptome analysis 
[160]. Intriguingly, there was an extensive overlap of the transcriptomes 
induced by IL-6 and (Th17-inhibiting) IL-27 with few examples 
expressed in an opposite manner by the cytokines. They further showed 
that STAT3 is responsible for the overall transcriptional output for IL-6 
and IL-27, whereas STAT1 shapes the specific signature superimposed 
upon STAT3’s action, driving specificity. Hirahara et al. found that 
much of STAT1 binding to chromatin is dependent on STAT3, and 
most likely on heterodimer formation with STAT3.

Targeting RORγt

RORγt, the master transcription factor of Th17 cells, is indispensable 
for Th17 cell development, but not for other T-helper-cell lineages. 
RORγt not only promotes the production of IL-17 and IL-22 from 
Th17 cells, but also promotes these cytokines’ production by lymphoid 
tissue inducer (LTi) cells and other RORγt+ innate lymphocytes (ILCs), 
suggesting parallel functionalities of ILCs and Th17 cells during host 
defense [161]. Notwithstanding the presence of these RORγt+ cells 
other than Th17, RORγt remains an attractive pharmacologic target 
for the treatment of Th17 cell-mediated immune disorders. Taking 
advantage of the ligand-binding pocket of RORγt, small-molecular 
weight compounds have been screened.

Digoxin has been shown to specifically inhibit the transcriptional 
activity of RORγt and suppress Th17 differentiation [162]. Digoxin 
showed no effect on CD4 T cell differentiation toward Th1 and no 
binding to RORα [162,163]. However, concentrations of 1-2 µM appear 
to be necessary in vitro, and collagen-induced arthritis (CIA) model 
mice required 2 mg/kg via thrice weekly injections. This concentration 
is high, calling for a careful assessment of adverse effects if therapeutic 
translation is conducted.

Another example is SR1001, a derivative of T0901317 that is an 
LXR ligand [164]. SR1001 was devoid of all LXR activity yet retained 
its ability to suppress the activity of RORα and RORγt. Xiao et al. 
identified three RORγt inhibitors (TMP778, TMP920, and GSK805) 
that suppress Th17 development and alleviate EAE in model mice 
[165]. Another molecule that inhibits RORγt is ursolic acid, a small 
molecule used in herbal medicine [166].

Interestingly, Lin et al. [166] discussed CD4 aptamer-RORγt short 
hairpin RNA (shRNA) chimeras that enabled CD4-specific shRNA 
delivery to suppress RORγt expression. To derive the aptamer part 
of the chimera, systematic in vitro ligand evolution was performed 
and target-specific aptamers were isolated from a random sequence 
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oligonucleotide library. This technique may enhance the efficacy of in 
vivo injection of shRNA recombinant plasmid DNA [e.g., 167]

Foxo1

Members of the forkhead box O (Foxo) family of transcription 
factors regulate many facets of cell physiology, including cell 
proliferation [168]. Phosphorylation by Akt downregulates 
their activity. Foxo members are important for specifying T cell 
differentiation, particularly in the pathway to Tregs [168]. It is still a 
matter of debate whether Foxo1 directly controls Foxp3 [168], but Foxo1 
is likely a T cell-intrinsic regulator of tolerance [169]. T cell-specific 
deletion of Foxo1 caused spontaneous T cell activation and induction 
of inflammatory bowel diseases in a transfer model. Foxo1-deficient 
T cells had low IL-7R expression, compromising IL-7-induced T cell 
survival and proliferation, and in particular naive T cell homeostasis 
[169]. Foxo1 acts as a direct repressor of IL-23R expression [170]; 
the Il23r promoter is transactivated by RORγt in IL-23-restimulated 
Th17 cells and can be inhibited by Foxo1 [170]. Importantly, using a 
bone marrow chimera strategy, Laine et al. showed that Foxo1 does 
not need Tregs to negatively regulate Th17 cell differentiation, and this 
regulation depends on the direct binding of Foxo1 to RORγt [171]. 
Given the T cell-intrinsic suppressive activity of Foxo1, it is hoped that 
in the near future further analyses of this molecule may produce useful 
findings. 

IL-35

IL-35 is an immunoregulatory cytokine that belongs to the IL-12 
family and consists of the Epstein-Barr virus-induced gene 3 (EBI3) 
and the p35 subunit of IL-12 [172]. Notably, IL-27 and IL-35 share the 
EBI3 subunit. IL-35 is normally produced by CD4+Foxp3+ Tregs and 
iTr35, a regulatory T-cell population [173]. We only briefly discuss IL-
35 here, given the excellent review articles available [e.g., 174,175]. 

IL-35 has shown its therapeutic effectiveness in several studies 
[175]. In Niedbala et al.’s study, recombinant IL-35 fusion protein 
(EBI3-p35-Fc fusion) suppressed CIA, at least in part, by increasing 
IL-10 in serum and suppressing Th17 cells [176]. In the latter system, 
IFN-γ was enhanced. Wirtz et al. showed that, compared with IL-
27p28-deficient mice, EBI-3-deficient mice showed more severe 
features of colitis with increased numbers of T cells producing Th1 
and Th17 cytokines in mucosa [177]. Recombinant IL-35 suppressed 
the colitis and reduced levels of systemic markers for Th1 and Th17 
cells. Bettini et al. generated NOD transgenic mice in which IL-35 was 
expressed in pancreatic β-cells. This expression protected the NOD 
mice from autoimmune diabetes [178]. Kochetkova et al. found that IL-
35 suppressed CIA in a mouse model and that CD39+CD4+ regulatory 
T cell expansion, a new subset of regulatory T cells, plays an important 
role in this protection [179]. It is possible that IL-35 effects are strongly 
dependent on IL-10 [179,180].

However, some studies showed proinflammatory functions of 
IL-35. In Thiolat et al.’s study [180], direct DNA injection followed 
by in situ electrotransfer into the cells of CIA mice unexpectedly 
aggravated the CIA and produced increased Th17/Treg ratios. Filková 
et al. showed an increased level of IL-35 in synovial tissue of patients 
with RA [181]. In both PBMCs and synovial fibroblasts in RA, in vitro 
stimulation with TNF-α-induced expression of IL-35. Strikingly, IL-
35 treatment increased proinflammatory cytokine production by 
human PBMCs [181]. Cao et al. showed an enhanced IL-35 level in 
patients with sepsis as well as in cecal ligation and puncture (CLP)-
induced sepsis in mice [182]. In the latter model, a blocking analysis 

showed that the IL-35 effect is generally suppressive against neutrophil 
recruitment and proinflammatory cytokine production, but that IL-35 
facilitates bacterial dissemination.

IL-35 can activate both STAT1 and STAT4, but this balance is 
determined by the receptors [174]. STAT1 activation negatively effects 
Th17 differentiation, but STAT4 is controversial. While the findings of 
Varikuti et al. suggest that STAT4 is important for Th1 and Th2, but not 
for Th17 [183], McWilliams’ data suggested that Th17 differentiation is 
influenced by STAT4 activation [184]. Dulek et al. also showed that 
STAT4 deficiency strongly affected Th1, but it also affected Th2 or Th17 
responses [185].

T cell factor 1 (TCF-1) and Wnt 

The Wnt proteins are a large family of palmitoylated secreted 
glycoproteins that regulate many processes, including cell development. 
Wnt signaling is important in T cell development as well as in cellular 
developmental processes and tumorigenesis. Review articles, including 
that by Ma et al. [186], generally suggest its immunosuppressive role. 
Among the (at least three) Wnt signaling pathways, a transcriptional 
coactivator β-catenin serves in the canonical Wnt signaling pathway, 
by interacting with transcription factors including TCF. Wnt/β-
catenin signaling influences T cell polarization in favor of Th2 over Th1 
[187] and potentiates the survival of nTregs [188]. Consistent with this, 
specific deletion of β-catenin in DCs led to low Treg and high Th1/
Th17 differentiation [138].

As its name suggests, TCF-1 plays an important role in T cell 
development, involving transition from the CD4-CD8- double negative 
to the CD4+CD8+ double positive (DP) state [189]. Ma et al. showed 
that  TCF-1-deficient mice were susceptible to Th17-dependent EAE 
induction and had a higher proportion of Th17 cells compared to wild-
type mice [190]. They observed that TCF-1 regulates Th17 differentiation 
affecting neither TGF-β-induced Treg differentiation nor expression of 
Th17 master factors like RORγt, STAT3, RORα, AHR [191], Runx1 
[192], Ets-1, IRF4, or BATF. TCF-1 did not appear to affect Th17 
differentiation at the mature T cell stage.  Rather, analysis of histone 
acetylation and methylation states suggested that knockout of TCF-1 
leads to opening up of the IL-17 locus in the thymus due to chromatin 
modifications. Thus, TCF-1 is likely to repress IL-17 gene expression 
via epigenetic modifications during T cell development [190], and is 
therefore important for the early stage of Th17 development.

Ye et al. compared CD4+ T cell transcriptomes between patients 
with RA and healthy controls using microarray analysis and pathway 
analysis. Differentially expressed (DE) genes showed enrichment of 
immune response, T-cell response, and apoptotic signals [193]. The 
Wnt signaling pathway showed differential expression; the degree of 
enrichment of DE genes of STAT3 signaling and that of Wnt signaling 
were comparable, suggesting the importance of the Wnt signaling 
pathway in pathological roles of CD4+ T cells in RA development.

Frizzleds are seven-pass transmembrane proteins similar to 
G-protein-coupled receptors and are the main proteins responsible 
for binding to Wnt on the plasma membrane. Secreted frizzled-related 
proteins (sFRPs) make up the largest family of Wnt inhibitors. sFRP1 
functionalities involve inhibition of Wnt signaling by hindering 
Wnt binding to Frizzled and by forming nonfunctional complexes 
with Frizzled [194]. Lee et al. showed that sFRP1 potentiates IL-17 
production from restimulated human memory CD4+ T cells and 
promotes Th17 differentiation in a manner mediated by inhibition 
of the Wnt pathway. sFRP1 enhanced TGF-β activity in human T 
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cells, appearing to positively regulate Th17 differentiation [195]. They 
also showed that sFRP1 and IL-17 levels were high relative to those 
of patients with osteoarthritis and were positively correlated in the 
synovial fluid of RA.

TIGIT confers Treg cells suppressive ability specific to Th1 
and Th17 

T cell Ig and immunoreceptor tyrosine-based inhibition motif 
(ITIM) domain (TIGIT), also known as VSTM3, is a recently identified 
coinhibitory receptor that is found on NK cells, memory T cells, 
follicular Th cells, and on a subset of Tregs [196]. Similar to the well-
known competition between CTLA-4 and CD28, TIGIT (on Tregs) and 
CD226 (on NK, Th1, and CD8+ T cells) share ligands (e.g., CD155 on 
DCs). TIGIT is considered to have dual (or more) pathways to inhibit 
T cell responses. Besides the hindering CD226-CD155 interaction, 
engagement of TIGIT inhibits T cell responses via its cytoplasmic 
ITIM motifs and recruitment of the phosphatase SHIP-1. Interestingly, 
TIGIT+ Tregs selectively suppress Th1 and Th17 responses, sparing Th2 
responses [197]. Compared to TIGIT-deficient Treg cells, TIGIT+ Treg 
cells abundantly express CTLA-4, CD25, IL-10, Foxp3, and fibrinogen-
like protein 2 (Fgl2), signifying their high suppressive potency. Both 
soluble TIGIT administration and lentivirus-mediated expression of 
TIGIT ameliorated CIA in mouse models [198,199]. TIGIT ligation 
induces secretion of Fgl2, which is necessary for the potent suppression 
of Th1 and Th17, as well as for prevention of Th2 suppression [197]. 
Intriguingly, both in vivo and in vitro findings supported a view that 
IL-17 promoted production of Fgl2 in spleen cells, suggesting the 
presence of a homeostatic regulation loop [200]. Specific mechanisms 
for Fgl2 action await further elucidation.

IRF4, BATF and IRF4-binding protein (Def6) and ROCK2 

Although we cover only a few studies on transcription factors, a 
complex picture of the gene network governing Th17 differentiation 
emerges even when focusing only on proteins associated with IRF4. 
IRF4, a member of the IRF family of transcription factors, is a key 
regulator of Th17 development, although its expression is also regulated 
in other T cells [46]. Irf4-/- mice show a lack of Th17 differentiation 
and are resistant to autoimmune diseases in models of EAE and colitis. 
Def6 acts as an inhibitor of IRF4. Def6-deficient mice developed a 
systemic lupus-like syndrome [201]. In Chen et al.’s study, Def6-
deficient mice crossed to DO11.10 mice that carry a transgenic TCR 
recognizing a specific peptide exhibited spontaneous development 
of arthritis, large-vessel vasculitis, and enhanced production of IL-
17 and IL-21 [202]. They also showed that Def6 sequesters IRF4 and 
prevents it from targeting the transcriptional regulatory regions of Il-
17 and Il-21 [202]. Def6 can directly interact with IRF4 and prevent 
Rho-associated coiled-coil-containing protein kinase 2 (ROCK2)-
mediated IRF4 activation (phosphorylation) necessary for binding 
to regulatory regions of IL-17 and IL-21 [202,203]. Notably, ROCK2 
activation also plays an important role in Th17 differentiation, and 
Def6 generally acts to suppress ROCK2 activity [203]. Of practical 
importance, oral administration of the ROCK2 inhibitor KD025 in 
healthy humans downregulated the ability of PBMCs to secrete IL-
21 and IL-17 upon stimulation [204]. KD025 and siRNA-mediated 
inhibition of ROCK2 negatively regulated STAT3 phosphorylation and 
reduced the levels of IRF4 and RORγt [204]. Treatment with KD025 
successfully ameliorated chronic graft versus host disease (GVHD) in 
several mouse models [205].

Schraml et al. showed that the activating protein 1 (AP-1) 
transcription factor, BATF, is required for Th17 development [206]. 

BATF was found to bind conserved intergenic elements in the Il-17a-Il-
17f locus and to the Il-17, Il-21, and Il-22 promoters [206]. Chromatin 
immunoprecipitation (ChIP) analysis by Glasmacher et al. showed that, 
in Th17 cells, IRF4 targets sequences enriched for AP-1-IRF composite 
elements (AICEs) that are cobound by BATF [207]. Thus, both IRF4 
and BATF are necessary for Th17 differentiation.

Is there any inhibitory factor against BATF useful for Th17 
suppression? Miao et al. [208] showed that early growth response 
gene (Egr)-2, a zinc-finger transcription factor, interacts with BATF 
in CD4+ T cells and suppresses its interaction with the Il-17 promoter. 
Conditional Egr-2 knockout did not change the levels of STAT3 
activation or RORγt expression. Thus, inhibition of BATF is a unique 
function of Egr-2, and the BATF pathway appears to be independent 
of STAT3 and RORγt. In Zhu et al.’s study [209], analysis of mice with 
Egr-2 knockout conditional to T cells showed hyperresponsiveness in 
response to TCR stimulation and Th1/Th17 bias resulting in lupus-like 
syndrome.

Among BATF-associated molecules, IRF8 is notable as a key factor 
regulating differentiation between Th1 and Th17 pathways. IRF8 can 
bind to BATF and negatively regulate Th17 differentiation [210]. 
Retinoic acid upregulates Irf8 in Th1 differentiating cells, thereby 
suppressing Th17 cell genes [141].

Metabolic pathways and mTOR

Upon activation, T cells dramatically alter their metabolic activity 
to meet the increased metabolic demands for cell proliferation and 
effector functions. A number of studies have focused on the system 
integrating T cell activation and control of their metabolic state [211]. 
For instance, Chang et al. demonstrated that the effector function of T 
cells is coupled with the state of glucose metabolism [212]. They first 
showed that T cells grown with galactose, but not with glucose, shift 
to a state in which respiration (oxidative phosphorylation) is used, but 
aerobic glycolysis is not used in the main, for energy acquirement (i.e., 
generation of ATP). This finding is consistent with earlier reports, e.g., 
Rossignol [213]. Strikingly, T cells cultured in galactose had a severe 
defect in IFN-γ and IL-2 production. These findings indicated that the 
state utilizing aerobic glycolysis is coupled to cytokine production. In 
the absence of aerobic glycolysis, IFN-γ translation was blocked by 
enhanced GAPDH binding to IFN-γ mRNA [212]. Thus, engagement/
disengagement of aerobic glycolysis allows the post-translational 
regulation of IFN-γ in T cells. Such coupling may ensure that, when 
T cells undergo antigen-driven proliferation during the immune 
response, effector cytokines are produced to meet their requirement; 
whereas when T cells undergo homeostatic proliferation, and such 
cytokine production is not necessary, they do not produce cytokines. 
Increased expression of PD-1 was also shown in the T cells cultured 
with galactose. Coculture experiments showed that the presence of 
tumor cells causes nutrient restriction to T cells that dampens cytokine 
production and, at the same time, increases PD-1 expression [212].

Multiple metabolic programs are controlled by mTOR signaling. 
After treatment with the mTOR-specific inhibitor rapamycin, effector 
T cell development was greatly diminished [211]. TCR signaling 
induces uptake of amino acids including leucine, which is important 
for activation of mTORC1 and metabolic reprogramming of T cells 
[214]. Notable studies on metabolism and Th17 development include 
that of Nakaya et al. showing that stimulation of naive CD4+ T cells via 
TCRs and CD28 triggers the uptake of glutamine, the most abundant 
amino acid in plasma [215]. The amino acid transporter ASCT2, that 
was found to be crucial for glutamine uptake, was required for naive 
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T-cell differentiation to Th1 and Th17 cells, but not to Th2 cells. Amino 
acids can activate mTORC1 by targeting it to lysosomal membranes 
for activation [216,217]. ASCT2 was required for TCR and CD28-
stimulated activation of mTORC1 pathways, but not for the activation 
of several other T-cell activation pathways, including the MAP kinase 
pathways [215].

mTORC1 increases expression of HIF1α [218]; HIF1α in turn, 
upregulates Glut1 expression increasing glucose uptake [219]. HIF1α 
was shown to be critical for the development of Th17 in both mice and 
humans [220,221]. Expression of the enzymes mediating rate-limiting 
steps in glycolysis are positively regulated by HIF1α [220]. T cells 
deficient in HIF1α showed impaired ability of Th17 cell differentiation, 
and this was explained by the decreased glycolysis [220]. Inhibition of 
glycolysis shifted the Th17/Treg balance in favor of Treg cells. Thus, 
the tuning of Th17/Treg balance is coupled to a very fundamental 
biochemical process (glycolysis); this is not specific to Th17, but shared 
at least by T cells [222]. These findings suggest that TCR- and CD28-
stimulation promotes Th17 cells to an enhanced state in which, even 
in inflamed tissues that are inevitably hypoxic, Th17 cells can utilize 
glycolysis to generate ATP under the limited oxygen availability, as well 
as exert effector functions. 

Liver kinase B1 (LKB1) is a serine threonine kinase identified as the 
tumor suppressor responsible for Peutz-Jeghers syndrome [223]. LKB1 
is known to activate AMP-activated protein kinase (AMPK), which, 
in turn, suppresses mTOR activity [224]. As AMPK is considered a 
conserved guardian of cellular energy [225], there appeared to be an 
anticipation that LKB1-deficiency and AMPK-deficiency would lead 
to enhanced activation of Th17 cells. Using LKB1-knockout mice 
conditional to T cells, MacIver et al. reported that T cells lacking 
LKB1 show increased rates of glucose uptake and glycolytic activities, 
as well as enhanced expression of Glut1 [226]. LKB1-deficient T cells 
showed elevated IFN-γ and IL-17A production, as well as enhanced 
differentiation toward Th1 and Th17 lineages, relative to control T cells 
[226]. They further showed that AMPKα1-deficient T cells showed 
elevated glycolytic activities, but this deficiency did not show an effect 
on Th1, Th2, and Th17 effector cell differentiation and functions [226]. 
This unexpected result may represent the common challenge in this 
type of study: in genetic analyses using knockout and conditional 
knockout animals, the effect may become masked by compensation 
[227].

β-oxidation of FA produces copious acetyl-CoA that serves as a 
fuel for mitochondrial oxidation. Although acetyl-CoA can be derived 
from pyruvate (the glycolysis product), mitochondrial oxidative 
metabolism, in theory, can operate if acetyl-CoA is abundant even if 
pyruvate is not abundant. In general, it has been proposed that the 
two reciprocal processes (FA synthesis vs FA oxidation) are biased 
in favor of FA oxidation in iTreg cells, whereas FA synthesis is more 
important in activated Th17 cells to meet proliferation requirements 
[228]. This hypothesis postulates that Treg cells rely on mitochondrial 
FA oxidation to proliferate and this bias is, at least in part, caused by 
activation of AMPK [228].

Acetyl-CoA carboxylases (ACCs) catalyze the conversion of 
acetyl-CoA to malonyl-CoA, the key step for regulation of cellular 
FA metabolism. In both mice and humans ACCs have two isoforms, 
ACC1 (cytosolic) and ACC2 (associated with the outer membrane 
of mitochondria) [229]. Using ACC1–knockout mice conditional 
to T cells and soraphen A, an ACC1 and ACC2 inhibitor, Berod 
et al. showed that de novo FA synthesis controls the Th17/Treg 

differentiation pathway. Naive CD4+ T cells cultured under the Th17 
polarizing condition in the presence of soraphen A exhibited reduced 
expression of Il-17f, Stat3, and Hif1a, and enhanced phosphorylation 
levels of AMPK, all indicative of Treg/Th17 balance modulation in 
favor of Treg. However, this effect of ACC inhibition is not specific to 
Th17 lineages; it also suppressed proliferation of CD4+ T cells cultured 
under Th1- and Th2-polarizing conditions [230]. 

PPARγ and LXRs - transrepression

Besides its roles in lipid metabolism, PPARγ exerts an anti-
inflammatory response in murine and human macrophages [231]. This 
effect is likely mediated mainly by transrepression; liganded PPARγ 
inhibits the inflammatory activities of AP-1, STAT-1, NF-κB, and 
NFAT. This property of PPARγ enables it to promote Th2 cytokine 
production, decreasing Th1 cytokine production [232].

Using CD4+ T cell-specific PPARγ-knockout mice, Klotz et al. 
indicated that PPARγ serves as a specific brake of Th17 differentiation. 
Treatment with the PPARγ agonist pioglitazone (PIO) suppressed 
Th17 differentiation, but showed no influence on Th1, Th2, or Treg 
differentiation [47]. Direct interaction of PPARγ with RORγt was 
not observed. Rather, PPARγ activation caused persistent binding of 
a corepressor, silencing mediator for retinoid and thyroid hormone 
receptors (SMRT), to the RORγt promoter. Notably, a ChIP assay 
showed that clearance of SMRT from the RORγt promoter normally 
precedes RORγt expression induced by TGF-β/IL-6 stimulation of 
CD4+ T cells. Thus, anti-inflammatory actions of PPARγ ligands 
have much to do with stabilization of the repression state of NCoR1/
SMRT [233]. Both NCoR1 and SMRT repress proinflammatory genes 
in macrophages, most of which are normally upregulated by NF-κB. 
The anti-inflammatory effect of PPARγ ligands involves prevention 
of NCoR1 dismissal [234]. Anti-inflammatory mechanisms of both 
PPAR and LXRs involve ligand-dependent self-sumoylation, which 
in turn inhibits NCoRI ubiquitination or phosphorylation induced by 
LPS, modifications normally leading to dismissal from promoters in 
proinflammatory conditions.

LXRs belong to the nuclear receptor superfamily that plays 
important roles in cholesterol and fatty acid metabolism, positively 
regulating genes for cholesterol efflux and bile acid synthesis [235]. 
LXRs have been shown to repress inflammatory gene expression 
in macrophages [234,236]. Both LXR isoforms (LXR-α and -β) are 
expressed in CD4+ T cells [237]. Intriguingly, Cui et al. [48] showed 
that LXRs mediate negative effects on Th17 differentiation. Analysis of 
mice deficient for both LXR-α and -β showed that LXR protein itself 
acts to inhibit Th17 differentiation and initiation of EAE. Treatment 
with LXR agonists (GW3965 and T0901317) decreased expression of 
RORγt and profoundly inhibited Th17 differentiation. They further 
identified the E-box element, a putative Srebp-1-binding site, within the 
IL-17 promoter and found that it is necessary for T0901317-dependent 
suppression of Th17 differentiation. They also showed that Srebp-1, 
whose gene is regulated by LXR, suppresses Th17 differentiation by 
binding the E-box element, thereby binding to and inhibiting the AHR 
that normally increases Il-17 transcription. 

Reflecting their involvement in many cellular processes, LXRs 
have multifaceted roles in immunity. In murine macrophages, LXR 
activation antagonizes the NF-κB pathway, thereby inhibiting TLR4-
mediated LPS responses [236]. Reciprocal inhibition between TLRs 
and LXRs has been discussed [238]. However, in human macrophages 
LXR can potentiate LPS-induced responses [239]. In Korf et al.’s study, 
treatment with a synthetic LXR agonist showed increased resistance 
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to M. tuberculosis infection resulting from activation of LXR-signaling 
pathways, that was accompanied by increased Th1/Th17 function in 
the lungs [240]. This is reminiscent of Joseph et al. [236] that showed 
the requirement of LXRs for normal immunity to L. monocytogenes. 
Given such broader implications, assessment of many aspects of 
metabolism and immunity, as well as detailed evaluations regarding 
timing and dose, may become important if LXR-based therapeutics are 
pursued for Th17 suppression. Regarding PPARγ, further regulatory 
factors may also be elucidated in the near future. For example, T cell 
expression of epidermal fatty acid-binding protein (E-FABP) promotes 
Th17 differentiation, while counterregulating development of Foxp3+ 
Tregs [241]. E-FABPs may act to sequester PPAR ligands in the 
cytoplasm, thereby inhibiting nuclear entry and PPAR activity [241].

A lipidome-based approach may provide a useful insight into 
integrate diverse aspects of Th17 development. As discussed above, 
newly described CD5L behaves as a functional switch; CD5L stabilizes 
non-pathogenic Th17 cells, inhibiting their change into pathogenic 
Th17 cells. This inhibition is mediated by intracellular lipidome 
modulation, such as maintenance of a high PUFA/SFA ratio and 
restriction of cholesterol synthesis, and, thereby, RORγt ligand 
availability [75]. From a biological perspective, little is known about the 
evolutionary advantages of such crosstalk between lipid metabolism 
and T cell development/functions.

Glucocorticoid and GILZ

Glucocorticoids (GCs) are the most widely used anti-
inflammatory and immunomodulatory agents. Most physiological 
and pharmacological effects of natural and synthetic GCs involve 
activation of the glucocorticoid receptor (GR). The efforts to separate 
therapeutic from adverse effects of GCs led to the use of a protein 
induced by GCs as a drug that may mediate their anti-inflammatory 
effects [242]. GC-induced leucine zipper (GILZ) is a protein discovered 
during such efforts and has been suggested to be a key player in the 
anti-inflammatory activity of GCs [243]. GILZ is widely expressed in 
various cells, including lymphocytes, DCs, macrophages, and epithelial 
cells. General mechanisms for GC- and GILZ-mediated transrepression 
and transactivation have been discussed in Hoppstädter and Kiemer 
[244]. Using in vitro analyses, GILZ-deficient mice, and skin biopsy 
samples from patients with psoriasis, Jones et al. showed that GILZ 
plays suppressive roles against Th17 cells but is downregulated in 
patients with psoriasis [245].

Mesenchymal stromal (stem) cells (MSCs) deploy various 
modalities to suppress inflammation [246]. Luz-Crawford et al. showed 
that MSCs from wild-type, but not from GILZ knockout mice, have 
immunosuppressive potential when transferred into a CIA murine 
model. GILZ expression in MSCs was required for the generation of 
IL-10-producing regulatory Th17 cells [247].

IL-27 and Interferon (IFN)-β 

IL-27 was initially described as an initiator of Th1 responses, 
but was later shown to exhibit ability to antagonize various T cells 
involving Th17 and to promote Treg cell responses [248]. We discussed 
IL-27 effects on Th17 cell development in section for STAT3 vs STAT1. 
Sweeney et al. provided in vivo and in vitro data suggesting that IFN-β 
exerts its therapeutic effects in patients with MS partly via the induction 
of IL-27, implicating IL-27 as an alternative therapy for patients with 
MS that do not respond to IFN-β [249]. In murine models of EAE, 
both Th1 and Th17 myelin oligodendrocyte glycoprotein-specific T 
cells were shown to induce EAE with similar severity, but resulted in 

different anatomical pathologies [250]. In a Th17-biased EAE mouse 
model, IL-27 suppressed EAE in an IL-10-independent manner [251]. 
This stands in contrast to the requirement of IL-10 for suppression 
of Th1-biased EAE by IL-27 [252]. When human naive CD4+ T cells 
cultured in Th17-polarizing conditions were treated with IL-27 or 
IFN-β, IL-17 production was reduced to 50% or less relative to the 
control. Intriguingly, neutralizing anti-IL-10 Ab did not show effects 
on IL-27 and IFN-β, signifying the non-IL-10-mediated nature of the 
suppressive effect of IL-27 and IFN-β against Th17 [251].

Conflicting results in serum level in patients with MS have been 
reported. Tang et al. showed that patients with progressive MS had 
decreased plasma and mRNA expression levels of IL-27 [253]. On the 
other hand, in Naderi et al.’s study, plasma levels of IL-27 in patients 
with MS were increased significantly compared to the control subjects 
[254].

Melatonin, NFIL3, and ERK1/2

Intriguingly, melatonin, a hormone whose rhythmic production 
serves as an important day-night and seasonal endocrine signal, is linked 
to Th17-suppressive transcription factor nuclear factor, interleukin 
3 regulated (NFIL3). NFIL3 (also known as E4BP4) is a basic leucine 
zipper transcription factor that has been shown to have an association 
with IBDs [255]. Yu et al. [256] showed that Nfil3-/- mice had higher 
IL-17A+ and RORγt+ Th17 cell frequencies than wild type mice in both 
small intestine and colon. NFIL3 suppresses Th17 cell development by 
direct binding and repression of the RORγt promoter [256]. A nuclear 
receptor, REV-ERBα is involved in the transcriptional network of 
the circadian clock and directly represses Nfil3 transcription, thereby 
linking Th17 cell development to the circadian clock network [256,257]. 
Perturbed light-cycles caused increased Th17 cell frequencies in the 
intestine and spleen of mice in a manner dependent on the expression 
of REV-ERBα [256].

A cohort study by Farez et al. [258] demonstrated seasonality of 
MS relapses, specifically, a 32% reduction in the number of MS relapses 
occurring during fall and winter, in accordance with Jin et al. [259] and 
Spelman et al. [260]. Treatment with melatonin ameliorates disease in 
an EAE mouse model [258]. Under Th17-polarizing conditions, IL-
17, but not IFN-γ production from human and murine CD4 cells was 
suppressed by melatonin. Farez et al. further showed that melatonin 
induces expression of NFIL3 and activation of ERK1/2, which is known 
to suppress Th17 [258,261]. Mechanistic details of melatonin signaling 
involving REV-ERBα have been shown by Farez et al. Unsurprisingly, 
melatonin effects are not specific to Th17; melatonin treatment induced 
Tr1 differentiation via ERK1/2 and RORα [258].

Targeting salt effects

Intriguing reports from Kleinewietfeld et al. and Wu et al. 
showed that mouse naive CD4+ T cells cultured in high-salt (sodium 
chloride) medium had a higher expression of serum/glucocorticoid-
regulated kinase 1 (SGK-1) and produced higher numbers of Th17 cells 
compared to those cultured in normal conditions [262,263]. This effect 
was mediated by the p38/MAPK-NFAT5 pathway [262]. Loss of SGK1 
abrogated Na(+)-mediated Th17 differentiation in an IL-23-dependent 
manner [263]. Hernandez et al. observed that in a mouse model of 
MS, a high-salt diet exacerbated disease progression and impaired 
Treg function [264]. In an EAE mouse model, Jörg et al. suggested that 
a direct effect of NaCl on Th17 cells, rather than an effect primarily 
exerted via DCs, plays the key role [265]. We direct readers to a recent 
review by [266].
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Epidemiological studies were also informative. In a cross-sectional 
analysis using a detailed questionnaire on 18555 individuals including 
392 (self-reported) patients with RA, a logistic regression model 
showed that the odds for RA increased with daily sodium intake. A 
logistic multivariate model adjusted for many confounding factors 
(including age, sex, prevalent cardiovascular diseases, diabetes, and 
smoking) showed that the fourth quartile had an odds ratio of 1.5 (P 
< 0.02) [267]. Their case-control study replicated the dose-dependent 
association. Farez-Fiol et al. recently showed that sodium intake is 
associated with increased disease activity in MS [268]. Note, however, 
that McDonald observed no strong association between dietary salt 
intake and pediatric-onset MS risk [269].

In Monteleone et al.’s study, in vitro analysis using human lamina 
propria mononuclear cells showed enhanced expression of IL-17, IL-
23R, TNF-α and RORγt following NaCl exposure in a p38/MAPK-
dependent manner, while expression of IFN-γ was unchanged. In 
vivo analyses of mice fed a high-salt diet showed a consistent result 
[270]. Recent intriguing reports include that from Wen et al. Analyses 
with human subjects, as well as in vitro experiments with Jurkat cells, 
showed that potassium supplementation has a blocking effect on 
IL-17A production in T lymphocytes induced by salt loading. This 
protective effect was found to be mediated by the direct suppression of 
the p38/MAPK-SGK1 pathway [271].

Dopamine as a target

Several findings have suggested immunological effects of dopamine 
or its antagonists. This is interesting, because dopamine has long 
been therapeutically utilized, mainly as a neurotransmitter, although 
expression in many organs, including the gastrointestinal tract, is 
recognized [272]. As the comprehensive review by Levite discusses, 
expression of dopamine receptors (DR) on T cells, with differential 
balance among DR types depending on T cell subsets and stages, 
influences Th1/Th2/Th17 differentiation [272]. At least five DRs are 
known (D1R to D5R), all being G-protein coupled receptors. D1R/D5R 
couple with stimulatory Gα subunits, while the remaining receptors 
couple with inhibitory Gαs [273]. In many settings, dopamine 
suppresses Treg in an autocrine or paracrine manner, thereby 
enhancing effector T cell activities. Several studies support the view 
that dopamine also directly stimulates effector T cells. In some cases, 
anomalous expression of DR, or responses to dopamine, is reported for 
MS, RA, and SLE. Given the article by Levite [272], we cite only a few 
recent papers.

Using D5R knockout mice, Prado et al. showed that D5Rs 
expressed on DCs are able to modulate the development of T cells 
and, in particular, activate differentiation of Th17 cells. D5R-deficient 
DCs transferred into wild-type recipients reduced the severity of 
EAE [273,274]. However, conflicting results exist among analyses of 
patients. In Ferreira et al.’s study, PBMCs from patients with relapsing-
remitting (RR)-MS showed increased proliferation and production 
of TNF-α, IL-6, and IL-17 upon stimulation with phytohemaglutinin 
(PHA) + dopamine, relative to cells from healthy controls [275]. 
Further, IL-17 and IL-6 production by T cells from patients with MS 
was less sensitive to glucocorticoid inhibition, supporting the idea that 
dopamine stimulates Th17 proliferation. However, in Melnikov et al.’s 
study [276], patients in the relapse stage of MS exhibited a high level 
of IL-17 and, intriguingly, lower level of dopamine in serum relative 
to healthy controls and patients in the remission stage. In that setting, 
dopamine treatment mildly reduced IL-17 in PBMC cultures from the 
relapse patients, although after the dopamine treatment IL-17 levels 

remained high relative to those of PBMC from patients in remission. It 
is not clear why dopamine promoted Th17 proliferation in Ferreira et 
al.’s study [275], but inhibited it in Melnikov et al.’s [276], yet Melnikov 
et al.’s finding of high IL-17 production after dopamine treatment of 
PBMCs from patients with RR-MS is consistent with that in Giorelli et 
al.’s study [277]. However, while these results reinforce the role of Th17 
cells in MS activity [278], Melnikov et al.’s results represent a challenge 
in a dopamine-centered view of MS pathogenesis [276].

Gut microbiota, SCFA, and histone deacetylase (HDAC) 
inhibitors

Intestinal dysbiosis (microbial imbalance) has been shown to be 
associated with, or suggested to contribute to, the pathogenesis of 
various autoimmune diseases, including both IBD and non-IBD [279-
284]. The importance of gut commensal bacteria in regulating the Treg/
Th17 axis has been widely recognized [285]. Although recent studies 
showed that gut microbiota remotely regulated systemic disease by 
driving the induction and egress of T follicular helper (Tfh) cells of gut 
Peyer’s patch [e.g., 286], here we briefly discuss microbiota relevance 
to Th17 cells.

Atarashi et al. discovered several strains of Clostridia that promote 
expansion of Treg cells and, upon oral administration, attenuate colitis 
and allergic diarrhea in mouse models [287,288]. Although they are 
minor among gut microbiota, mucosa-associated species such as 
segmented filamentous bacteria (SFB) can powerfully modulate host 
immunity [289]. SFB adhesion to small intestine epithelial cells leads to 
induction of Th17 [290,291]. In the K/BxN TCR transgenic mouse model 
of inflammatory arthritis used by Wu et al., Th17 cells were essentially 
absent from the site in germ-free K/BxN mice but monocolonization 
of SFB was capable of triggering arthritis development in K/BxN mice 
through promotion of Th17 cell populations in the small intestine 
lamina propria and spleen [289]. Intriguingly, Kumar et al. recently 
showed that IL-17 receptor (IL-17R)-deficient mice exhibited an earlier 
onset and worsened severity in an EAE model. They also used IL-17R 
knockout mice conditional to enteric epithelium and found dysbiosis 
of SFB (SFB overgrowth), increased serum GM-CSF concentrations, 
enhanced predisposition to neuroinflammation, and unconstrained 
Th17 development [292]. 

Findings derived from many studies led to the consensus that 
symbiosis between Tregs and commensal microbes is important. In 
particular, Kawamoto et al. provided findings arguing that mucosal 
IgAs, diversified and selected in a manner dependent on Foxp3+ T cells, 
contribute to the maintenance of diversified and balanced microbiota, 
which in turn facilitate the expansion of Foxp3+ T  cells, induction 
of germinal centers, and  IgA responses in the gut, comprising a 
symbiotic regulatory loop [293]. Short chain fatty acids (SCFAs) and 
in particular, butyrate, have been shown to facilitate acetylation of 
the Foxp3 histone upregulating this gene, thereby promoting iTreg 
development [294,295]. Mechanistic insights were gained by the 
discovery of G-protein-coupled receptors (GPCRs) for SCFAs, which 
mediate their anti-inflammatory action [296].

For gut bacteria to play an integral role in maintaining intestinal 
immunity against pathogens and tolerance against self-antigens, 
metabolites from gut bacteria, including SCFA, are considered 
important. SCFA shows inhibitory activity against HDAC [297,298]. 
Koenen et al. reported a profound negative effect of the HDAC 
inhibitor trichostatin A on the emergence of IL-17-producing cells 
from Tregs, implying that Treg differentiation into Th17 cells depends 
on histone deacetylase activity [299]. In general, histone acetylation 
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often accompanies gene transcription, required for the appropriate 
tissue-specific induction of many genes, and is opposed by the activity 
of HDAC [132]. This is consistent with the view that, in the case of 
Tregs, histone acetylation-mediated upregulation of Foxp3 expression 
may be important for stabilizing Treg status. Indeed, histone H3 
and H4 acetylation was found to be associated with upregulation of 
Foxp3, which is important for Treg differentiation [132,300]. HDAC9 
knockout mice showed increased numbers of Treg cells with increased 
suppressive capacity [300]. HDAC inhibitors (HDACi) are classified 
into two groups; those of Class II enhance the suppressive function 
of murine Treg cells, while Class I HDACi have shown mixed results 
[298]. 

The story of commensal bacteria, SCFA, and HDAC is illuminative, 
but HDACi treatment may face a challenge for therapeutic translation, 
as is often the case with interventions in intracellular phenomena that 
are often ubiquitous. The inhibitory effects of HDACi on effector CD4+ 
T cells are absent or very weak after activation of these cells [298]. 
HDACi also enhance the function of cytotoxic CD8+ T cells. Therefore, 
timing and procedure of treatment may need to be carefully optimized 
in approaches to modulate ubiquitous events. Yet, HDACi appears to 
have a good chance of efficacy in many pre-clinical and clinical settings, 
particularly when a short-term treatment can be critical. For example, 
Sugimoto et al. showed in an islet transplantation mouse model in 
which donor-specific blood perfusion (DST), when combined with 
HDACi treatment, dramatically improved graft survival [301]. This 
effect was accompanied by a pronounced decrease in IL-17 mRNA 
levels in the spleen and Treg cell induction in the thymus.

IL-25 (IL-17E)

IL-25 (also known as IL-17E) belongs to the IL-17 family, but, unlike 
IL-17A, IL-25 promotes Th2-type immune responses, contributing to 
atopic dermatitis and asthma [302]. IL-25 exhibits anti-inflammatory 
properties in many settings where IL-17 is involved [303]. IL-25-
deficient mice are susceptible to EAE, exhibiting increased IL-23 levels 
and a subsequent increase in inflammatory cytokines involving IL-17 
[304]. Several findings suggest that IL-25 is of particular importance in 
commensal bacteria-dependent induction of tolerance in the intestinal 
immune system. Notably, the number of Th17 cells in the large intestine 
increases (>3 fold) in the absence of commensal bacteria [305]. Zaph et 
al. also showed commensal-dependent expression of IL-25 by intestinal 
epithelial cells and that this inhibits macrophage production of IL-23, 
thereby limiting Th17 proliferation [305]. Intriguingly, IL-25 did not 
suppress Il12a, Tgfb, Il6, or Il10 gene expression, showing specific 
negative regulation of IL-23 by IL-25. Later, Su et al. showed that IL-25 
is markedly decreased in the sera and mucosa of patients with IBD and 
that IL-25 normally inhibits CD4 T-cell activation and differentiation 
into Th1/Th17 cells in an IL-10-dependent manner [306].

IL-17RA is likely to the most important receptor mediating the 
effects of IL-17A [307]. When IL-17RA is considered as a therapeutic 
target to reduce IL-17A effects, however, the outcome could be 
confounded by the IL-25 effect, as the biological activities of IL-
25 require both IL-17RB and IL-17RA [303]. Unlike anti-IL-17A 
inhibitors that showed efficacy in patients with RA [308], trials using 
anti-IL-17RA (brodalumab) in patients with RA showed no efficacy 
[7,309,310]. This suggests that IL-17RA targeting abrogates the IL-
25 effect. IL-25 (IL-17E) signaling may have to be retained during 
therapeutic intervention. On the other hand, when it comes to the 
therapeutic potential of IL-25 itself in patients with IBD, evaluation 
of adverse respiratory system events may become important [311]. 

This motivates us to seriously think about locally acting biologics not 
mediated by systemic circulation. 

Aryl hydrocarbon receptor (AHR)

There are many other molecules and mechanisms regulating 
Th17, although we cannot exhaust them all here. AHR is important 
in T cell differentiation and function, although it was only briefly 
discussed above (in sections for “Tregs, non-pathogenic Th17, and 
pathogenic Th17”and “PPARg and LXRs). AHR-deficient mice have 
increased levels of Th17 and IL-17/IL-22-producing γδT cells in a 
skin-inflammation model [312]. However, in vitro studies suggest 
that AHR paradoxically promotes Th17 differentiation [313]. Various 
endogenous ligands with apparently differential effects on Treg/
Th17 balance are present [314], and expression patterns of AHRs are 
broad and complex [191]. Broadly, there are two conflicting views. In 
Nguyen et al.’s study, AHR ligation in DCs is required for full Treg cell 
differentiation [315]. On the other hand, Stephens et al. showed that 
inhibition of kynurenin 3-monooxygenase that catabolizes kynurenin, 
an AHR ligand, in Th17 cells caused increased IL-17 production in 
vitro [316]. Further analyses of kynurenin, a tryptophan metabolite, 
and AHR activation in Th17 are warranted. It is generally difficult to 
predict the outcome of a therapeutic approach targeting AHR [191]. 
AHR has also been targeted in the context of ILCs. AHR is required 
for the development of RORγt+ ILCs and the production of IL-22 from 
these cells [317]. AHR is also required for cryptopatches (CPs) and 
isolated lymphoid follicles (ILFs) in the intestine, with ILFs being a sort 
of inducible tertiary lymphoid organ in the intestine that develop from 
the CPs, (rudimentary lymphoid structures) [161,317].

Other modalities

Adenosine acts as an immunosuppressive molecule [246]. The 
role of the CD39/adenosine axis may have been underevaluated in 
Th17-mediated diseases. CD39 is an ectoenzyme that catalyzes the 
conversion of ATP to 5′-AMP, the substrate for CD73. CD73 catalyzes 
production of adenosine from 5′-AMP [246]. Importantly, in patients 
with juvenile autoimmune liver disease, Th17CD39+ cells are markedly 
diminished and fail to generate AMP/adenosine, compared to healthy 
subjects, thereby limiting control of both target cell proliferation and 
IL-17 production [318]. In the near future, involvement of the CD39/
adenosine axis in other diseases may also be elucidated.

miRNAs (micro-RNAs) are short fragments of non-coding RNA 
that bind to the 3′-UTR of complimentary mRNA, thereby repressing/
silencing target RNAs [319,320]. miRNAs are important for the 
regulation of Th17 development and functions, but we do not cover 
many studies here, as there are excellent review articles [320,321]. The 
pathological roles and diagnostic potential of miRNAs in RA have been 
reviewed by Churov et al. [322]. miRNA roles in the pathogenesis of 
MS and IBD have been discussed by Wu and Chen [323] and Xu et 
al. [324], respectively. From the perspective of negative regulation of 
Th17 cells, miR-210 acts as a negative regulator of Th17 differentiation. 
Deletion of miR-210 promotes Th17 differentiation under hypoxic 
conditions [325]. Other miRNAs regulating Th17 cells include miR10, 
miR210, miR301, and miR326 [321]. miRNA’s role in Treg and Th17 
regulation is clearly important, but this area is still in its infancy [321]. 
In fact, besides the miRs discussed by Ueno et al., Naghavian et al. 
showed that miR141 and miR200a are likely to be key miRNAs in the 
progression of MS through differentiation of Th17 cells and inhibition 
of differentiation of Treg cells [326]. In the coming years, more 
information on miRNAs relevant to Th17 will be elucidated through 
preclinical and clinical studies.
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Perez et al.’s analysis using siRNA showed that lymphocytes (mouse 
and human) externalize calpains, calcium-activated proteases generally 
considered to act in cytosol. Extracellular calpains negatively regulated 
IL-17A production by lymphocytes by cleaving TLR2, and thereby 
preventing lymphocytes responding to TLR2 ligands. They further 
showed that low-dose IL-2 increased calpain secretion and decreased 
lymphocyte expression of TLR2, and that this decrease was abolished 
by calpastatin. Using peritonitis and autoimmune arthritis models, 
they further showed in vivo relevance of calpain externalization in 
regulating (reducing) IL-17A expression [327].

Several authors have suggested or indicated the negative effect of 
the antioxidant CoQ10 on inflammation and Th17 cells. Tawfik showed 
that intraperitoneal administration of CoQ10 not only potentiated the 
antiarthritic effect of methotrexate (MTX) but also alleviated MTX-
induced hepatocellular injury [328]. Oral administration of CoQ10 
ameliorated zymosan-induced arthritis in mice [329]. Splenocytes 
from CoQ10 treated mice showed decreases in IL-17, CCL20, and 
RORγt mRNA levels, and an increase in Foxp3+ Treg cells [329].

Although the mechanistic explanation has yet to be given, 
Bcl2 family molecules have drawn attention in the pathogenesis of 
autoimmune disease. The Bcl2 family consists of three classes of proteins 
that can either promote or inhibit apoptosis [330]. B cell lymphoma 2–
interacting (Bcl2-interacting) mediator (Bim) is considered to delete 
autoreactive lymphocytes through apoptosis. Paradoxically, Bim-
deficient mice showed protection against the development of EAE and 
diabetes [330]. Other paradoxical reports related to Bcl-2 involve that of 
Iglesias et al. who showed that mice with T cell-specific overexpression 
of BCL2A1, an antiapoptotic Bcl2 family member, had attenuated 
development of CIA. Both in vivo and vitro, Th17 differentiation was 
impaired. In vitro TCR stimulation showed defective activation of p38 
MAPK [331]. Characterization of the BCL2A1 interactome may reveal 
a novel pathway regulating the p38MAPK pathway [331].

Although we do not cover the subject broadly, several cases have 
been reported in which MSCs inhibit Th17 cell activity. Luz-Crawford 
et al. showed that MSCs inhibit Th1 activity in a manner dependent 
on soluble factors, but MSC-suppression of Th17 differentiation was 
mediated by direct contact [332]. Using antibodies to PD-L1 and PD-1, 
they showed that PD-L signaling was the key for this suppression [332]. 
Other studies that discussed PD-1-mediated suppression include that 
by Yang et al. who showed that PD-1-deficient mice develop severe 
CIA. When T cells from CIA mice were analyzed ex vivo, mice lacking 
PD-1 exhibited aberrant antigen-specific Th17 responses. Deregulated 
activation of PKC-θ and Akt was suggested as the cause for these 
aberrant responses [333].

Perspective 
As we have seen above, some cytokines, including IL-2 and IL-

23, showed robust negative regulation in many settings. However, for 
several factors, including TGF-β, AHR signaling, vitamin D, IL-35, IL-
27, and dopamine, the effects depend on the cell type and complexity 
arising from interactions between non-T cells and Th17 cells, and their 
spatiotemporal dynamics appear to cause significant dependency of 
effects of these factors on timing, dose, location, and context.

Fine-tuning the balance between regulatory cells and Th17 cells 
is important. The same is true for pathogenic and non-pathogenic 
subsets of Th17 cells. Local imbalance, likely in the intestine, between 
such populations causing over-proliferation of Th17 cells results in 
exacerbation of autoimmunity in remote organs [99]. It is reasonable 

to interpret that necessity of the tight regulation of the balance favored 
the pairwise evolution of Th17 and Th17-targeted Treg cells sharing 
a developmental pathway and forming clusters in tissues. It is likely 
that, in the early phase of development, Th17 cells located in the 
vicinity of Tregs receive promotive stimuli from Tregs (TGF-β, IL-2 
depletion, and CTLA-4 mediated suppression of CD28 signaling). 
Such time- and stage-sensitive roles of Tregs on Th17 cells might have 
evolved in such a way that Tregs enable a near-optimum time-course 
of Th17 functionality in protection against microbes, and at the same 
time, avoidance of autoimmune diseases. Such pair-wise evolution, 
which would enable evolution of well-coordinated dynamics, is also 
seen in cytokines. IL-17 families are basically proinflammatory, but 
IL-25 (IL-17E) exerts suppressive effects on Th17 in the IBD model, 
despite its sequence similarity to IL-17A. Analyses of molecular bases 
for differential physiological effects between IL-17A and IL-25 are 
desired, although such an issue is often difficult to study due to highly 
complex, context-dependent, non-specific, and degenerate features of 
intracellular signal transduction. It is likely that there are many more 
factors regulating this subtle balance; for instance, T cell expression 
of E-FABP promotes Th17 differentiation, while counterregulating 
development of Tregs [241]. E-FABP-deficient CD4+ T cells display 
enhanced PPARγ expression and activity. This is an example of the 
intricate regulation of Treg/Th17 balance via lipid metabolism. It could 
be that FABPs act to sequester PPAR ligands in the cytoplasm, hence 
inhibiting nuclear entry and PPAR activity [241]. A deep understanding 
of lipid metabolism may enable fine-tuning of the balance between 
Treg and Th17 cells, and among Th17 subsets.

From a clinical perspective, the availability of drugs that explicitly 
act on specific cells or accumulate in local tissues/organs may become 
important, given that systemic drug administration is generally apt 
to lead to adverse events. It would be interesting to envisage that, in 
future, gene transduction could enable controllable accumulation 
of regulatory cells to a particular target organ so that the local Treg/
Th17 balance can be modulated, without changing Th17 levels. As 
therapeutic approaches using aptamers exemplify, future therapeutics 
will be more directed toward local and cell type-specific interventions. 
To facilitate such organ/cell-specific approaches, understanding 
of the trafficking of effector T cells is important. CCR6 helps to 
recruit Th17 cells to inflamed tissues/organs in response to its ligand 
CCL20 [e.g., 334]. Genetic studies have demonstrated an association 
between susceptibility to RA and polymorphism of the gene for 
CCR6, the important chemokine receptor of Th17 [335]. Association 
of CCR6 with lupus nephritis has also been reported [336]. Koga et 
al. assessed the effects of suppression of the CCR6/CCL20 axis and 
showed reduced kidney CCR6/CCL20 expression and serum IL-
17 levels, as well as improved clinical and pathologic outcomes in a 
lupus nephritis-like kidney disease mouse model [337]. While these 
findings are informative, the migratory properties of effector T cells 
are poorly understood in general. For instance, Elhofy et al. showed 
that CCR6 is largely dispensable for EAE pathogenesis [338]; CCR6-
deficient mice developed a significantly more severe chronic EAE 
compared with wild-type immunized animals. It should also be borne 
in mind that chemokines and their receptors have not been identified 
exhaustively. Kara et al. showed IL-23-dependent switches from CCR6 
to CCR2 usage during Th17 cell development (Figure 1). This switch 
gives rise to CCR6-CCR2+ Th17 cells that represent an advanced 
differentiated state producing GM-CSF/IFN-γ and therefore has a 
very high proinflammatory potency [20]. It would be interesting to 
attempt administration of Tregs transfected with genes for CCR2 in 
autoimmune disease model mice.
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Fine-tuning of Treg/Th17, and of the subsets of Th17 cells, appears 
important in the intestine, in particular. While clinical trials using IL-
17A inhibitors for psoriasis, ankylosing spondylitis, and RA showed 
promising results, the trials on Crohn’s disease instead showed 
increased disease activity and adverse events [339,340]. Inhibition of 
IL-17 activity should lead to susceptibility to infection. IL-17 and IL-
22 produced by Th17 are considered to be important for epithelial cell 
production of β-defensin that has antifungal activity, and inhibition of 
this loop may lead to increases in fungi, leading to an enhanced innate 
immunity response in intestinal mucosa [341].

Studies on the roles of antigen recognition by TCR in autoimmune 
diseases have been relatively limited, but could be important. Induction 
of antigen-specific tolerance using chemically modified antigen 
peptides seems to be an interesting approach. An obvious challenge 
in clinics, however, would be that the cDNA sequences of TCRs and 
immunoglobulins from patients tell us little about the antigen peptides 
key to the patient. In Ito et al.’s study [100], mice expressing a single 
arthritogenic TCR were used for identification of peptide antigen, 
and this identification required auto-antibody/B cell analysis. This is 
elegant but still very intensive work. It would be nonetheless interesting 
to envisage that this approach could generate a panel of peptides from 
autoimmune arthritis in mice, and this information may facilitate, 
in combination with appropriate conjugation methods, induction of 
anergy of Th1 and Th17 cells in patients with RA [103].
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