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In this paper, we present stochastic methods for computation of influenza transmission 

models. First, SEIR type deterministic epidemiological models are revisited and stochastic 

modeling for those models are introduced. The main motivation of our work is to present 

computational methods of the stochastic epidemic models. In particular, the moment clo- 

sure method (MCM) is developed for some influenza models and compared with the re- 

sults under the standard stochastic simulation algorithm (SSA). All epidemic outcomes in- 

cluding the peak size, the peak timing and the final epidemic size of both methods are in 

a good agreement, however, the MCM has reduced the computational time and costs sig- 

nificantly. Next, the MCM has been employed to model the 2009 H1N1 influenza transmis- 

sion dynamics in South Korea. The influenza outcomes are compared under the standard 

deterministic approach and the stochastic approach (MCM). Our results show that there 

is a considerable discrepancy between the results of stochastic and deterministic models 

especially when a small number of infective individuals is present initially. Lastly, we in- 

vestigate the effectiveness of control policies such as vaccination and antiviral treatment 

under various scenarios. 
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1. Introduction 

There have been a number of influenza outbreaks in the world since the 20th century and some of them were very

severe such as 1918 Spanish flu pandemic which killed about 50 million people. The 1957 Asian influenza (H2N2) had

spread worldwide within a short period of time and the number of infective people was about 250 thousands. In the early

1968, a new virus (H3N2) emerged in Hong Kong and mortality was about 34,0 0 0 people. Recently, a novel H1N1 pandemic

influenza was back in 2009 all around the world but it turned out to be mild. The case fatality rate was estimated as

30 per 10 0,0 0 0 cases [1] . A pandemic influenza has the unpredictable timing and severity and a new pandemic influenza

causes many casualties and economic losses, although there has been much medical advance. Hence, it is very challenging

to prepare effective countermeasures or intervention strategies to reduce the negative impact of a novel pandemic influenza.

Various mathematical models have been developed for predicting and preventing the spread of influenza, in that such

models can be used for simulating the transmission dynamics of the infectious disease even when real experiments are

difficult or impossible. Moreover, the analysis of the models is useful for understanding the mechanism of the spread
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of infectious disease. The deterministic compartment model was firstly proposed by McKendrick [2] and Kermack and

McKendrick [3] . They used deterministic differential equations (so called SIR models) that assume that the population is

divided into three compartments, susceptible ( S ), infectious ( I ), and recovered ( R ). Let S ( t ), I ( t ) and R ( t ) denote the number

of individuals at time t in the corresponding compartments. Let N(t) = S(t) + I(t) + R (t) denote the total population size.

The simple SIR model using ordinary differential equations can be written as 

dS 

dt 
= −β(N) SI 

dI 

dt 
= β(N) SI − γ I 

dR 

dt 
= γ I 

where γ is the recovery rate and β( N ) is the rate of new infections. More precisely, β0 = β(N ) N is the average number of

the individuals who make contacts with an infective, which lead to an infection per unit time, and each susceptible can have

contact with anyone in the population with the rate β0 , encountering a proportion I / N of the infectives. For convenience of

notation, hereafter we use β instead of β( N ). 

On the other hand, the mechanism of the spread of infectious diseases is probabilistic in nature and the intrinsic fluctu-

ation or noise occurs in the time evolution of the number in each compartment. This fluctuation can play a critical role in

the transmission dynamics of infectious diseases, especially when the size of the population is small. While the determin-

istic epidemic models can successfully describe the dynamics of the spread of epidemic diseases for models with a large

population size, they cannot capture the intrinsic fluctuations when the size of population is small. To capture the fluctu-

ation, one has to employ a stochastic approach (random processes) rather than a deterministic approach. In particular, at

the initial stage of an epidemic spread, the number of the infectious people is usually small and few infectious individuals

may initiate the infection. In this case, the stochastic modeling should be used for an accurate description of the disease

transmission. 

There have been some works on stochastic models for the transmission dynamics of infectious diseases. A good intro-

duction for stochastic epidemic models can be found in [4–6] . The stochastic epidemic models require heavy and intensive

computations for simulation since the variables of the models generally have huge dimensions. Therefore, there have been

works in order to reduce computational costs significantly and one of them is the moment closure method. It is one of

approximate methods to overcome the difficulty in the computation of stochastic models [7–12] . Moment closure methods

have been used to approximate the equilibrium distribution of stochastic logistic models [7,8] and to estimate the variability

of average behavior in stochastic models for some recurrent epidemics [9] . A second-order moment closure approximation

was applied to stochastic SI and SIS models [10] . In [11] , the authors developed a moment closure method in a rigorous

way, which will be applied to stochastic epidemic models in this paper. 

The aim of this paper is to present computational methods for stochastic epidemic models such as a stochastic simula-

tion algorithm (SSA) and a moment closure method (MCM). First, the results are compared under these two methods and

next, the MCM is employed to an H1N1 influenza model. Also, we show that there is a considerable quantitative difference

between results from stochastic and deterministic models, especially if there is a small number of the infective people at

the initial stage. 

The outline of the paper is as follows; in Section 2 , we introduce deterministic models of influenza dynamics such as SEIR

and SLIAR models. Also, we describe the stochastic modeling of the epidemic models and present computational methods

for the time evolution of stochastic models. In Section 3 , we apply the stochastic methods to an H1N1 influenza model

with control policies and numerical results are presented. Moreover, we investigate the impact of various vaccination and

antiviral treatment intervention scenarios on the influenza dynamics. 

2. Epidemic modeling 

2.1. Deterministic modeling 

In this paper, we focus on the epidemiological models for a pandemic influenza which ends within a year (a short term

dynamics). Therefore, the demographic effect is negligible so that the birth and death rates are ignored. The SIR can be

extended to the SEIR model which includes the latent or exposed state by adding the new compartment E . Here, the latent

state means the individual has been infected but is not yet infectious. Transmission from S to E only occurs when the

infectious individuals have effective contact with susceptible individuals. After the latent period, the exposed individuals

move to the infective stage and then enter the recovered stage when recovered from the disease. The compartment of the

individuals who died of the disease is denoted by D . The governing equation of the SEIR model with death is written as 

dS 

dt 
= −βSI 

dE 

dt 
= βSI − κE 
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dI 

dt 
= κE − αI (1) 

dR 

dt 
= fαI, 

dD 

dt 
= (1 − f ) αI, 

where β is the new infection rate, κ is the progression rate of individuals from E to I , and α is the recovery rate of infectious

individuals [13] . (1 − f ) is the fatality rate of infectious individuals. 

Next, the SLIAR model has five epidemiological classes which are susceptible ( S ), latent ( L ), infectious and symptomatic

( I ), asymptomatic but infectious ( A ), and recovered ( R ). The governing equation of the SLIAR model with death is written as

follows [14,15] ; 

dS 

dt 
= −βS(I + δA ) 

dL 

dt 
= βS(I + δA ) − (1 − p) κL − pκL 

dI 

dt 
= pκL − fαI − (1 − f ) αI (2) 

dA 

dt 
= (1 − p) κL − ηA 

dR 

dt 
= fαI + ηA 

dD 

dt 
= (1 − f ) αI. 

Here, the parameter δ quantifies the fraction of reduced transmissibility of the asymptomatic infectious class. A fraction p

of latent individuals progresses to the class I at the rate κ and the rest (1 − p) proceeds to the class A at the same rate. The

parameters α and η indicate the recovery rates from I and A to R , respectively. f is the fraction recovering from the disease

of the individuals leaving I and (1 − f ) is given as a fatality. This SLIAR model is extended to the model with treatment in

Section 3 . 

The basic reproduction number, denoted by R 0 , measures the average number of secondary infections by a single infec-

tious individual introduced into an entirely susceptible population. For the above SLIAR model, R 0 can be computed by using

the next generation matrix described in [13,16] ; 

R 0 = β0 

[
p 

α
+ 

δ(1 − p) 

η

]
. (3) 

The value of R 0 reflects the stability of the disease-free equilibrium. If R 0 < 1, then the disease-free equilibrium is locally

asymptotically stable, and if R 0 > 1, the disease-free equilibrium is unstable [17,18] . 

2.2. Stochastic modeling 

It is known that there is a quantitative discrepancy between the solution of deterministic models and the mean of the

stochastic models except for the linear models [4] . One of the main reasons is that the expected value of the product of

random variables is generally not the same as the product of the expected values of the random variables. 

In Fig. 1 , results from stochastic and deterministic models for the SLIAR model are compared. In Fig. 1 (a), four real-

izations of the stochastic model of the SLIAR system (2) are compared with the deterministic solution. Fig. 1 (b) compares

the solution of the deterministic SLIAR model with the stochastic solutions based on 10,0 0 0 realizations by the stochastic

simulation algorithm (SSA). One sees that the dynamical behaviors of the two models are similar, but there is about 10%

discrepancy between the deterministic solution and the stochastic mean at the peak. This indicates that the deterministic

solution overestimates the epidemic peak size. 

Here, we briefly present the stochastic formulation of the epidemic compartment model. If there are s distinct compart-

ments and r reactions, we write the form 

s ∑ 

i =1 

v a i j M i → 

s ∑ 

i =1 

v b i j M i , j = 1 , . . . , r, 

where v a 
i j 

and v b 
i j 

are the coefficients of change of the compartment i involved in the j th reaction. We let v i j = −v a 
i j 

+ v b 
i j 

and define a matrix V whose (i, j) th entry is v i j . Then, the (i, j) th entry of V denotes change of the number of population

in the i th compartment by the j th reaction and the j th column V j of V is the change in the number of the population of

compartments by the occurrence of j th reaction. 
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Fig. 1. Comparison of simulation results of deterministic and stochastic SLIAR models. (a) Comparison of the deterministic solution (blue solid curve) and 

four sample paths (black, red, green, yellow dashed curves) of the stochastic model by the SSA. (b) Comparison of the deterministic solution (blue) and 

the mean + standard deviation (upper red), mean (middle red), mean − standard deviation (lower red) of the stochastic model. Initial conditions are 

S(0) = 50 0 0 , I(0) = 5 , L (0) = A (0) = R (0) = 0 and parameter values are p = 0 . 67 , δ = 0 . 5 , α = η = 1 / 7 , κ = 1 / 1 . 4 , f = 0 . 999 and β0 = 0 . 3422 ( R 0 = 2.0). The 

stochastic results are based on 10,0 0 0 realizations of the SSA. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

 

 

 

 

 

 

 

 

For example, in the SIR model 

S + I → 2 I, I → R, 

if we denote M 1 = S, M 2 = I, M 3 = R, then the coefficients of change are 

v a 11 = 1 , v a 21 = 1 , v a 31 = 0 , v b 11 = 0 , v b 21 = 2 , v b 31 = 0 , 

v a 12 = 0 , v a 22 = 1 , v a 32 = 0 , v b 12 = 0 , v b 22 = 0 , v b 31 = 1 , 

and the matrix V is 

V = 

[ −1 0 

1 −1 

0 1 

] 

. 

If p ( x , t ) denotes the probability that the number of population of compartments is x at time t , the governing equation

for the stochastic epidemic model is written as 

dp( x , t) 

dt 
= 

n ∑ 

k =1 

[ a k (x − V k ) p(x − V k , t) − a k (x ) p(x , t)] (4)

where V k is the k th column of V and a k is the propensity function for the k th reaction which is determined by mass action

kinetics. More precisely, a k is 

a k (x ) = c k g k (x ) , (5)

where c k is the probability constant such that c k �t is the probability that the k th reaction occurs during the time interval

(t , t + �t ) and g k ( x ) is the product of the numbers of population of the compartments involved in the k th reaction. 

For example, in the SEIR model (1) , if we denote the number of S , E , I , R and D by x (t) = (x 1 (t) , x 2 (t) , x 3 (t) , x 4 (t) , x 5 (t))

at time t , respectively, we write the stochastic governing equation of the model 

dp(x 1 , x 2 , x 3 , x 4 , x 5 , t) 

dt 
= c 1 (x 1 + 1) x 3 p(x 1 + 1 , x 2 − 1 , x 3 , x 4 , x 5 , t) + c 2 (x 2 + 1) p(x 1 , x 2 + 1 , x 3 − 1 , x 4 , x 5 , t) 

+ c 3 (x 3 + 1) p(x 1 , x 2 , x 3 + 1 , x 4 − 1 , x 5 , t) + c 4 (x 3 + 1) p(x 1 , x 2 , x 3 + 1 , x 4 , x 5 − 1 , t) 

− (c 1 x 1 x 3 + c 2 x 2 + c 3 x 3 + c 4 x 3 ) p(x 1 , x 2 , x 3 , x 4 , x 5 , t) . 

where c 1 = β, c 2 = κ, c 3 = fα, c 4 = (1 − f ) α. 

Alternatively, if one finds all possible states of x and transition rates between them, one can also write the governing

equation in the linear form 

dp = A p (t) , (6)

dt 
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where p ( t ) is the vector of p i ( t ) which is the probability that the value of x ( t ) is the i th state and A is the transition rate

matrix or Markov chain generator matrix which is obtained by the values of a k between different states [19] . 

Since it is difficult to solve the governing equations (4) and (6) analytically for most real models due to high dimen-

sionality of variables, one should rely on the numerical computation based on stochastic algorithm. One of the well-known

computational algorithms is the stochastic simulation algorithm (SSA) as follows; [20] . 

Step 1. Set initial condition x (0) = x 0 . 

Step 2. Calculate 

• the function a k ( x ) for each k 
• a T = 

∑ n 
k =1 a k (x ) 

Step 3. Generate two random numbers r 1 and r 2 from the uniform distribution (0, 1). Set τ = − log (r 1 ) 
a T 

and choose l such

that 

l−1 ∑ 

k =1 

a k (x ) < r 2 a T ≤
l ∑ 

k =1 

a k (x ) . 

Step 4. Update t + τ → t . 

Step 5. Let x + V l → x . Go to Step 2. 

2.3. Moment closure method (MCM) 

One of the shortcomings of the stochastic simulation algorithm is that one needs intensive computations for simulating

the system stochastically especially if the system is large or the infection processes are fast. To overcome the shortcoming,

we use the moment closure method, an approximation method for finding the moments. In [11] , the authors presented the

way of the recursive computations of moments followed by the truncation of higher order moments and the estimation of

the error generated by the truncation. In this section, we apply this method to an H1N1 influenza model and compare the

results from the deterministic and stochastic models. 

Here, we first describe the moment closure method briefly [11] under the assumption that the order of reaction is

second-order, so that the function a k is at most quadratic. This assumption is true for most of epidemic compartment

models such as SIR, SEIR and SLIAR models that we consider in this paper. From the master Eq. (4) , one can obtain 

dμi 

dt 
= 

∑ 

k 

v ik 
(

a k (μ) + 

1 

2 

∑ 

l,m 

∂ 2 a k (μ) 

∂ x l ∂ x m 

σl,m 

)
(7) 

dσi, j 

dt 
= 

∑ 

k 

[
v ik 

∑ 

� 

∂a k (μ) 

∂x � 
σ j,� + v jk 

∑ 

� 

∂a k (μ) 

∂x � 
σi,� + v ik v jk 

(
a k (μ) + 

1 

2 

∑ 

�,m 

∂ 2 a k (μ) 

∂ x � ∂ x m 

σ�,m 

)

+ v ik 
1 

2 

∑ 

�,m 

∂ 2 a k (μ) 

∂ x � ∂ x m 

σ j,�,m 

+ v jk 
1 

2 

∑ 

�,m 

∂ 2 a k (μ) 

∂ x � ∂ x m 

σi,�,m 

]
, (8) 

where μi = E[ x i ] , σi, j = E[(x i − μi )(x j − μ j )] and σi, j,k = E[(x i − μi )(x j − μ j )(x k − μk )] . 

Furthermore, after some computations, we can obtain the equation for general n th central moments denoted by 

M i 1 , ... ,i s = E[(x 1 − μ1 ) 
i 1 . . . ( x s − μs ) 

i s ] , 

for n = i 1 + · · · + i s ≥ 3 , as follows; 

dM i 1 ,i 2 , ... ,i s 

dt 
= 

d 

dt 
E[(x 1 − μ1 ) 

i 1 · · · (x s − μs ) 
i s ] (9) 

= 

∑ 

k 

a k (μ) 
∑ 

L 

(
i 1 
� 1 

)
· · ·

(
i s 

� s 

)
(v 1 k ) i 1 −� 1 · · · (v sk ) 

i s −� s M � 1 , ... ,� s 

+ 

∑ 

k 

∑ 

q 

∂a k (μ) 

∂x q 

∑ 

L 

(
i 1 
� 1 

)
· · ·

(
i s 

� s 

)
(v 1 k ) i 1 −� 1 · · · (v sk ) 

i s −� s M � 1 , ... ,� q +1 , ... ,� s 

+ 

1 

2 

∑ 

k 

∑ 

q,r 

∂ 2 a k (μ) 

∂ x q ∂ x r 

∑ 

L 

(
i 1 
� 1 

)
· · ·

(
i s 

� s 

)
(v 1 k ) i 1 −� 1 · · · (v sk ) 

i s −� s M � 1 , ... ,� s + e q + e r −
s ∑ 

j=1 

i j μ
′ 
j M i 1 , ... ,i j −1 , ... ,i s (9) 

where the index set L = { � 1 , . . . , � s ≥ 0 : 0 ≤ � 1 + · · · + � s ≤ n − 1 } , the notation 

(
i 
� 

)
= 

i ! 
� !(i −� )! 

and the subscript � 1 , . . . , � s +
e q + e r denotes adding 1’s to q th and r th entries of � 1 , . . . , � s , respectively. Note that the term M � 1 , ... ,� s + e q + e r is (n + 1) st

moment when � 1 + · · · + � s = n − 1 . Thus, the system of the moment Eqs. (7) , (9) and (10) is infinite dimensional, that is,

the system is not closed, since equations for any n th moments include at least one of (n + 1) st moments. Therefore, we
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Fig. 2. Simulation results of a stochastic SEIR model. Comparison of the mean + standard deviation (upper curve), mean (middle curve) and mean −
standard deviation (lower curve) by MCM (blue solid curves) and SSA (red dots). The initial condition is (S, E, I, R ) = (10 0 0 0 , 0 , 100 , 0) and parameter 

values are κ = 1 / 1 . 9 , α = 1 / 4 . 1 , f = 0 . 98 , β0 = 0 . 3422 . The results by SSA are based on 10,0 0 0 realizations. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cannot find the exact solution of the system analytically or numerically. However, if we truncate the system by letting the

(n + 1) st moments be zero, then Eq. (10) is changed into an equation with at most n th moment terms as follows; 

dM i 1 ,i 2 , ... ,i s 

dt 
= 

∑ 

k 

a k (μ) 
∑ 

� 1 , ... ,� s ∑ 

i � i � = n 

(
i 1 
� 1 

)
· · ·

(
i s 

� s 

)
(v 1 k ) i 1 −� 1 · · · (v sk ) 

i s −� s M � 1 , ... ,� s 

+ 

∑ 

k 

∑ 

q 

∂a k (μ) 

∂x q 

∑ 

� 1 , ... ,� s ∑ 

i � i � = n 

(
i 1 
� 1 

)
· · ·

(
i s 

� s 

)
(v 1 k ) i 1 −� 1 · · · (v sk ) 

i s −� s M � 1 , ... ,� q +1 , ... ,� s −
s ∑ 

j=1 

i j μ
′ 
j M i 1 , ... ,i j −1 , ... ,i s . (10)

Thus, by the truncation, the original infinite dimensional system of (7),(9) and (10) is reduced to a solvable finite dimen-

sional system of (7), (9) and (11) . 

If we use a numerical scheme to solve the truncated finite system of (7), (9) and (11) numerically, we will have the error

generated from truncation and numerical integration. The formal error estimation and numerical consistency of the method

have been shown in [11] as follows; 

Theorem 1. Suppose that we truncate the system (7) , (9) and (10) by letting n th central moment be zero at any t in a time

interval [0, h ] . Then the error between the exact mean and the approximated mean obtained from the truncated Eqs. (7) , (9) and

(11) is O (h n −1 ) and the error in second central moments is O (h n −2 ) , for any t ∈ [0, h ] . 

Although the truncation at a higher order moment can give a more accurate approximation, the truncation at the third

moment is practically useful, because it gives a decent approximation to important stochastic quantities such as first and

second moments and also it is computationally more efficient than the truncation at the higher order moments. The system

of the moment equations obtained by the truncation at the third moment is written as 

dμi 

dt 
= 

∑ 

k 

v ik 

(
a k (μ) + 

1 

2 

∑ 

l,m 

∂ 2 a k (μ) 

∂ x l ∂ x m 

σl,m 

)
(11)

dσi, j 

dt 
= 

∑ 

k 

[
v ik 

∑ 

� 

∂a k (μ) 

∂x � 
σ j,� + v jk 

∑ 

� 

∂a k (μ) 

∂x � 
σi,� + v ik v jk 

(
a k (μ) + 

1 

2 

∑ 

�,m 

∂ 2 a k (μ) 

∂ x � ∂ x m 

σ�,m 

)]
. (12)

As an example, we apply the system of (11) and (12) to the SEIR model with parameters from [21,22] and compare the

simulation results obtained by SSA and MCM in Fig. 2 . One can see that the results of MCM and SSA are in good agreement

and the MCM captures the time-evolution of mean and standard deviation accurately. For the computational efficiency of

the MCM, we observe that the MCM takes about 0.5 s for obtaining the mean and variance, but the SSA takes more than

0.5 h. Thus, the MCM computes the solution much faster than the SSA, while its accuracy is good enough. 

3. Application: H1N1 influenza model in Korea 

3.1. Mathematical transmission model with interventions 

In this section, we construct a mathematical model for the spread of H1N1 influenza prevailed in Korea from 2009

through 2010 for an application of the stochastic methods. The SLIAR model described in the previous section is extended
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Fig. 3. SLIAR with treatment model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to the one with treatment compartments which is based on the model in [15] . This model includes the control parameters

such as vaccination and antiviral treatment implemented by the government’s interventions. We have modified the model

in [15] to incorporate more realistic scenarios for the 2009 Korean influenza pandemic. First, the relapse terms from treated

individuals to untreated individuals are removed in order to focus on the short term dynamics of the 2009 influenza pan-

demic. Second, vaccination was implemented during the epidemic (not at the beginning of the influenza outbreak) since

the vaccine was available after six months. We denote the number of individuals in the treated susceptible (or vaccinated

susceptible), treated latent, treated infectious and treated asymptomatic classes by S T ( t ), L T ( t ), I T ( t ) and A T ( t ), respectively.

The diagram for our compartment model is described in Fig. 3 . 

In general, there are non-pharmaceutical and pharmaceutical interventions for countermeasures. Non-pharmaceutical in- 

terventions are administrative controls including the isolation of diagnosed infective individuals and quarantine of suspected

individuals. Pharmaceutical interventions include the antiviral treatment and vaccination. The vaccination also reduces the 

susceptibility to the pandemic influenza. The antiviral treatment has an effect on the reduction in the infectivity for the in-

fluenza. Early in the spread of the disease, when no vaccine is available, the antiviral treatment such as Tamiflu is important

in mitigating the spread of the virus. Therefore, the following intervention strategies for controlling the spread of influenza

are included in our model; 

(i) The isolation and quarantine lead to a reduction of the contact rate by a control parameter x , i.e. the contact rate is

β(1 − x ) . 

(ii) The parameters φI and φA denote the control parameters representing the a fraction per unit time (one day) of the

antiviral treatment that decreases the infectivity of I and A , respectively. We assume that there is no treatment in the

latent state because it is highly likely that individuals do not receive treatment during the latent period, i.e., φL = 0 .

The parameters φI and φA are assumed as the function − ln (1 − r a ) /d a where r a and d a are the rate and the duration

of the antiviral treatment, respectively. More details for this formula can be found in the references [23,24] . 

(iii) Vaccination reduces susceptibility. A factor σ S in the infection rate of S T means that the vaccination has a perfect

effect if σS = 0 , and it has no effect if σ S = 1. We assume that it takes about 90 days or more until vaccine is

available. Similar to the parameters φI and φA for the antiviral treatment, the parameter γ for the vaccination is

assumed as − ln (1 − r v ) /d v , where r v and d v are the rate and the duration of vaccination, respectively. 

Furthermore, we put the following assumptions for parameters related to the treatment compartment; the fraction p τ of

treated latent members proceeds to the compartment I T with the mean infectious period of 1/ αT , while the remainder goes

to A with the mean infectious period of 1/ η . Here, κ is the rate of departure from L . α and η are recovery rates for I 
T T T T T T T 
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Table 1 

Parameters for the 2009 H1N1 influenza model in Korea. 

Parameter Description Value Reference 

p Fraction of L that progress to I 0.67 [23] 

(1 − f ) Fatality fraction for I 0.001 [23] 

(1 − f T ) Fatality fraction for I T 0 [23] 

α Recovery rate for I 0.2/day [22] 

η Recovery rate for A 0.2/day [22] 

κ Rate of departure from L 0.59/day [22] 

αT Recovery rate for I T 0.22/day [22] 

ηT Recovery rate for A T 0.22/day [22] 

κT Rate of departure from L T 0.59/day [22] 

τ Fraction of progression rate for L T 0.38 [22] 

δ Infectivity reduction constant for A, A T 0.5 [22] 

q Contact reduction constant for I , I T 0.3 [23] 

σ S Reduction constant for susceptibility of S T 0.2 [23] 

σ I , σ A Infectivity reduction constant for I T , A T 0.2 [15] 

 

 

 

 

 

 

and A T with infectivity reduced by factors σ I and σ A , respectively. Infective individuals have the contact rate reduced by a

fraction q . (1 − f ) and (1 − f T ) are fatality fractions for I and I T , respectively. All parameters are summarized in Table 1 . 

Using the model described above, one can write the governing equation as follows; 

dS 

dt 
= −βSQ − γ S 

dS T 
dt 

= −σs βS T Q + γ S 

dL 

dt 
= βSQ − κL 

dL T 
dt 

= σs βS T Q − κT L T 

dI 

dt 
= p κL − αI − φI I 

dI T 
dt 

= p τκT L T − αT I T + φI I 

dA 

dt 
= (1 − p ) κL − ηA − φA A 

dA T 

dt 
= (1 − p τ ) κT L T − ηT A T + φA A 

dR 

dt 
= f αI + f T αT I T + ηA + ηT A T 

dD 

dt 
= (1 − f ) αI + (1 − f T ) αT I T 

Q = (1 − q ) I + (1 − q ) σI I T + δA + δσA A T , (13)

where S(0) = S 0 > 0 , S T (0) = 0 , I(0) = I 0 > 0 , L (0) = L T (0) = A (0) = A T (0) = I T (0) = R (0) = D (0) = 0 . 

One can compute the disease-free equilibrium X 0 = (S 0 , S T 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) and the controlled reproduction number

as follows; 

R c = βS 0 

[
(1 − q ) p 

(α + φI ) 
+ 

(1 − q ) σI pφI 

αT (α + φI ) 
+ 

δ(1 − p) 

(η + φA ) 
+ 

δσA φA (1 − p) 

ηT (η + φA ) 

]
+ σs βS T 0 

[
(1 − q ) σI pτ

αT 

+ 

δσA (1 − pτ ) 

ηT 

]
. 

Note that R c becomes R 0 in the absence of controls and the detailed derivation of R c is given in Appendix A . Moreover,

the controlled (basic) reproduction number is computed using the parameter values in Section 3.3 . 

3.2. Stochastic influenza model 

In this section, we present a stochastic model for the H1N1 influenza pandemic. Let us denote the numbers of S , S T , L , L T ,

I , I T , A , A T , R , D at time t by x (t) = (x 1 (t) , x 2 (t) , x 3 (t) , x 4 (t) , x 5 (t) , x 6 (t) , x 7 (t) , x 8 (t) , x 9 (t ) , x 10 (t )) , respectively. The master

equation of the model is obtained as 

dp(x , t) = (c 1 (x 1 + 1) x 5 + c 2 (x 1 + 1) x 6 + c 3 (x 1 + 1) x 7 + c 4 (x 1 + 1) x 8 ) · p(x + e 1 − e 3 , t) + (c 5 (x 2 + 1) x 5 

dt 
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+ c 6 (x 2 + 1) x 6 + c 7 (x 2 + 1) x 7 + c 8 (x 2 + 1) x 8 ) · p(x + e 2 − e 4 , t) + c 9 (x 3 + 1) p(x + e 3 − e 5 , t) 

+ c 10 (x 3 + 1) p(x + e 3 − e 7 , t) + c 11 (x 4 + 1) p(x + e 4 − e 6 , t) + c 12 (x 4 + 1) p(x + e 4 − e 8 , t) 

+ c 13 (x 5 + 1) p(x + e 5 − e 6 , t) + c 14 (x 5 + 1) p(x + e 5 − e 9 , t) + c 15 (x 5 + 1) p(x + e 5 − e 10 , t) 

+ c 16 (x 6 + 1) p(x + e 6 − e 9 , t) + c 17 (x 6 + 1) p(x + e 6 − e 10 , t) + c 18 (x 7 + 1) p(x + e 7 − e 8 , t) 

+ c 19 (x 7 + 1) p(x + e 7 − e 9 , t) + c 20 (x 8 + 1) p(x + e 8 − e 9 , t) + c 21 (x 1 + 1) p(x + e 1 − e 2 , t) 

− (c 1 x 1 x 5 + c 2 x 1 x 6 + c 3 x 1 x 7 + c 4 x 1 x 8 + c 5 x 2 x 5 + c 6 x 2 x 6 + c 7 x 2 x 7 + c 8 x 2 x 8 + c 9 x 3 + c 10 x 3 

+ c 11 x 4 + c 12 x 4 + c 13 x 5 + c 14 x 5 + c 15 x 5 + c 16 x 6 + c 17 x 6 + c 18 x 7 + c 19 x 7 + c 20 x 8 + c 21 x 1 
)

p(x , t) (15) 

where each e i , i = 1 , . . . , 10 denotes the 10 dimensional unit vector containing 1 at the i th entry and 0 elsewhere and pa-

rameters are as follows; 

c 1 = β(1 − q ) , c 2 = β(1 − q ) σI , c 3 = βδ, c 4 = βδσA , c 5 = σS β(1 − q ) , 

c 6 = σS σI β(1 − q ) , c 7 = σS βδ, c 8 = σS βδσA , c 9 = pκ, c 10 = (1 − p) κ, 

c 11 = pτκT , c 12 = (1 − pτ ) κT , c 13 = φI , c 14 = fα, c 15 = (1 − f ) α, 

c 16 = f T αT , c 17 = (1 − f T ) αT , c 18 = φA , c 19 = η, c 20 = ηT , c 21 = γ . 

The SSA requires heavy computational loads and would be computationally infeasible if the large number of population is

involved in the system such as the above stochastic model. As described in Section 2.3 , the MCM is an efficient approximate

method which is much more efficient than the SSA. Especially it is very useful when one wants to investigate the effective-

ness of various intervention scenarios and obtain fast simulation results. In this work, we apply the MCM for simulating the

stochastic model (15) instead of the SSA, since Eq. (15) has high dimensional variables and a large number of population is

involved in the model. If we derive the moment equations and truncate them at the third moments, we obtain the system

of 65 equations for the first moments μi = E[ x i ] and second moments σi, j = E[(x i − μi )(x j − μ j )] . The full system of the 65

equations are given in Appendix B . 

3.3. Numerical simulations 

We present the influenza outcomes of deterministic and stochastic models by applying intervention strategies. The first

infective individual in Korea was a women who returned from Mexico, and she was diagnosed as the index case on May

2, 2009, which we set as day 0. The total population size of South Korea in 2009 is 47,800,896 estimated from [25] and

we assume the number of initial infective people is 10 [23] . Numerical simulations of the model accounting for govern-

ment’s control strategies are carried out from day 0 to day 400 to estimate the incidence curve. The epidemic duration is

divided into four different periods, day 0–79 (period P 1 ), day 80–110 ( P 2 ), day 111–176 ( P 3 ) and day 177–400 ( P 4 ). These

countermeasures in the four periods implemented by South Korean government are summarized below, which are taken

from [22,23,26] . 

(i) In the period P 1 , the government’s main purpose of strategies was to prevent the propagation of the disease. Infected

individuals voluntarily restricted their activity out of school or work. It leads to reduce the contact rate by about 60%.

Also, 60% of the confirmed cases received antiviral treatment and 30% of asymptomatic infectious who contact with a

confirmed case also received antiviral treatment for prophylaxis. 

(ii) One of aims of the policies in the period P 2 was to minimize the outbreak of serious cases and mortalities for reducing

the social and economic damage. A majority of Koreans adopted the public recommendations such as washing hands

or using hand sanitizer more frequently and wearing a flu mask. Due to these behavioral responses, the contact rate

was reduced by 20%. Antiviral agents were used for confirmed patients. 

(iii) In the period P 3 , the antiviral treatment rates were increased since antiviral drugs were widely available. The vacci-

nation was not available during the periods P 1 , P 2 and P 3 , i.e., γ = 0 . 

(iiii) During the period P 4 , the vaccination policy started implementing. According to the KCDC [27] , we estimate that

the vaccination rate between day 177 and day 400 is 0.28. We assume that most people were vaccinated within 20

days after providing vaccine and so the duration of vaccination d v is 20 days. For the values of control parameters

described, refer to Table 2 . 

For all simulations, the influenza outcomes include the peak time, the peak size and the final attack ratio. The peak size

is defined as the maximum value of the incidence during the epidemic duration. The peak time is measured as the time

when the peak size occurs. The final attack ratio is defined as 1 − lim 

t→∞ 

(S(t) + S T (t)) /N. Using the parameters in the first

period P 1 given in Tables 1 and 2 , the controlled (basic) reproduction number is computed as R c = 1 . 55 and R 0 = 3 . 09 . 

First, Fig. 4 and Table 3 show quantitative differences between the solutions of the two models for different initial num-

bers of the infective individuals such as 10, 50 and 250. One can see that the difference between the solutions of the two

models decreases as the initial number of the infectives increases. Especially, if the initial number of the infective people

is as small as 10, there is a significant difference between the results of deterministic and stochastic models and even the

deterministic solution is out of the interval between mean − standard deviation and mean + standard deviation of the
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Table 2 

Summary of response to the 2009 H1N1 influenza in South Korea. Here, d i denotes the duration of the P i period. 

Period Response Control 

strategies parameters 

P 1 • The contact rate of I is reduced by 60% β0 = 0 . 7390 

i.e. q = 0 . 6 . 

• Antiviral treatment for I and A is given φI = 

−ln (1 −0 . 6) 
d 1 

as 60% and 30%. φA = 

−ln (1 −0 . 3) 
d 1 

P 2 • The contact rate is reduced by 20% β0 = 0 . 4038 

by washing hands and wearing a mask. 

• Antiviral treatment for I are given as 20%. φI = 

−ln (1 −0 . 2) 
d 2 

P 3 • Antiviral treatment for I and A is given φI = 

−ln (1 −0 . 4) 
d 3 

as 40%, 20%. φA = 

−ln (1 −0 . 2) 
d 3 

P 4 • Antiviral treatment for I and A is given φI = 

−ln (1 −0 . 2) 
d 4 

as 20%, 20%. φA = 

−ln (1 −0 . 2) 
d 4 

• The vaccination was implemented γ = 

−ln (1 −0 . 28) 
20 

from Oct. 27, 2009. 

Fig. 4. Comparison of the incidence curves from the deterministic model (blue solid) and the mean + standard deviation (green dash-dot), mean (red 

dash) and mean − standard deviation (black dotted) of the stochastic SLIAR treatment model. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Table 3 

Comparison of the incidence curves between the deterministic model and the stochastic model under different initial numbers I (0) when the total popu- 

lation size ( N ) is fixed as 47, 800, 896. The relative L 2 error is defined as 
√ ∑ 

t (x (t) − y (t)) 2 / 
√ ∑ 

t x ( t) 
2 , where x ( t ), y ( t ) are the solutions of the MCM and 

ODE at time t , respectively. 

Model Epidemic outcomes Initial infectives ( I (0)) 

10 50 250 

Deterministic Peak time 187.94 177.49 158.44 

Peak size 388810 544922 524894 

Final attack ratio 0.3963334 0.5219399 0.5828409 

Stochastic Peak time 187.02 177.78 158.59 

Peak size 321812 531516 522856 

Final attack ratio 0.3735441 0.5173449 0.5825586 

Relative L 2 error 0.1810354 0.0274155 0.0060483 

 

 

 

 

 

 

 

 

 

 

 

stochastic solution in the time interval between 200 and 230 days as in Fig. 4 (a). If the initial numbers get larger as 50

and 250, quantitative discrepancies between the two models get smaller. If the deterministic model is used in case that

the initial number of the infectives is small enough, it is highly likely that the model would generate a significant error in

time-dependent prediction of the number of the infectives. 

Next, we investigate the impact of various control policies on the influenza outcomes using the stochastic method (MCM).

First, the impact of the starting time for vaccination is illustrated. This shows the effectiveness of the hypothetical vaccina-

tion starting time which would start earlier than the actual first date (Oct. 27) of the vaccination in Korea. Fig. 5 shows the

comparison of the effect of the vaccination according to its initial vaccination dates. The initial vaccination dates are set to

be day 167, day 147, day 117, day 87, which are 10 days, 30 days, 60 days and 90 days earlier than the actual initial date (day

177) of the vaccination, respectively. Table 4 shows that the peak sizes are reduced by about 31.2% if vaccination starts 10

days earlier than the actual initial date. Likewise, starting the vaccination 1 month, 2 months and 3 months earlier leads to

75.7%, 97% and 99.7% reduction of the peak size, respectively, resulting in a dramatic reduction in the incidence. This result

implies that, although it may be obvious, the earlier the vaccination starts, the more effective it is. 
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Fig. 5. Comparison of the incidence curves under different starting dates of vaccination. The baseline curve (black solid) is based on the actual parameter 

in Table 1 . 

Table 4 

Comparison of the peak time, the peak size and the final attack ratio using different starting dates of vaccination for the results in Fig. 5 . 

Vaccination Baseline Day 167 Day 147 Day 117 Day 87 

date (day 177) 

Peak time 187.02 181.60 168.30 142.60 99.00 

Peak size 321812 221464 78080 9593 1121 

Final attack 0.3735441 0.2468626 0.0842707 0.0108695 0.0015369 

ratio 

Fig. 6. Comparison of the incidence curves when the antiviral treatment rate φ I is increased 50% times more than the actual amount administered by the 

governmental policy for each period. 

 

 

 

 

 

 

Lastly, we investigate how the incidence curve is affected by increasing amounts of antiviral treatment. In Fig. 6 , we

assume that the antiviral treatment for infectious individuals are given 50% more than the actual amount spent in each

period. Table 5 shows that in the periods P 1 and P 3 , the peak size decreases by about 19.7% (about 63,400 cases) and 8.2%

(about 26,400 cases), respectively and also the peak day is delayed by about 2.5 days and 1 day, respectively. Now, we focus

antiviral treatment for infectious individuals on the third period only. Fig. 7 and Table 6 illustrate the impact of the amount

of φ on the epidemic outcomes. If we increase 20%, 50% and 100% more than the actual amount of antiviral treatment
I 
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Table 5 

Comparison of the peak time, the peak size and the final attack ratio for the results in Fig. 6 . 

Period P 1 P 2 P 3 P 4 

Peak time 189.48 187.35 188.06 186.99 

Peak size 258437 314946 295393 320793 

Final attack ratio 0.3369820 0.3694439 0.3596954 0.3723046 

Fig. 7. Comparison of the incidence curves under different treatment rates φ I for the third period ( P 3 ). 

Table 6 

Comparison of the peak time, the peak size and the final attack ratio for the results in Fig. 7 . 

Increased amount 20% increase 50% increase 100% increase 

Peak time 187.40 188.06 189.71 

Peak size 312037 295393 255180 

Final attack ratio 0.36 854 85 0.3596954 0.3381703 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the infective individuals by the governmental policy, we see that the peak time is slightly delayed and the peak sizes

decrease to 3%, 8.2% and 20.7% of the actual infective cases, respectively. 

4. Conclusion 

In this paper, we presented stochastic methods for simulating the epidemic models and applied it to the SLIAR model

with treatment for the 2009 H1N1 influenza in South Korea. For the SLIAR model with treatment, we observed that if the

initial number of the infective people is relatively large (e.g. the government agents notice an outbreak of an epidemic

disease when a considerable number of people have already been infected), then the solution of the deterministic model

is very close to that of the stochastic model. But, if the initial number of the infective people is small like the case of the

H1N1 spread in Korea, there is a significant quantitative difference between the two solutions. One reason for the difference

might be that since there is a small number of the infective people at the initial stage, the infection process should be

considered as a probabilistic event between discrete individuals, but the deterministic model assumes continuous changes

of population, which can generate some errors in the initial stage of the infection. In such cases, we suggest to use the

stochastic modeling. 

Computational efficiency is an important issue for stochastic modeling when one tries to simulate several scenarios with

different assum ptions and parameters. In general, the exact stochastic simulation algorithm (SSA) requires intensive and

expensive computations especially when there is a large number of population. In that case, the moment closure approx-

imation is a good alternative way for computation. For example, for the SEIR model based on the parameters in [22] , the

moment closure approximation takes less than 1 s to obtain the results, but the SSA takes about 0.5 h to obtain the meaning-

ful statistical quantities such as mean and variance based on 10,0 0 0 realizations. Of course, when we perform less number

of realizations, the SSA takes less time, but the result may have large errors and fluctuations in mean and variance due to

the insufficient number of realizations. When one simulates the stochastic epidemic models, we suggest to use the moment

closure method rather than the stochastic simulation algorithm, since the moment closure method can capture the impor-

tant statistical quantities such as mean and variance accurately and more efficiently. Especially, if one wants to see quickly
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the simulation results of stochastic epidemic models with different scenarios and various control parameters, the moment

closure method is a very useful and efficient computational method. 
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Appendix A. The controlled and basic reproduction number 

The controlled reproduction number R c is defined as the number of secondary infections by a single infectious individual

in only susceptible population with the control measures. In our model with control measures, R c can be calculated as

follows; 

dL 

dt 
= βSQ − κL − φL L 

dL T 
dt 

= σs βS T Q − κT L T + φL L 

dI 

dt 
= p κL − αI − φI I 

dI T 
dt 

= p τκT L T − αT I T + φI I 

dA 

dt 
= (1 − p ) κL − ηA − φA A 

dA T 

dt 
= (1 − p τ ) κT L T − ηT A T + φA A 

dS 

dt 
= −βSQ − γ S 

dS T 
dt 

= −σs βS T Q + γ S 

Q = (1 − q ) I + (1 − q ) σI I T + δA + δσA A T (16) 

System (16) has the disease-free equilibrium either x 0 = ((S 0 , S T 0 , 0 , 0 , 0 , 0 , 0 , 0) with γ = 0 . Let X =
(L, L T , I, I T , A, A T , S, S T ) , the model (16) can be written as X ′ = F(X ) − V(X ) , where 

F(X ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

βSQ 

σs βS T Q 

0 

0 

0 

0 

0 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, V(X ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(κ + φL ) L 
−φL L + κT L T 

−p κL + (α + φI ) I 
−p τκT L T − φI I + αT I T 

−( 1 − p ) κL + ( η + φA ) A 

−( 1 − p τ ) κT L T − φA A + ηT A T 

βSQ + γ S 
σs βS T Q − γ S 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Under the assumption, let φL = 0. The Jacobian matrices of F(X ) , V(X ) at the disease free equilibrium x 0 are partitioned as 

D F(x 0 ) = 

(
F 0 

0 0 

)
, D V(x 0 ) = 

(
V 0 

J 3 J 4 

)
, where J 4 = 

(
γ 0 

−γ 0 

)

(The eigenvalues of J 4 have positive real part.) If we assume that γ = 0, then system (16) has the disease-free equilibrium

x 0 = ( S 0 , S T 0 , 0 , 0 , 0 , 0 , 0 , 0 ) . Here, F and V are 6 × 6 matrices given by 

F = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 βS 0 (1 − q ) βS 0 (1 − q ) σI βS 0 δ βS 0 δσA 

0 0 σs βS T 0 (1 − q ) σs βS T 0 (1 − q ) σI σs βS T 0 δ σs βS T 0 δσA 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

http://dx.doi.org/10.13039/501100003725
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V = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

κ + φL 0 0 0 0 0 

−φL κT 0 0 0 0 

−pκ 0 α + φI 0 0 0 

0 −pτκT −φI αT 0 0 

−(1 − p) κ 0 0 0 η + φA 0 

0 −(1 − pτ ) κT 0 0 −φA ηT 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(17)

F V −1 is the next generation matrix of system (13) . Especially, since the matrix F has rank 1, the spectral radius of F V −1 is

equal to the trace of F V −1 . For simplicity of calculation we assume mass action incidence β = β0 /S 0 for some constant β0

in [15] . Thus, the controlled reproduction number of system (13) with γ = 0 is given by 

R c = �(F V 

−1 ) 

= βS 0 

[
(1 − q ) p 

(α + φI ) 
+ 

(1 − q ) σI pφI 

αT (α + φI ) 
+ 

δ(1 − p) 

(η + φA ) 
+ 

δσA φA (1 − p) 

ηT (η + φA ) 

]
+ σs βS T 0 

[
(1 − q ) σI pτ

αT 

+ 

δσA (1 − pτ ) 

ηT 

]
. 

Appendix B. Moment equations for SLIAR model 

For the moments μi = E[ x i ] and σi, j = E[(x i − μi )(x j − μ j )] , we have 

dμ1 

dt 
= −c 21 μ1 − c 1 σ1 , 5 − c 2 σ1 , 6 − c 3 σ1 , 7 − c 4 σ1 , 8 − c 1 μ1 μ5 − c 2 μ1 μ6 − c 3 μ1 μ7 − c 4 μ1 μ8 

dμ2 

dt 
= c 21 μ1 − c 5 σ2 , 5 − c 6 σ2 , 6 − c 7 σ2 , 7 − c 8 σ2 , 8 − c 5 μ2 μ5 − c 6 μ2 μ6 − c 7 μ2 μ7 − c 8 μ2 μ8 

dμ3 

dt 
= c 1 σ1 , 5 + c 2 σ1 , 6 + c 3 σ1 , 7 + c 4 σ1 , 8 − c 10 μ3 − c 9 μ3 + c 1 μ1 μ5 + c 2 μ1 μ6 + c 3 μ1 μ7 + c 4 μ1 μ8 

dμ4 

dt 
= c 5 σ2 , 5 + c 6 σ2 , 6 + c 7 σ2 , 7 + c 8 σ2 , 8 − c 11 μ4 − c 12 μ4 + c 5 μ2 μ5 + c 6 μ2 μ6 + c 7 μ2 μ7 + c 8 μ2 μ8 

dμ5 

dt 
= c 9 μ3 − c 13 μ5 − c 14 μ5 − c 15 μ5 

dμ6 

dt 
= c 11 μ4 + c 13 μ5 − c 16 μ6 − c 17 μ6 

dμ7 

dt 
= c 10 μ3 − c 18 μ7 − c 19 μ7 , 

dμ8 

dt 
= c 12 μ4 + c 18 μ7 − c 20 μ8 

dμ9 

dt 
= c 14 μ5 + c 16 μ6 + c 19 μ7 + c 20 μ8 , 

dμ10 

dt 
= c 15 μ5 + c 17 μ6 

dσ1 , 1 

dt 
= c 21 μ1 + c 1 σ1 , 5 − 2 c 1 μ1 σ1 , 5 + c 2 σ1 , 6 − 2 c 2 μ1 σ1 , 6 + c 3 σ1 , 7 − 2 c 3 μ1 σ1 , 7 + c 4 σ1 , 8 − 2 c 4 μ1 σ1 , 8 

+ c 1 μ1 μ5 − 2 c 21 σ1 , 1 − 2 c 1 μ5 σ1 , 1 + c 2 μ1 μ6 − 2 c 2 σ1 , 1 μ6 + c 3 μ1 μ7 − 2 c 3 σ1 , 1 μ7 + c 4 μ1 μ8 − 2 c 4 σ1 , 1 μ8 

dσ2 , 2 

dt 
= c 21 μ1 + 2 c 21 σ1 , 2 + c 5 σ2 , 5 − 2 c 5 μ2 σ2 , 5 + c 6 σ2 , 6 − 2 c 6 μ2 σ2 , 6 + c 7 σ2 , 7 − 2 c 7 μ2 σ2 , 7 + c 8 σ2 , 8 − 2 c 8 μ2 σ2 , 8 

+ c 5 μ2 μ5 − 2 c 5 μ5 σ2 , 2 + c 6 μ2 μ6 − 2 c 6 σ2 , 2 μ6 + c 7 μ2 μ7 − 2 c 7 σ2 , 2 μ7 + c 8 μ2 μ8 − 2 c 8 σ2 , 2 μ8 

dσ3 , 3 

dt 
= c 1 σ1 , 5 + c 2 σ1 , 6 + c 3 σ1 , 7 + c 4 σ1 , 8 + 2 c 1 μ1 σ3 , 5 + c 10 μ3 + c 9 μ3 + 2 c 2 μ1 σ3 , 6 + 2 c 3 μ1 σ3 , 7 + 2 c 4 μ1 σ3 , 8 

+ c 1 μ1 μ5 + 2 c 1 σ1 , 3 μ5 − 2 c 10 σ3 , 3 − 2 c 9 σ3 , 3 + c 2 μ1 μ6 + 2 c 2 σ1 , 3 μ6 + c 3 μ1 μ7 

+ 2 c 3 σ1 , 3 μ7 + c 4 μ1 μ8 + 2 c 4 σ1 , 3 μ8 

dσ4 , 4 

dt 
= c 5 σ2 , 5 + c 6 σ2 , 6 + c 7 σ2 , 7 + c 8 σ2 , 8 + 2 c 5 μ2 σ4 , 5 + 2 c 6 μ2 σ4 , 6 + 2 c 7 μ2 σ4 , 7 + 2 c 8 μ2 σ4 , 8 + c 11 μ4 + c 12 μ4 

+ c 5 μ2 μ5 + 2 c 5 σ2 , 4 μ5 − 2 c 11 σ4 , 4 − 2 c 12 σ4 , 4 + c 6 μ2 μ6 + 2 c 6 σ2 , 4 μ6 + c 7 μ2 μ7 + 2 c 7 σ2 , 4 μ7 

+ c 8 μ2 μ8 + 2 c 8 σ2 , 4 μ8 

dσ5 , 5 

dt 
= 2 c 9 σ3 , 5 + c 9 μ3 + c 13 μ5 + c 14 μ5 + c 15 μ5 − 2 c 13 σ5 , 5 − 2 c 14 σ5 , 5 − 2 c 15 σ5 , 5 

dσ6 , 6 

dt 
= 2 c 11 σ4 , 6 + c 11 μ4 + 2 c 13 σ5 , 6 + c 13 μ5 + c 16 μ6 + c 17 μ6 − 2 c 16 σ6 , 6 − 2 c 17 σ6 , 6 

dσ7 , 7 

dt 
= c 10 μ3 + 2 c 10 σ3 , 7 − 2 c 18 σ7 , 7 − 2 c 19 σ7 , 7 + c 18 μ7 + c 19 μ7 

dσ8 , 8 

dt 
= 2 c 12 σ4 , 8 + c 12 μ4 + 2 c 18 σ7 , 8 − 2 c 20 σ8 , 8 + c 18 μ7 + c 20 μ8 
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dσ9 , 9 

dt 
= 2 c 14 σ5 , 9 + 2 c 16 σ6 , 9 + c 14 μ5 + 2 c 19 σ7 , 9 + 2 c 20 σ8 , 9 + c 16 μ6 + c 19 μ7 + c 20 μ8 

dσ10 , 10 

dt 
= 2 c 15 σ5 , 10 + 2 c 17 σ6 , 10 + c 15 μ5 + c 17 μ6 

dσ1 , 2 

dt 
= −c 21 μ1 − c 21 σ1 , 2 − c 5 σ1 , 5 μ2 − c 6 σ1 , 6 μ2 − c 7 σ1 , 7 μ2 − c 8 σ1 , 8 μ2 

− c 1 μ1 σ2 , 5 − c 2 μ1 σ2 , 6 − c 3 μ1 σ2 , 7 − c 4 μ1 σ2 , 8 − c 1 σ1 , 2 μ5 − c 5 σ1 , 2 μ5 

+ c 21 σ1 , 1 − c 2 σ1 , 2 μ6 − c 6 σ1 , 2 μ6 − c 3 σ1 , 2 μ7 − c 7 σ1 , 2 μ7 − c 4 σ1 , 2 μ8 

− c 8 σ1 , 2 μ8 

dσ1 , 3 

dt 
= −c 10 σ1 , 3 − c 21 σ1 , 3 − c 9 σ1 , 3 − c 1 σ1 , 5 + c 1 μ1 σ1 , 5 − c 2 σ1 , 6 + c 2 μ1 σ1 , 6 

− c 3 σ1 , 7 + c 3 μ1 σ1 , 7 − c 4 σ1 , 8 + c 4 μ1 σ1 , 8 − c 1 μ1 σ3 , 5 − c 2 μ1 σ3 , 6 

− c 3 μ1 σ3 , 7 − c 4 μ1 σ3 , 8 − c 1 μ1 μ5 − c 1 σ1 , 3 μ5 + c 1 μ5 σ1 , 1 − c 2 μ1 μ6 

− c 2 σ1 , 3 μ6 + c 2 σ1 , 1 μ6 − c 3 μ1 μ7 − c 3 σ1 , 3 μ7 + c 3 σ1 , 1 μ7 − c 4 μ1 μ8 

− c 4 σ1 , 3 μ8 + c 4 σ1 , 1 μ8 

dσ1 , 4 

dt 
= −c 11 σ1 , 4 − c 12 σ1 , 4 − c 21 σ1 , 4 + c 5 σ1 , 5 μ2 + c 6 σ1 , 6 μ2 + c 7 σ1 , 7 μ2 

+ c 8 σ1 , 8 μ2 − c 1 μ1 σ4 , 5 − c 2 μ1 σ4 , 6 − c 3 μ1 σ4 , 7 − c 4 μ1 σ4 , 8 + c 5 σ1 , 2 μ5 

− c 1 σ1 , 4 μ5 + c 6 σ1 , 2 μ6 − c 2 σ1 , 4 μ6 + c 7 σ1 , 2 μ7 − c 3 σ1 , 4 μ7 + c 8 σ1 , 2 μ8 

− c 4 σ1 , 4 μ8 

dσ1 , 5 

dt 
= c 9 σ1 , 3 − c 13 σ1 , 5 − c 14 σ1 , 5 − c 15 σ1 , 5 − c 21 σ1 , 5 − c 2 μ1 σ5 , 6 − c 3 μ1 σ5 , 7 

− c 4 μ1 σ5 , 8 − c 1 σ1 , 5 μ5 − c 2 σ1 , 5 μ6 − c 1 μ1 σ5 , 5 − c 3 σ1 , 5 μ7 − c 4 σ1 , 5 μ8 

dσ1 , 6 

dt 
= c 11 σ1 , 4 + c 13 σ1 , 5 − c 16 σ1 , 6 − c 17 σ1 , 6 − c 21 σ1 , 6 − c 1 μ1 σ5 , 6 − c 3 μ1 σ6 , 7 

− c 4 μ1 σ6 , 8 − c 1 σ1 , 6 μ5 − c 2 σ1 , 6 μ6 − c 2 μ1 σ6 , 6 − c 3 σ1 , 6 μ7 − c 4 σ1 , 6 μ8 

dσ1 , 7 

dt 
= c 10 σ1 , 3 − c 18 σ1 , 7 − c 19 σ1 , 7 − c 21 σ1 , 7 − c 1 μ1 σ5 , 7 − c 2 μ1 σ6 , 7 − c 1 σ1 , 7 μ5 

− c 4 μ1 σ7 , 8 − c 2 σ1 , 7 μ6 − c 3 μ1 σ7 , 7 − c 3 σ1 , 7 μ7 − c 4 σ1 , 7 μ8 

dσ1 , 8 

dt 
= c 12 σ1 , 4 + c 18 σ1 , 7 − c 20 σ1 , 8 − c 21 σ1 , 8 − c 1 μ1 σ5 , 8 − c 2 μ1 σ6 , 8 − c 1 σ1 , 8 μ5 

− c 3 μ1 σ7 , 8 − c 2 σ1 , 8 μ6 − c 4 μ1 σ8 , 8 − c 3 σ1 , 8 μ7 − c 4 σ1 , 8 μ8 

dσ1 , 9 

dt 
= c 14 σ1 , 5 + c 16 σ1 , 6 + c 19 σ1 , 7 + c 20 σ1 , 8 − c 21 σ1 , 9 − c 1 μ1 σ5 , 9 − c 2 μ1 σ6 , 9 

− c 1 σ1 , 9 μ5 − c 3 μ1 σ7 , 9 − c 4 μ1 σ8 , 9 − c 2 σ1 , 9 μ6 − c 3 σ1 , 9 μ7 − c 4 σ1 , 9 μ8 

dσ1 , 10 

dt 
= c 15 σ1 , 5 + c 17 σ1 , 6 − c 21 σ1 , 10 − c 1 μ1 σ5 , 10 − c 2 μ1 σ6 , 10 − c 1 σ1 , 10 μ5 

− c 3 μ1 σ7 , 10 − c 4 μ1 σ8 , 10 − c 2 σ1 , 10 μ6 − c 3 σ1 , 10 μ7 − c 4 σ1 , 10 μ8 

dσ2 , 3 

dt 
= c 21 σ1 , 3 − c 10 σ2 , 3 − c 9 σ2 , 3 + c 1 μ1 σ2 , 5 + c 2 μ1 σ2 , 6 + c 3 μ1 σ2 , 7 + c 4 μ1 σ2 , 8 

− c 5 μ2 σ3 , 5 − c 6 μ2 σ3 , 6 − c 7 μ2 σ3 , 7 − c 8 μ2 σ3 , 8 + c 1 σ1 , 2 μ5 − c 5 σ2 , 3 μ5 

+ c 2 σ1 , 2 μ6 − c 6 σ2 , 3 μ6 + c 3 σ1 , 2 μ7 − c 7 σ2 , 3 μ7 + c 4 σ1 , 2 μ8 − c 8 σ2 , 3 μ8 

dσ2 , 4 

dt 
= c 21 σ1 , 4 − c 11 σ2 , 4 − c 12 σ2 , 4 − c 5 σ2 , 5 + c 5 μ2 σ2 , 5 − c 6 σ2 , 6 + c 6 μ2 σ2 , 6 

− c 7 σ2 , 7 + c 7 μ2 σ2 , 7 − c 8 σ2 , 8 + c 8 μ2 σ2 , 8 − c 5 μ2 σ4 , 5 − c 6 μ2 σ4 , 6 

− c 7 μ2 σ4 , 7 − c 8 μ2 σ4 , 8 − c 5 μ2 μ5 − c 5 σ2 , 4 μ5 + c 5 μ5 σ2 , 2 − c 6 μ2 μ6 

− c 6 σ2 , 4 μ6 + c 6 σ2 , 2 μ6 − c 7 μ2 μ7 − c 7 σ2 , 4 μ7 + c 7 σ2 , 2 μ7 − c 8 μ2 μ8 

− c 8 σ2 , 4 μ8 + c 8 σ2 , 2 μ8 

dσ2 , 5 

dt 
= c 21 σ1 , 5 + c 9 σ2 , 3 − c 13 σ2 , 5 − c 14 σ2 , 5 − c 15 σ2 , 5 − c 6 μ2 σ5 , 6 − c 7 μ2 σ5 , 7 

− c 8 μ2 σ5 , 8 − c 5 σ2 , 5 μ5 − c 6 σ2 , 5 μ6 − c 5 μ2 σ5 , 5 − c 7 σ2 , 5 μ7 − c 8 σ2 , 5 μ8 

dσ2 , 6 

dt 
= c 21 σ1 , 6 + c 11 σ2 , 4 + c 13 σ2 , 5 − c 16 σ2 , 6 − c 17 σ2 , 6 − c 5 μ2 σ5 , 6 − c 7 μ2 σ6 , 7 

− c 8 μ2 σ6 , 8 − c 5 σ2 , 6 μ5 − c 6 σ2 , 6 μ6 − c 6 μ2 σ6 , 6 − c 7 σ2 , 6 μ7 − c 8 σ2 , 6 μ8 



H. Lee et al. / Applied Mathematics and Computation 286 (2016) 232–249 247 
dσ2 , 7 

dt 
= c 21 σ1 , 7 + c 10 σ2 , 3 − c 18 σ2 , 7 − c 19 σ2 , 7 − c 5 μ2 σ5 , 7 − c 6 μ2 σ6 , 7 − c 5 σ2 , 7 μ5 

− c 8 μ2 σ7 , 8 − c 6 σ2 , 7 μ6 − c 7 μ2 σ7 , 7 − c 7 σ2 , 7 μ7 − c 8 σ2 , 7 μ8 

dσ2 , 8 

dt 
= c 21 σ1 , 8 + c 12 σ2 , 4 + c 18 σ2 , 7 − c 20 σ2 , 8 − c 5 μ2 σ5 , 8 − c 6 μ2 σ6 , 8 − c 5 σ2 , 8 μ5 

− c 7 μ2 σ7 , 8 − c 6 σ2 , 8 μ6 − c 8 μ2 σ8 , 8 − c 7 σ2 , 8 μ7 − c 8 σ2 , 8 μ8 

dσ2 , 9 

dt 
= c 21 σ1 , 9 + c 14 σ2 , 5 + c 16 σ2 , 6 + c 19 σ2 , 7 + c 20 σ2 , 8 − c 5 μ2 σ5 , 9 − c 6 μ2 σ6 , 9 

− c 5 σ2 , 9 μ5 − c 7 μ2 σ7 , 9 − c 8 μ2 σ8 , 9 − c 6 σ2 , 9 μ6 − c 7 σ2 , 9 μ7 − c 8 σ2 , 9 μ8 

dσ2 , 10 

dt 
= c 21 σ1 , 10 + c 15 σ2 , 5 + c 17 σ2 , 6 − c 5 μ2 σ5 , 10 − c 6 μ2 σ6 , 10 − c 5 σ2 , 10 μ5 

− c 7 μ2 σ7 , 10 − c 8 μ2 σ8 , 10 − c 6 σ2 , 10 μ6 − c 7 σ2 , 10 μ7 − c 8 σ2 , 10 μ8 

dσ3 , 4 

dt 
= −c 10 σ3 , 4 − c 11 σ3 , 4 − c 12 σ3 , 4 − c 9 σ3 , 4 + c 5 μ2 σ3 , 5 + c 6 μ2 σ3 , 6 + c 7 μ2 σ3 , 7 

+ c 8 μ2 σ3 , 8 + c 1 μ1 σ4 , 5 + c 2 μ1 σ4 , 6 + c 3 μ1 σ4 , 7 + c 4 μ1 σ4 , 8 + c 1 σ1 , 4 μ5 

+ c 5 σ2 , 3 μ5 + c 2 σ1 , 4 μ6 + c 6 σ2 , 3 μ6 + c 3 σ1 , 4 μ7 + c 7 σ2 , 3 μ7 

+ c 4 σ1 , 4 μ8 + c 8 σ2 , 3 μ8 

dσ3 , 5 

dt 
= −c 10 σ3 , 5 − c 13 σ3 , 5 − c 14 σ3 , 5 − c 15 σ3 , 5 − c 9 σ3 , 5 − c 9 μ3 + c 2 μ1 σ5 , 6 

+ c 3 μ1 σ5 , 7 + c 4 μ1 σ5 , 8 + c 1 σ1 , 5 μ5 + c 9 σ3 , 3 + c 2 σ1 , 5 μ6 + c 1 μ1 σ5 , 5 

+ c 3 σ1 , 5 μ7 + c 4 σ1 , 5 μ8 

dσ3 , 6 

dt 
= c 11 σ3 , 4 + c 13 σ3 , 5 − c 10 σ3 , 6 − c 16 σ3 , 6 − c 17 σ3 , 6 − c 9 σ3 , 6 + c 1 μ1 σ5 , 6 

+ c 3 μ1 σ6 , 7 + c 4 μ1 σ6 , 8 + c 1 σ1 , 6 μ5 + c 2 σ1 , 6 μ6 + c 2 μ1 σ6 , 6 + c 3 σ1 , 6 μ7 

+ c 4 σ1 , 6 μ8 

dσ3 , 7 

dt 
= −c 10 μ3 − c 10 σ3 , 7 − c 18 σ3 , 7 − c 19 σ3 , 7 − c 9 σ3 , 7 + c 1 μ1 σ5 , 7 + c 2 μ1 σ6 , 7 

+ c 1 σ1 , 7 μ5 + c 4 μ1 σ7 , 8 + c 10 σ3 , 3 + c 2 σ1 , 7 μ6 + c 3 μ1 σ7 , 7 + c 3 σ1 , 7 μ7 

+ c 4 σ1 , 7 μ8 

dσ3 , 8 

dt 
= c 12 σ3 , 4 + c 18 σ3 , 7 − c 10 σ3 , 8 − c 20 σ3 , 8 − c 9 σ3 , 8 + c 1 μ1 σ5 , 8 + c 2 μ1 σ6 , 8 

+ c 1 σ1 , 8 μ5 + c 3 μ1 σ7 , 8 + c 2 σ1 , 8 μ6 + c 4 μ1 σ8 , 8 + c 3 σ1 , 8 μ7 + c 4 σ1 , 8 μ8 

dσ3 , 9 

dt 
= c 14 σ3 , 5 + c 16 σ3 , 6 + c 19 σ3 , 7 + c 20 σ3 , 8 − c 10 σ3 , 9 − c 9 σ3 , 9 + c 1 μ1 σ5 , 9 

+ c 2 μ1 σ6 , 9 + c 1 σ1 , 9 μ5 + c 3 μ1 σ7 , 9 + c 4 μ1 σ8 , 9 + c 2 σ1 , 9 μ6 + c 3 σ1 , 9 μ7 

+ c 4 σ1 , 9 μ8 

dσ3 , 10 

dt 
= c 15 σ3 , 5 + c 17 σ3 , 6 − c 10 σ3 , 10 − c 9 σ3 , 10 + c 1 μ1 σ5 , 10 + c 2 μ1 σ6 , 10 

+ c 1 σ1 , 10 μ5 + c 3 μ1 σ7 , 10 + c 4 μ1 σ8 , 10 + c 2 σ1 , 10 μ6 

+ c 3 σ1 , 10 μ7 + c 4 σ1 , 10 μ8 

dσ4 , 5 

dt 
= c 9 σ3 , 4 − c 11 σ4 , 5 − c 12 σ4 , 5 − c 13 σ4 , 5 − c 14 σ4 , 5 − c 15 σ4 , 5 + c 6 μ2 σ5 , 6 

+ c 7 μ2 σ5 , 7 + c 8 μ2 σ5 , 8 + c 5 σ2 , 5 μ5 + c 6 σ2 , 5 μ6 + c 5 μ2 σ5 , 5 

+ c 7 σ2 , 5 μ7 + c 8 σ2 , 5 μ8 

dσ4 , 6 

dt 
= c 13 σ4 , 5 − c 11 σ4 , 6 − c 12 σ4 , 6 − c 16 σ4 , 6 − c 17 σ4 , 6 − c 11 μ4 + c 5 μ2 σ5 , 6 

+ c 7 μ2 σ6 , 7 + c 8 μ2 σ6 , 8 + c 5 σ2 , 6 μ5 + c 11 σ4 , 4 + c 6 σ2 , 6 μ6 + c 6 μ2 σ6 , 6 

+ c 7 σ2 , 6 μ7 + c 8 σ2 , 6 μ8 

dσ4 , 7 

dt 
= c 10 σ3 , 4 − c 11 σ4 , 7 − c 12 σ4 , 7 − c 18 σ4 , 7 − c 19 σ4 , 7 + c 5 μ2 σ5 , 7 + c 6 μ2 σ6 , 7 

+ c 5 σ2 , 7 μ5 + c 8 μ2 σ7 , 8 + c 6 σ2 , 7 μ6 + c 7 μ2 σ7 , 7 + c 7 σ2 , 7 μ7 + c 8 σ2 , 7 μ8 

dσ4 , 8 

dt 
= c 18 σ4 , 7 − c 11 σ4 , 8 − c 12 σ4 , 8 − c 20 σ4 , 8 − c 12 μ4 + c 5 μ2 σ5 , 8 + c 6 μ2 σ6 , 8 

+ c 5 σ2 , 8 μ5 + c 7 μ2 σ7 , 8 + c 12 σ4 , 4 + c 6 σ2 , 8 μ6 + c 8 μ2 σ8 , 8 
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+ c 7 σ2 , 8 μ7 + c 8 σ2 , 8 μ8 

dσ4 , 9 

dt 
= c 14 σ4 , 5 + c 16 σ4 , 6 + c 19 σ4 , 7 + c 20 σ4 , 8 − c 11 σ4 , 9 − c 12 σ4 , 9 + c 5 μ2 σ5 , 9 

+ c 6 μ2 σ6 , 9 + c 5 σ2 , 9 μ5 + c 7 μ2 σ7 , 9 + c 8 μ2 σ8 , 9 + c 6 σ2 , 9 μ6 + c 7 σ2 , 9 μ7 

+ c 8 σ2 , 9 μ8 

dσ4 , 10 

dt 
= c 15 σ4 , 5 + c 17 σ4 , 6 − c 11 σ4 , 10 − c 12 σ4 , 10 + c 5 μ2 σ5 , 10 + c 6 μ2 σ6 , 10 

+ c 5 σ2 , 10 μ5 + c 7 μ2 σ7 , 10 + c 8 μ2 σ8 , 10 + c 6 σ2 , 10 μ6 

+ c 7 σ2 , 10 μ7 + c 8 σ2 , 10 μ8 

dσ5 , 6 

dt 
= c 9 σ3 , 6 + c 11 σ4 , 5 − c 13 σ5 , 6 − c 14 σ5 , 6 − c 15 σ5 , 6 − c 16 σ5 , 6 − c 17 σ5 , 6 

− c 13 μ5 + c 13 σ5 , 5 

dσ5 , 7 

dt 
= c 10 σ3 , 5 + c 9 σ3 , 7 − c 13 σ5 , 7 − c 14 σ5 , 7 − c 15 σ5 , 7 − c 18 σ5 , 7 − c 19 σ5 , 7 

dσ5 , 8 

dt 
= c 9 σ3 , 8 + c 12 σ4 , 5 + c 18 σ5 , 7 − c 13 σ5 , 8 − c 14 σ5 , 8 − c 15 σ5 , 8 − c 20 σ5 , 8 

dσ5 , 9 

dt 
= c 9 σ3 , 9 + c 16 σ5 , 6 + c 19 σ5 , 7 + c 20 σ5 , 8 − c 13 σ5 , 9 − c 14 σ5 , 9 − c 15 σ5 , 9 

− c 14 μ5 + c 14 σ5 , 5 

dσ5 , 10 

dt 
= c 9 σ3 , 10 + c 17 σ5 , 6 − c 13 σ5 , 10 − c 14 σ5 , 10 − c 15 σ5 , 10 − c 15 μ5 + c 15 σ5 , 5 

dσ6 , 7 

dt 
= c 10 σ3 , 6 + c 11 σ4 , 7 + c 13 σ5 , 7 − c 16 σ6 , 7 − c 17 σ6 , 7 − c 18 σ6 , 7 − c 19 σ6 , 7 

dσ6 , 8 

dt 
= c 12 σ4 , 6 + c 11 σ4 , 8 + c 13 σ5 , 8 + c 18 σ6 , 7 − c 16 σ6 , 8 − c 17 σ6 , 8 − c 20 σ6 , 8 

dσ6 , 9 

dt 
= c 11 σ4 , 9 + c 14 σ5 , 6 + c 13 σ5 , 9 + c 19 σ6 , 7 + c 20 σ6 , 8 − c 16 σ6 , 9 − c 17 σ6 , 9 

− c 16 μ6 + c 16 σ6 , 6 

dσ6 , 10 

dt 
= c 11 σ4 , 10 + c 15 σ5 , 6 + c 13 σ5 , 10 − c 16 σ6 , 10 − c 17 σ6 , 10 − c 17 μ6 + c 17 σ6 , 6 

dσ7 , 8 

dt 
= c 10 σ3 , 8 + c 12 σ4 , 7 − c 18 σ7 , 8 − c 19 σ7 , 8 − c 20 σ7 , 8 + c 18 σ7 , 7 − c 18 μ7 

dσ7 , 9 

dt 
= c 10 σ3 , 9 + c 14 σ5 , 7 + c 16 σ6 , 7 + c 20 σ7 , 8 − c 18 σ7 , 9 − c 19 σ7 , 9 + c 19 σ7 , 7 

− c 19 μ7 

dσ7 , 10 

dt 
= c 10 σ3 , 10 + c 15 σ5 , 7 + c 17 σ6 , 7 − c 18 σ7 , 10 − c 19 σ7 , 10 

dσ8 , 9 

dt 
= c 12 σ4 , 9 + c 14 σ5 , 8 + c 16 σ6 , 8 + c 19 σ7 , 8 + c 18 σ7 , 9 − c 20 σ8 , 9 + c 20 σ8 , 8 

− c 20 μ8 

dσ8 , 10 

dt 
= c 12 σ4 , 10 + c 15 σ5 , 8 + c 17 σ6 , 8 + c 18 σ7 , 10 − c 20 σ8 , 10 

dσ9 , 10 

dt 
= c 15 σ5 , 9 + c 14 σ5 , 10 + c 17 σ6 , 9 + c 16 σ6 , 10 + c 19 σ7 , 10 + c 20 σ8 , 10 
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