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Abstract

When conducting studies to derive reference intervals (RIs),
various statistical procedures are commonly applied at each
step, from the planning stages to final computation of RIs.
Determination of the necessary sample size is an important
consideration, and evaluation of at least 400 individuals in
each subgroup has been recommended to establish reliable
common RIs in multicenter studies. Multiple regression anal-
ysis allows identification of the most important factors con-
tributing to variation in test results, while accounting for
possible confounding relationships among these factors. Of
the various approaches proposed for judging the necessity of
partitioning reference values, nested analysis of variance
(ANOVA) is the likely method of choice owing to its ability
to handle multiple groups and being able to adjust for mul-
tiple factors. Box-Cox power transformation often has been
used to transform data to a Gaussian distribution for para-
metric computation of RIs. However, this transformation
occasionally fails. Therefore, the non-parametric method
based on determination of the 2.5 and 97.5 percentiles fol-
lowing sorting of the data, has been recommended for gen-
eral use. The performance of the Box-Cox transformation
can be improved by introducing an additional parameter rep-
resenting the origin of transformation. In simulations, the
confidence intervals (CIs) of reference limits (RLs) calculat-
ed by the parametric method were narrower than those cal-
culated by the non-parametric approach. However, the
margin of difference was rather small owing to additional
variability in parametrically-determined RLs introduced by
estimation of parameters for the Box-Cox transformation.
The parametric calculation method may have an advantage
over the non-parametric method in allowing identification
and exclusion of extreme values during RI computation.
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Introduction

Careful consideration of statistical methods and computa-
tional techniques is essential at each step of any study being
performed to derive reference intervals (RIs). While planning
the initial recruitment of healthy individuals as study partic-
ipants, the necessary sample size must be determined appro-
priately, taking into account the desired reproducibility of the
results. Following sampling of an appropriate size population
of individuals and generating test results for each sample,
the potential sources of variation need to be identified in
order to interpret the test results and the RI properly. Statis-
tical analysis is also necessary in studying these sources of
variation to decide, whether separate reference values need
to be estimated. Of the many statistical techniques proposed
for the computation of RIs from the distributions of reference
values, the optimal technique to be used depends on the char-
acteristics of the underlying distribution of reference values.
Once RIs have been derived using appropriate methods, the
transference of those RIs to other laboratories may require
additional statistical analysis.

In this article, we review various statistical procedures that
can be employed in each step of a study for derivation of
RIs and provide illustrations of each method. Comparisons
among the various methods are included to demonstrate their
advantages and disadvantages. The article is written with a
perspective of the challenges encountered in analysis of large
datasets, e.g., derived from the Asian multicenter project on
reference values (manuscript in preparation).

This presentation has been structured to provide an intro-
duction to these concepts at a fairly basic level. Several
resources are available that provide more advanced treat-
ments and details regarding many of the concepts that are
presented below (1–3).

Sample size and standard error of reference

limits

We begin our discussion by considering some elements in
the design phase of a RI study. One of the first considerations
is to determine how many reference individuals to study, i.e.,
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Figure 1 The 95% confidence intervals of reference limits in relation to the sample size and computation methods assuming a normal
distribution.
By specifying a sample size between 40 and 2000, a reference sample consisting of normal random values with a mean of 0.0 and SD of
1.0 are generated 2000 times. The mean and UL of the distribution were computed (1) parametrically without power transformation,
(2) parametrically with power transformation by use of modified Box-Cox formula, and (3) non-parametrically. The 95% confidence intervals
of the mean and UL at each sample size are connected by lines to show their serial changes. The theoretical reference interval (truncated
in its lower part) and magnitude of 1/4 of the width of RI, which corresponds approximately to the between individual SD is shown along
the vertical axis of the figure.

determination of the necessary sample size. Usually, the nec-
essary sample size is a function of how precisely the refer-
ence limits (RLs) need to be estimated. When the underlying
distribution of test results in a healthy population follows a
normal (or Gaussian) distribution, it is easy to estimate the
95% confidence intervals (95% CIs) of the RLs for both the
lower limit (LL) and upper limit (UL), either by simulation
or by analysis of differentials of the underlying normal dis-
tribution function (see below). The actual estimation of 95%
CIs by a simulation study is shown in Figure 1.

In Figure 1, 95% CIs are shown across various sample
sizes assuming that the underlying distribution has a mean
of zero and a standard deviation (SD) of 1.0. To generate
this plot, a simulation study was performed in which a sam-
ple of fixed size between 40 and 2000 was randomly gen-
erated 2000 times. The RI for each sample was computed
parametrically as the mean"1.96SD, giving a 95% CI with
endpoints, LL and UL, delimiting the central 95% of the
population, w1x without transformation and w2x after power
transformation (see below). In the latter case, the LL and UL
are reverse transformed to obtain the RI endpoints in the
original scale. The RI is also computed non-parametrically
as w3x the 2.5th–97.5th percentile range. For these three
methods, the corresponding central value was computed as
w1x the mean, w2x the reverse transformed mean, or w3x the
50th percentile, respectively. The 95% CIs of the mean and
UL by each of the three methods were estimated from the

repeated trial for each data size. One-half the width of the
95% CI or one fourth of the RI width can be expressed as
a parameter, s, which corresponds roughly to the between-
individual SD (SDBI), assuming an underlying Gaussian dis-
tribution with the mean of 0.0 and an SD of 1.0.

It is apparent that method w1x gives a much smaller 95%
CI both for the mean and UL than methods w2x and w3x,
irrespective of the sample size. However, it must be noted
that, in the real situation, we usually do not know the under-
lying data distribution. Thus, to compute RI by the para-
metric method, we need to include a step to normalize the
distribution, usually using power transformation of the data.
The large difference in 95% CI sizes between methods w1x
and w2x is a reflection of the fact that the latter involves error
in estimating the distribution parameters (described below),
resulting in a larger uncertainty of the UL. However, the 95%
CI by use of method w2x is narrower than that by method
w3x, but this margin is very small. Therefore, it is appropriate
that the non-parametric method is recommended for deriva-
tion of the RI in the Clinical and Laboratory Standards Insti-
tute (CLSI) guideline (3). A possible advantage of the
parametric method is its ability to identify and exclude
extreme datapoints based on mean and SD of the distribution
during computation of the RIs.

However, we should note in Figure 1 that the sample size
of 120, described as the minimum size in the guideline, is
far from optimal, since one-half of the 95% CI of the UL is
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Figure 2 The 95% confidence intervals of reference limits in relation to the sample size and computation methods assuming a log-normal
distribution.
The same scheme for simulation was used as in Figure 1 under the assumption of a log-normal distribution. The values are adjusted so that
the theoretical RI for the data points to the interval between –1.96 and 1.96 and 1/4 of the RI became approximately equal to 1.0. The
95% confidence intervals for the LL, median, and UL are shown for (2) the parametric method with power transformation and for (3) the
non-parametric method.

0.39=SDBI. If the RI is to be derived in a collaborative effort
with participation of many laboratories, at least 400 subjects
would be desirable (one-half of the 95% CI of the UL is
0.2=SDBI, which is nearly half of the above case and 5%
(s0.2/4s0.05) of the width of the RI). If we set separate
RIs for men and women, the minimal number of individuals
needed would then be approximately 800. If we are seeking
to derive RIs for each decade of life for individuals in their
20s, 30s, 40s, and 50s, separately for men and women, the
needed sample size would be 800=4s3200 individuals.

As an alternative to the simulation method used above, the
95% CI of LL or UL for the parametric method without
power transformation can be computed, assuming an under-
lying theoretical Gaussian distribution, using the following
formula (1).

s
"95% CI of LL(UL)5 2.81Ø .

yn

When we assume, ss1.0 as in the case shown in Figure 1,
the 95% CI of UL ("one-half of the width) for ns120 is
"0.256; similarly, for ns500, "0.126; for ns1000,
"0.089; for ns2000, "0.062. These values roughly cor-
respond to those of the simulation study shown in Figure 1
for method w1x in computing the RI.

These theoretical considerations all assume an underlying
Gaussian distribution. In Figure 2, the 95% CIs for the LL,
median, and UL of the RI are shown when a logarithmic

normal distribution is assumed in the simulation. The distri-
bution was rescaled so that the LL and UL pointed to –1.96
and 1.96, respectively, and 1/4 of the RI became approxi-
mately equal to 1.0. In Figure 2, an almost identical rela-
tionship as that in Figure 1 is shown between the CIs
obtained by the parametric method with power transforma-
tion, and by the non-parametric method.

Analysis of sources of variations

Documentation of possible physiological sources of varia-
tions in test results among healthy individuals is necessary
so that these sources can be taken into account in the inter-
pretation of test results before considering results outside the
RI as a reflection of possible underlying disease. Such infor-
mation is especially important in judging the need for par-
titioning of reference values by any given factor. To assist in
such an analysis during a RI study, a well designed ques-
tionnaire survey should be conducted at the time of specimen
collection.

Univariate approaches

There are several statistical methods used to analyze sources
of variation. Simple tests of differences among subgroups,
partitioned by any given factor, can be performed by use of
the t-test (or the Mann-Whitney U-test) between two sub-
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Figure 3 IgG associated with the smoking habit, gender, or both?
Test results of serum IgG obtained from 420 healthy subjects in a study of reference interval were subgrouped according to either smoking
status (A) or gender (B). Both factors are significantly associated with the concentration of IgG.

groups, or by use of a one-way ANOVA (or the Kruskal-
Wallis test) when there are three or more subgroups.
However, judgments based on univariate testing can be mis-
leading when there are multiple factors influencing the test
results.

Figure 3 illustrates such a problem we encountered in a
multicenter study for derivation of RIs for serum proteins
(4). In Figure 3A, reference values for serum immunoglob-
ulin G (IgG) were partitioned according to smoking status.
IgG concentrations were obviously higher in non-smokers.
In Figure 3B, the same reference individuals were partitioned
according to gender and IgG concentrations in women were
apparently higher. Therefore, both smoking status and gender
were regarded as very significant sources of variation in the
interpretation of IgG values. However, the percentage of
women who were cigarette smokers was much lower than
the percentage of men. Given such a gender difference in
IgG, the differences observed in IgG concentrations accord-
ing to smoking status may simply reflect the underlying gen-
der bias in the subgroup of smokers.

To clarify this point, reference values can be sub-grouped
both by gender and smoking status. The result is shown in
Figure 4. The left half of the Figure indicates that, among
males, IgG is apparently lower in smokers. The same is true
for females as shown on the right half of the Figure.

Furthermore, when we look at the Figure by focusing on
subgroups of smokers (the first and the third subgroups), no
gender difference is observed. The same is true for non-
smokers (the second and fourth sub-groups). Thus, there is
no gender difference. This Figure clearly demonstrates that
the gender related difference seen in Figure 3B was not real,
but was simply due to gender bias in smoking status. There-
fore, we can conclude that the serum concentration of IgG
is associated with smoking status, but not with gender. We
call this the ‘‘confounding’’ phenomenon: the difference
between men and women was spurious and caused by
neglecting the status of smoking.

In this regard, it is important to note that any study to
derive the RI is an observational study. In such studies, there
are often many related sources of variation and, thus, uni-
variate comparison of subgroups is often meaningless (4). To
this point, consider further that smokers tend to drink more.
Therefore, drinking status may also affect any conclusions
drawn regarding smoking status. To prove these associations,
it is necessary to resort to multi-way stratification of refer-
ence values, but as the groups studied are subdivided pro-
gressively to account for potential confounding variables, the
number of reference observations assigned to each subgroup
will become progressively smaller, impeding reliable conclu-
sions to be drawn.

Nested ANOVA

The problem of confounding variables associated with uni-
variate analysis can be overcome using a nested analysis of
variance (ANOVA) (5) which allow simultaneous compari-
son of two or more sources of variation. A nested ANOVA
separates the magnitude of variations attributable to each fac-
tor and expresses it in terms of the SD or coefficient of
variation (CV). Figure 5 illustrates the application of a three-
level nested ANOVA to judge the importance of city, gender,
and age as sources of variation in a multi-center study con-
ducted in Asia (6). Please note that the nested ANOVA
requires categorical data for the analysis. In the example,
gender and city were categorical, but age was a continuous
variable. Therefore, age was recoded into decades as 20, 30,
40, and 50 before the analysis.

As a very simple numerical example, a two-level nested
ANOVA is shown in Table 1A. The model data consists of
test results of specimens from three individuals to derive the
pure component of between-individual SD (SDpBI). Each
individual is sampled on three separate occasions to derive
the pure component of the within-individual SD (SDpWI).
Furthermore, each specimen is measured twice on separate
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Figure 4 Two-way stratification to reveal independent association
of smoking and gender with IgG.
The IgG concentration is apparently lower in smokers for both
males and females, while no appreciable difference in IgG is
observed between genders either among smokers or among non-
smokers.

days to derive analytical SD (SDA) which is denoted as resid-
ual variation and corresponds to the analytical precision.

The ANOVA tables are shown in Table 1B. The fourth
column in the lower Table 1B reads SDpBIs9.663,
SDpWIs5.525, and SDAs0.943.

In the study of RI, we generally just measure each indi-
vidual once, and we do not measure replicates of each spec-
imen. Therefore, we cannot derive SDpWI or SDA, but we
can derive SDBI. Theoretically, the mean"1.96=SDBI gives
the RI. As a matter of fact, SDBI obtained in such a study
includes the components of variation due to SDpWI and SDA.
Therefore, SDBI can be expressed as follows.

2 2 2ySD 5 SD HSD HSDBI pBI pWI A

In the numerical example shown in Table 2, the experi-
ment is meant to evaluate how the magnitude of within indi-
vidual SD or analytical SD influences SDBI or the RI.

These theoretical considerations all assume an underlying
Gaussian distribution of test results. In the real world, the
distribution is often skewed. Therefore, such ANOVA com-
putations should only be undertaken after transforming the
values to obtain a Gaussian distribution. The RLs (LLT and
ULT) in the transformed scale are computed. Then, they are
reverse transformed to LL and UL on the original scale. An
approximation of ‘‘SD’’ can be obtained as (UL–LL)/
(1.96=2) (6).

Higher levels of nesting in nested ANOVA, which is not
shown in conventional textbooks (5), are provided in
advanced statistical packages, such as SAS� and R.

Multiple regression analysis

Multiple regression analysis provides the most powerful
approach for evaluation of multiple potential sources (para-
meters) of variation simultaneously. It automatically adjusts
for confounding influences of other parameters simply by

including them concurrently in the regression model. The
relative significance of each parameter can be predicted from
the significance level of the regression coefficient. However,
the magnitude of variation attributable to the significant
parameter cannot be expressed as a SD or CV as with the
nested ANOVA. Despite this limitation, multiple linear
regression analysis can be useful for identifying potential
parameters to be included in a nested ANOVA.

It is important to note that the analytical result of multiple
linear regression analysis is greatly influenced by the pres-
ence of extreme values. Therefore, normalization of each
variable by use of a power transformation, described below,
is recommended to obtain optimal results. When using qual-
itative variables, such as gender, city, or blood type, dummy
variables need to be introduced to judge their association
with the test results of interest. There is no limitation on the
number of variables that can be included in a multiple linear
regression analysis. However, inclusion of too many vari-
ables in the regression model often hampers the reproduci-
bility of the model.

For the analysis of data illustrated in Figures 3 and 4, the
following equation allows us to judge the relative importance
of different sources of variation in predicting the serum con-
centration of IgG.

IgG5b Hb (Gender)Hb (Smoking)Hb (Drinking)0 1 2 3

Hb (Age)H∆4

Shown in Table 2B are the serial results of performing a
stepwise multiple regression analysis on the sources of var-
iations of serum IgG, using the dataset in Table 2A. The table
illustrates the step by step changes in the regression para-
meters and their statistical significance with each stepwise
addition of explanatory parameters.

In this analysis, dummy variables were introduced for gen-
der (males0, females1), drinking status (Drk) and smoking
status (Smk). The top table is the result with just gender in
the model. It shows highly significant association with IgG.
However, in the middle table, the result with Smk added to
the model shows that the association of gender with IgG is
reduced appreciably. Further addition of parameters Drk and
age resulted in a non-significant association of gender with
IgG. However, Smk remains significant in the presence of
other competing factors, indicating that Smk is more directly
associated with IgG. It is noteworthy that the association of
many mutually related factors with the target variables can
be examined easily without performing a multi-way strati-
fication of the data as shown in Figure 4.

Criteria for partitioning reference values

Once a notable source of variation, such as gender has been
identified using the statistical methods described above, it is
important to determine the relative magnitude of variation
associated with this source in order to evaluate whether it is
necessary to develop separate RIs partitioned by this source.
Several methods have been proposed for evaluating the need
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Figure 5 The concept of three-level nested ANOVA.
The illustration was made by supposing a dataset obtained in a multi-city study of reference interval (RI). The data are categorized by three
factors: city, gender and age. The analysis separates sources of variations (SD) into three components. The relative magnitude of each SD
is expressed as its ratio to between-individual SD, which corresponds to residual SD or 1/4 of the width of RI.

for partitioning by computing the ‘‘effect size’’ of given
source of variation.

Harris-Boyd method

The Harris-Boyd method (1, 7) is applicable to the case when
there are two subgroups. This method is based on principles

of statistical tests for the differences between two sets of
data, but it differs from the conventional test for two sample
means, whose power is affected by the sample size. Rather,
the method evaluates the practical significance of the differ-
ence between means by making adaptations for differing
sample sizes. When this approach is used to judge the neces-
sity for gender-specific RIs, it appears to yield recommen-



Ichihara and Boyd: Statistical methods for deriving reference interval 1543

Article in press - uncorrected proof

Figure 6 The concept of the Harris-Boyd’s method.

dations that agree with those that have been used
traditionally in setting the RIs for analytes with known gen-
der-related differences (Figure 6). To aid in understanding
this method, it is helpful to know that if we assume that the
data size of the two subgroups (n1, n2) are the same and the
SD of the two subgroups (s1, s2) are the same and equal to
‘s’. Then, using the factor of 3.0 described in the original
description of this method (7), the critical value of the dif-
ference between the means of subgroups is 0.387s (if the 3.0
factor is adjusted to 5.0, as was later suggested by Harris-
Boyd (1), this critical value becomes 0.645s). This implies
that, independent of the sample size, the critical difference
between subgroups is approximately 38% of the size of SDBI:
that is ‘s’, or about one fourth of the RI obtained after sep-
arating the two groups. Flaws in the Harris-Boyd method
have been pointed out by Lahti et al. (8), which has led to
development of the Lahti method.

Lahti method

The second criterion, proposed by Lahti (9), is based on the
percentages of reference values in each subgroup lying out-
side the ULs and the LLs of the RI derived without parti-
tioning. It focuses on the statistically unstable peripheral part
of the distribution. The drawbacks of this method are its
limited applicability to the study of RIs without having a

large sample size, and unsuitability to the case in the pres-
ence of multiple subgroups, some of which may have small
sample sizes.
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Fraser method

The third criterion, proposed by Fraser et al. (10), is based
on the magnitude of biological variation expressed as the
standard deviation (SDB), which includes both SDBI and
SDpWI components. The latter includes the component of
analytical variation, and is thus equivalent to SBI described
above. If the SD accounting for between-subgroup variation
is 0.375=SDB, separate RIs are to be considered.

Ichihara method

The Ichihara method depends on a two- or three-level nested
ANOVA (6). It utilizes the information on SD attributable to
each source of variation. It computes the SD ratio (SDR),
which is the SD of a given factor divided by the SDBI, or
SD due to between-individual variation shown in Figure 5.
This method requires that the underlying data being analyzed
be transformed to yield a Gaussian distribution (6).

One advantage of this method is that can be applied to the
situation where there are more than two subgroups catego-
rized by the factor. Another merit is that the method is suited
to situations in which there is a confounding influence of
other factors as illustrated in Figures 3 and 4. This ability to
account for confounding variables allows the method to yield
judgment regarding the necessity of partitioning after adjust-
ment for the confounding variables, something that none of
the other methods offer. The critical value can be arbitrarily
set according to the policy in deriving RIs. In the previous
survey for reference values (6) with a data size of 580, we
adopted SDR)0.4 as a cut-off value to judge the necessity
of partitioning. But in the recent survey with a much larger
data set, we found it more appropriate to use SDRs0.3 as
the cut-off value to match the judgment to the customary
setting of gender-specific RI (see the description below
regarding Table 3). This method can be compared with that
of the Harris-Boyd method when dealing with the problem
of two subgroups. Since the SD for between individual cor-
responds to ‘s’ in the Harris-Boyd method and the SD of
two values, a and b, isNa–bN/ , the 0.3 limit for SDR givesy2
a criterion that is a little more conservative in judging the
need for partitioning compared to the one given by the
Harris-Boyd method, which corresponds to 0.265s. However,
the Ichihara method is a little stricter than that of Frazer since
the latter criterion corresponds to the 0.375 limit for SDR.

In Table 3, judgments using the Harris-Boyd and Ichihara
methods are compared with respect to between-gender dif-
ference using a dataset obtained from the recent multicenter
study. The judgments using the cut-off values of Z*)3.0
with the Harris-Boyd method and SDRs0.3 with the Ichi-
hara method match very closely.

Techniques for exclusion of extreme values

Univariate approach

It is important to note that the presence of an extreme value
can be judged only by properly assuming the distribution
pattern of reference values at hand. Therefore, if the non-

parametric method is adopted in deriving RI, it is not pos-
sible to judge extreme values in a strict sense. However,
some ‘‘non-parametric’’ robust methods are available that
have some limitations. One of the most commonly used
methods is the Tukey method described by Horn et al. (11).
This method uses the inter-quartile range (IQR) as a yard-
stick. IQR is the interval between the 1st quartile (Q1) and
the 3rd quartile (Q3), that is, IQRsQ3–Q1. When a given
data point in the distribution is above Q3q1.5=IQR, or
below Q1–1.5=IQR, it is considered an outlier. If the dis-
tribution is Gaussian, the Tukey criterion theoretically leads
to deletion of 0.7% of data in the tails. Solberg and Lahti
found the Tukey method to be relatively insensitive for the
detection of outliers (12).

The Dixon test (13) is another ‘‘non-parametric’’ method
that focuses on the most extreme value (Xn) and subtracts
from it the next most extreme value (Xn–1) as DsXn–Xn–1,
and then divides it by the range of the values, R (where
RsXn–X1), as D/R. If D/R exceeds 0.3, Xn is regarded as
an outlier. The Dixon test is rather conservative and cannot
deal with situations where there are multiple extreme values.

In cases, where an underlying Gaussian distribution is
assumed, perhaps after power transformation of reference
values, the common practice is to delete values outside the
mean"k=SD range. ‘k’ is usually set to 3.0 or larger. It is
important to note that if one sets ‘k’ at a small value, say
2.0, and applies the exclusion procedure repetitively, the data
size is reduced progressively, thus distorting the original dis-
tribution. Therefore, more robust ways are required for judg-
ment including the Smirnov method (14), Healy method
(15), or an iterative method proposed by Ichihara and Kawai
(16). These work well under the assumption of a Gaussian
distribution, and thus are used in external quality control sur-
veys (15, 16) for which the test results tend to follow a
Gaussian distribution since the values have been obtained by
repetitive measurements of the same specimens.

On the contrary, the data used for determination of refer-
ence values are generally not assumed to be Gaussian, and
the dilemma is that the method required for Gaussian trans-
formation is easily influenced by the presence of extreme
values. Therefore, the CLSI guideline recommends a con-
servative policy not to delete any values since there is no
generally applicable method of outlier detection.

Multivariate approach

It is not always a good policy to judge any value simply by
its location in the distribution. Rather, the judgment should
be made according to other information related to the test
values concerned. Such an approach has been used by
Kratzsch et al. who followed The National Academy of Clin-
ical Biochemistry (NACB) recommendations for determining
the appropriate reference population to use in developing RIs
for thyroid stimulating hormone (TSH). In this approach,
individuals were excluded if they had a family history of
thyroid disease, positive autoantibodies to thyroid peroxidase
(TPO) and/or thyroglobulin (Tg), increased free triiodothy-
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ronine and/or free thyroxine, or sonographically assessed
abnormalities of the thyroid (17). The latent abnormal value
exclusion (LAVE) method is an example of multivariate-
based judgment of extreme values. This method was first
used in a study by Ichihara and Kawai to derive RIs for
serum proteins in a Japanese population (18). It has been
used extensively in later studies of RI in Japan (6, 19–22).
The method has been developed to exclude abnormal results
hidden within the reference values. However, it does not
judge how extreme a given test value might be in isolation.

Instead, this method looks at other concurrently measured
test results. The method is a type of iterative approach for
derivation of multiple RIs simultaneously, in which no exclu-
sion of values is made in the initial computation of RIs. The
algorithm then uses those initial values of RIs to judge the
abnormality of each individual’s record by counting the num-
ber of abnormal results in tests other than the one for which
the RI is being determined (Figure 7). This algorithm is
potentially useful for data mining RIs from data accumulated
in a routine screening setting, which may contain a certain
percentage of abnormal individuals. Grossi et al. (23) used
a modification of this approach with an additional criterion
that cases could be excluded only when the concurrent test
abnormalities occurred in tests that were significantly cor-

related with the results of the test for which the RI was being
computed.

Actually, the most challenging issue in the derivation of
RIs in the healthy adult population is how to discern those
who are affected by common conditions, such as metabolic
syndrome or related disorders. To set strict exclusion criteria
to those analytes known to be influenced by such disorders
wtriglyceride, uric acid, alanine aminotransferase (ALT), g-
glutamyltransferase (GGT), etc.x results in unrealistic reduc-
tion in the data size and truncation of the reference
distribution (narrow RIs). Meanwhile, setting lenient criteria
leads to wider RIs disparate from the clinical decision limits
generally set by consensus for those analytes. In such a case,
the LAVE method generally gives intermediate RIs as long
as mutually related analytes are measured together. The
advantage of the LAVE method is that truncation of the ref-
erence distribution does not occur since the decision to
exclude a record from any individual is made only by the
results of other analytes that have been measured concur-
rently. However, when there is no association among test
results, RIs are not influenced at all, but the data size remain-
ing after the final iteration is reduced to a certain extent
depending on the associations between the other analytes.
This reduction in data size is an apparent disadvantage when
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Figure 7 The computation flow of latent abnormal values exclu-
sion (LAVE) method.

the original data size is not large. Therefore, judicious use
of the LAVE method is necessary by planning which group
of analytes to include in the simultaneous derivation of RIs,
and which analytes to be used for judging latently abnormal
records. In general, for analytes whose test results may be
used as exclusion criteria, we recommend those which are
closely associated with common disorders, such as metabolic
syndrome, diabetes, or anemia. They include glucose, tri-
glyceride, low density lipoprotein-cholesterol (LDL-C), low
density lipoprotein-cholesterol (HDL-C), uric acid, ALT,
aspartate aminotransferase (AST), GGT, hemoglobin (Hb),
etc. Meanwhile, the analytes for which abnormal results are
infrequent among healthy individuals are not to be included
in the list: Na, K, Cl, creatinine, alkaline phosphatase (ALP),
urea, platelet count, etc.

Computation of reference interval

Parametric method

The parametric method makes use of the theory that when
the distribution is Gaussian, the CI for any probability can
be computed by use of the mean and SD of the distribution.
RI, which is the 95% CI of the distribution, is thus obtained
as the mean"1.96=SD. Therefore, it is mandatory to ensure
that the distribution is Gaussian before computing RI
parametrically.

Since almost all distributions of laboratory test results are
non-Gaussian, it is essential to convert these to a Gaussian
distribution. The power transformation described below is
particularly useful for this purpose.

Power transformation The most flexible way to achieve
Gaussian transformation is by use of the modified Box-Cox
formula. The Box-Cox transformation was initially recom-
mended by the IFCC Expert Committee on RIs as an
approach for transformation of reference population data to
a Gaussian distribution (24). The modified Box-Cox formula

was developed by Ichihara and Kawai (18) and takes the
form shown in Figure 8, where ‘p’ and ‘a’ represent power
and the origin of the transformation.

The original Box-Cox equation does not include ‘a’. How-
ever, this constant is essential for successful transformation
when the distribution arises far away from zero as illustrated
in Figure 9.

In Figure 9, the original reference distribution has a typical
log-normal pattern. The reference values start a little above
five. Therefore, unless a certain amount is subtracted from
each observation to account for displacement of the origin,
the log transformation fails as in cases w2x and w4x. Mean-
while, the same log-transform with subtraction of five, as in
case w6x, results in a successful Gaussian transformation. It
also can be noted that when the power transformation was
done less vigorously, by specifying ps0.333 (or cubic
square root), the transformation was less complete under the
setting of the same origin. However, it is notable that w2x and
w3x, or w4x and w5x resulted in comparable distribution patterns
judging from skewness and kurtosis.

This is because if the origin ‘a’ is set to an optimal posi-
tion close to the lowest values of the distribution, the power
‘p’ can be set to a larger value compared with the case of
transformation where ‘a’ is neglected. Thus, the values of
‘a’ and ‘p’ are closely associated. Such an association
requires a special technique to be used to derive an optimal
maximum likelihood estimate (MLE) of the two parameters.
Several such techniques are potentially available.

The performance of the Box-Cox transformation, with or
without the constant to correct for displacement of the origin,
was compared using the dataset (NHANES III) provided in
the textbook on RI by Horn and Pesce (2). Table 4 shows
the analytical results for men. The adequacy of transforma-
tion to a Gaussian form by the original Box-Cox and the
modified Box-Cox method are tested for each analyte. The
fitting to the Gaussian transformation can be judged by the
skewness and kurtosis of the distribution where NskewnessN
should -0.15 and 2.7-kurtosis-3.3 for an adequate trans-
formation. The darker gray colors for the columns of Skew
and Kurt indicate non-fitting to the Gaussian distribution. It
is apparent that the original Box-Cox model was not suc-
cessful in converting most of the variables to a Gaussian
distribution.

Probability paper method: is it a valid method? In the
past, as a modification of the parametric method, normal
probability paper (x-axis-test value; y-axisscumulative fre-
quency from 0 to 1) has been used extensively to derive RI
by graphically truncating the non-linear part of the curve
(cumulative frequency curve). This method was first pro-
posed by Pryce (25) and supported by Hoffman (26). The
following assumptions are made in proposing this method:
w1x the reference distribution is roughly categorized into nor-
mal or log-normal, w2x non-linearity on the probability paper
is attributable to the presence of an abnormal group of indi-
viduals skewing the distribution, w3x extrapolation of the lin-
ear segment in the left half of the curve gives ULs of the RI
at the intersection with the horizontal red line of ys0.975,
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Figure 8 The concept of modifed Box-Cox formula.
The power ‘p’ can take any value except zero. In cases of ps0.0, the equation is switched to the logarithmic formula. The origin of the
transformation ‘a’ is generally set at a mean–4.0SD of the distribution to get optimal transformation of the data into the Gaussian distribution.

Figure 9 Importance of the origin in successful power transformation.
The original distribution shown in the left is supposed to be a logarithmic normal distribution. Five different formulae were used for power
transformation. The results are influenced both by the power ‘p’ (either 0.33 or 0.0) and the origin ‘a’. The goodness of fit to Gaussian
transformation in terms of skewness and kurtosis is shown at the top of each graph.

thus removing the abnormal group. Figure 10 demonstrates
the feasibility of these claims by simulation, introducing
‘‘abnormal groups’’ at variable locations and with varying

sample sizes. The main Gaussian distribution was set as a cons-
tant. The straight line in each panel indicates the theoretical
line corresponding to the main peak. It is apparent that a hand
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drawn line might not coincide with the blue line and could
easily skew towards the actual curve depicted from the entire
distribution. In addition, the method did not appear to give
good estimates of RIs when it was tried in practice (27, 28).

The inherent problem of this methodology is its basic
assumption that laboratory results in healthy individuals fol-
low a normal (or log-normal) distribution. As is shown in
Table 4, the power ‘p’ predicted using the modified Box-
Cox equation is often different than either ps1.0 (normal)
or ps0.0 (log-normal). Therefore, when the distribution can-
not be well categorized as normal or log-normal, truncation
of the non-linear portion of data on normal probability paper
results in a falsely narrow RI.

Non-parametric method

Simple percentile estimation When the reference values
show a peculiar skewed distribution which cannot be made
Gaussian, even by use of the power transformation, or when
there are many values below the detection limit of the assay,
the non-parametric method is the method of choice for com-
puting RI.

This method estimates the 2.5 percentile for the LL and
the 97.5 percentile for the UL.

There are many ways to compute percentile estimates. The
following three approaches are the most common. The per-
centile p of the r-th value x (xwrx) with the data size of n is
formulated. As a simple numerical example, a list of percen-
tiles corresponding to five values (n55: xw1x, xw2x, xw3x,
xw4x, xw5x) are shown within the parenthesis.

rI0.5
Method 1: p5 $100 ( 10 30 50 70 90 )

n
r

Method 2: p5 $100 (16.7 33.3 50 66.7 83.3)
nH1
rI1

Method 3: p5 $100 ( 0 25 50 75 100 )
nI1

It should be noted that the p estimates are symmetrically
allocated on both sides of the central data xw3x, but their
ranges differ between them. It is interpreted that Method 2
assumes the presence of data on both ends of the distribution
by leaving space open for the 0 and 100 percentiles, while
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Figure 10 Validity of probability paper method.
As a simulation, a sample assuming to have a Gaussian distribution of meansm and SDss, designated as n (m, s) with sample size of
1000 was generated. It was merged with another sample with a Gaussian distribution generated with a variable center and size, but with
the same SDss. The merged distribution is shown both as a histogram and plotted on probability paper. The blue line on the latter
corresponds to the theoretical line corresponding to the main sample. In the probability paper method for derivation of RI, a linear segment
of the curve is derived manually. This figure points out the apparent difficulty of obtaining an optimal linear segment by the manual
procedure.

Method 3 does not assume the presence of other data by
occupying the 0 and 100 percentiles with real data. However,
Method 1 gives the percentile estimate to be placed between
them. Therefore, in cases with a small n, the medium assign-
ment of the percentile by Method 1 appears more reasonable,
although the results of the three methods become identical
with increments in n (29).

For non-parametric derivation of RI, estimation of the 2.5
and 97.5 percentile by any of the three methods is required.
Estimation of the 2.5 percentile is illustrated as follows.

1) Find rank r corresponding to 2.5 percentile

n
Method 1: r52.5$ H0.5

100
nH1

Method 2: r52.5$
100
nI1

Method 3: r52.5$ H1
100

If the computed r is an integer with no fractional value,
then the rth value, xwrx, corresponds to the 2.5 percentile.
Otherwise, interpolation is required to obtain 2.5 percentile.

2) Estimate percentiles p1 and p2 closest to 2.5 percentile
The r is rounded down to an integer and values x at ranks

r and rH1 are determined. The estimates of p1 and p2, cor-
responding to the values xwrx and xwrq1x, are given as
follows:

rI0.5 rH1I0.5
Method 1: p 5 $100 p 5 $1001 2n n

r rH1
Method 2: p 5 $100 p 5 $1001 2nH1 nH1

rI1 rH1I1
Method 3: p 5 $100 p 5 $1001 2nI1 nI1

3) Derive the value corresponding to 2.5 percentile
Using the following equation of linear interpolation, the

estimate of the value of the 2.5 percentile is obtained by use
of p1, p2, xwrx, and xwrq1x.



1550 Ichihara and Boyd: Statistical methods for deriving reference interval

Article in press - uncorrected proof

2.5Ip12.5 percentilesxwrxH $(xwrH1xIxwrx)
p Ip2 1

The 97.5 percentile is similarly estimated by replacing 2.5
with 97.5 in the above formulae.

More precise percentile estimation As described in the
first part of this review, simple non-parametric estimation of
RI is generally inferior in precision to parametric methods,
especially with a small sample size. Various approaches to
increase the precision of the estimate have been proposed in
the book by Harris-Boyd (1) (pages 35–39). They include
w1x the weighted average of all the observed percentiles using
a filter function called the kernel or w2x application of the
so-called bootstrap or re-sampling method. In the latter pro-
cedure, the complete set of n observations is sampled repeat-
edly, each resample built up by n sequential random
selections with replacement. Thus, any resample may include
the same observation more than once, or not at all. The RI
(LL, UL) is derived from each resampled dataset. After rep-
etition of this process, usually more than 500 times, the aver-
age of LL and UL estimates gives a smoothed non-
parametric estimate of the RI. The advantage of this method
over the kernel based method is that it provides both the
smoothed estimate and its standard error.

Conclusions

Various statistical methods and computational techniques
must be considered at each step of any study performed for
deriving RIs. This review has emphasized the following
points.

The CI of RLs is strongly tied to the underlying sample
size. To obtain reliable RIs, it is essential to conduct a mul-
ticenter study with recruitment of a large number of reference
individuals.

To determine factors that influence the test values in the
reference population, the test results should be analyzed
using a multivariate method to avoid confounding influences
of other factors. Multiple regression analysis is recommend-
ed for this purpose. To judge the necessity for partitioning
RI, various criteria are proposed. When there are multiple
categories in a given factor, nested ANOVA may be the
method of choice with its additional capability for simulta-
neous comparison of multiple factors.

In computing RIs, the parametric method often requires
the use of power transformation to make the distribution
Gaussian. The Box-Cox transformation formula is often used
for this purpose, but of note, it does not function well without
adjustment for the origin of transformation. The CIs of RLs
derived by the parametric method with transformation are
narrower than those for the non-parametric method, but the
margin of difference is rather small owing to the additional
error introduced in the estimation of the parameters, the pow-
er factor and the origin when using the parametric method.
The merit of using the parametric method is its capability of
identifying and potentially excluding extreme values during
computation of RIs.
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