Papers

Peer-reviewed
Aug, 2016

ALK(R1275Q) perturbs extracellular matrix, enhances cell invasion and leads to the development of neuroblastoma in cooperation with MYCN

ONCOGENE
  • T. Ueda
  • Y. Nakata
  • N. Yamasaki
  • H. Oda
  • K. Sentani
  • A. Kanai
  • N. Onishi
  • K. Ikeda
  • Y. Sera
  • Z-i Honda
  • K. Tanaka
  • M. Sata
  • S. Ogawa
  • W. Yasui
  • H. Saya
  • J. Takita
  • H. Honda
  • Display all

Volume
35
Number
34
First page
4447
Last page
4458
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1038/onc.2015.519
Publisher
NATURE PUBLISHING GROUP

Overexpression of MYCN is a hallmark of neuroblastoma (NB). ALK(R1275Q), an activating mutation of ALK (anaplastic lymphoma kinase), has been found in sporadic and familial NB patients. In this report, we demonstrated that ALK(R1275Q) knock-in, MYCN transgenic compound mice developed NB with complete penetrance. Transcriptome analysis revealed that ALK(R1275Q) globally downregulated the expression of extracellular matrix (ECM)- and basement membrane (BM)-associated genes in both primary neuronal cells and NB tumors. Accordingly, ALK(R1275Q)/MYCN tumors exhibited reduced expression of ECM/BM-related proteins as compared with MYCN tumors. In addition, on MYCN transduction, ALK(R1275Q)-expressing neuronal cells exhibited increased migratory and invasive activities. Consistently, enhanced invasion and metastasis were demonstrated in ALK(R1275Q)/MYCN mice. These results collectively indicate that ALK(R1275Q) confers a malignant potential on neuronal cells that overexpress MYCN by impairing normal ECM/BM integrity and enhancing tumor growth and dissemination. Moreover, we found that crizotinib, an ALK inhibitor, almost completely inhibited the growth of ALK(R1275Q)/MYCN tumors in an allograft model. Our findings provided insights into the cooperative mechanism of the mutated ALK and overexpressed MYCN in the pathogenesis of NB and demonstrated the effectiveness of crizotinib on ALK(R1275Q)-positive tumors.

Link information
DOI
https://doi.org/10.1038/onc.2015.519
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000382153100003&DestApp=WOS_CPL
ID information
  • DOI : 10.1038/onc.2015.519
  • ISSN : 0950-9232
  • eISSN : 1476-5594
  • Web of Science ID : WOS:000382153100003

Export
BibTeX RIS